当前位置:文档之家› 温度监测及报警电路(热敏电阻+LM324)

温度监测及报警电路(热敏电阻+LM324)

温度监测及报警电路(热敏电阻+LM324)
温度监测及报警电路(热敏电阻+LM324)

温度监测及报警电路(热敏电阻+LM324)姓名:_____孔亮______ 学号:____0928401116____

一、元件介绍:

1、热敏电阻MF53-1:

2、LM324:

LM324是四运放集成电路,它采用14脚双列直插塑料封装,lm324原理图如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。lm324引脚图见图2。

图一图二由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

3、LED——发光二极管

LED(Light-Emitting-Diode中文意思为发光二极管,是一种能够将电能转化为可见光的半导体,它改变了白炽灯钨丝发光与节能灯三基色粉发光的原理,而采用电场发光。据分析,LED的特点非常明显,寿命长、光效高、无辐射与低功耗。LED的光谱几乎全部集中于可见光频段,其发光效率可超过150lm/W(2010年)。

一般LED工作时,加10mA足以使之正常工作,故电阻值为V o/10mA,即为外加电阻的值,如+5V的电压下可以使用500欧姆的电阻。

二、设计原理:

检测电路采用热敏电阻RT(MF53-1)作为测温元件;采用LM324作比较电路;用发光二极管实现自动报警。

报警分三级:温度>20O C,一个灯亮;

温度>40O C,二个灯亮;

温度>60O C,三个灯亮。

三、M ultisim仿真:

仿真电路设计图

说明:该仿真电路图以5kΩ的电位器模拟热敏电阻MF53—1在不同温度下的阻值,并利用分压电路将不同温度下热敏电阻下方的电位送入LM324与事先计算好的电位进行比较,当其电位大于事先计算好的电位时,运放输出高电平,点亮LED,达到报警的效果。

分压电阻阻值的计算:

温度=20 ℃时,热敏电阻阻值为3.5千欧,此时R5与R6之间的电位为:

1/(3.5+1)×9=2伏特

温度=40 ℃时,热敏电阻阻值为1.64千欧,此时R5与R6之间的电位为:

1/(1.64+1)×9=3.46伏特

温度=60 ℃时,热敏电阻阻值为823欧,此时R5与R6之间的电位为:

1000/(823+1000)×9=5伏特

假定分压电路的电流为1毫安,则:

R4=2伏特/1毫安=2千欧

R4+R1=3.46伏特/1毫安=3.46千欧

R4+R1+R2=5伏特/1毫安=5千欧

R4+R1+R2+R3=9伏特/1毫安=9千欧

故得到:R4=2千欧,R1=1.46千欧,R2=1.54千欧,R3=4千欧

仿真结果:

温度>20℃场景模拟(一个灯亮)

温度>40℃场景模拟(两个灯亮)

温度>60℃场景模拟(三个灯亮)

四、实际电路测量:

电路现象:调节电位器,当刚刚一个灯亮时,此时测得R5与R5之间电位为1.94伏特;当刚刚两个灯亮时,此时测得R5与R5之间电位为3.42伏特;当刚刚三个灯亮时,此时测得R5与R5之间电位为4.99伏特。

电路功能验证:

一个灯亮时:

R5与R5之间电位=1000/(1000+R6)=1.94÷9

得到:R6=3639欧,查表得电位器此时模拟的温度约为20℃

两个灯亮时:

R5与R5之间电位=1000/(1000+R6)=3.42÷9

得到:R6=1631欧,查表得电位器此时模拟的温度约为40℃

三个灯亮时:

R5与R5之间电位=1000/(1000+R6)=4.99÷9

得到:R6=803欧,查表得电位器此时模拟的温度约为60℃

结论:该电路可以实现测温电路的功能。

五、实验中遇到的问题:

本人在实际实验中接入电源时,误将电源电流档调到0,结果将芯片烧毁,后经上网查询后发现,是因为电流源内部有电流监控装置,用来稳定电流,当输出电流小于预定值时,会主动提升某处的电压,直到输出电流等于预定电流为止。若电流源开路,意味者电流源内部会持续提高控制电压,导致电压端电压过高,烧毁芯片。

用热敏电阻测量温度

PB05210298 张晶晶 实验报告三 实验题目:用热敏电阻测量温度 实验原理: 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 2. 惠斯通电桥的工作原理 半导体热敏电阻和金属电阻的阻值范围,一般在1~106 Ω,需要较精确测量时常用电桥法,惠斯通电桥是应用很广泛的一种仪器。 惠斯通电桥的原理,如图3.5.2-2(a )所示。四个电阻R 0、R 1、R 2、R x 组成一个四边形,即电桥的四个臂,其中R x 就是待测电阻。在四边形的一对对角A 和C 之间连接电源E ,而在另一对对角B 和D 之间接入检流计G 。当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。平衡时必有02 1 R R R R x = ,

R 1/R 2和R 0都已知,R x 即可求出。R 1/R 2称电桥的比例臂,由一个旋钮调节,它采用十进制固定值,共分0.001、0.01、0.1、1、10、100、1000 七挡。R 0为标准可变电阻,由有四个旋钮的电阻箱组成,最小改变量为1Ω,保证结构有四位有效数字。 02 1 R R R R x 是在电桥平衡的条件下推导出来的。电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。如实验中所用的张丝式检流计,其指针偏转一格所对应的电流约为10-6A ,当通过它的电流比10-7A 还小时,指针的偏转小于0.1格,就很难觉察出来。假设电桥在R 1/R 2=1时调到平衡,则有

温度上下限报警电路文档

电子与信息工程系 课程设计报告书 课程名称:温度上下限报警电路 班级:通信工程 学号姓名:^^^^^^^^^^^^^^^ 指导教师:^^^^^^^^^^^^^ 二○一二年六月 一、设计内容 设计并制作完成一个温度上下限报警电路,分设计/仿真和实验/制作两部分完成。 二、技术指标与要求

当被测温度达到或高于上限设定值时,一支红色发光二极管亮;当被测温度达到或低于下限设定值时,另一支绿色发光二极管亮。三、可供主要元件 每台实验箱里内有功能电路和元器件,如差动放大电路,振荡电路,反馈放大电路等可供使用。 四、实验目的 (1)掌握集成运算放大器的工作原理、性能、指标及选择标准和使用方法。 (2)掌握比较器及其辅助电路的组成、工作原理。 (3)掌握气体敏感元件的一般原理、性能、指标及选择标准和使用方法。 (4)掌握简单桥式测量电路的原理、构造。 (5)掌握简单报警电路的构造和原理。

(6)掌握以上电路的设计原则及设计方法并能正确运用。 (7)掌握实际电子线路印刷板的设计原则和方法。 (8)掌握电子线路的一般调试、测试方法 五、实验原理 温度上下限报警电路实验原理图 如图所示,热敏电阻的阻值会随着温度的增加而减小,随着温度的降低而增大。所以随着温度的改变负载电阻R3两端电压也会随着改变,从而进入运放的温变负载电阻R3两端电压也会随着改变,从而进入运放的温度比较电压也发生变化。该设计中我们通过电位器来改变设定电阻R2的阻值从

而改变运放一端输入电压的门限值,设定电阻R2的阻值从而改变运放一端输入电压的门限值,来设定我们所需要的温度检测范围。 (1)LM358相关知识的介绍 LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 LM358端口图: (2)电压比较器的工作原理 电压比较器将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。 反相型迟滞比较器见下图

8路温度巡回检测、报警系统

8路巡回检测、报警系统 一、摘要 随着电子技术的发展,家用电器和办公设备的智能化、系统化已成为发展趋势,而这些高性能几乎都要通过电子电路实现。同时,温度作为与我们生活息息相关的一个环境参数,对其的测量和研究也变得极为重要。本实验基于数字、模拟电子电路相关知识,实现了8路温度巡回检测、报警系统。此系统包括555时钟电路、计数与译码显示电路、拨码开关和数据选择电路、蜂鸣报警电路、电压比较电路、Pt100测温电路等模块。各模块焊接前均用Multisim软件对电路进行了仿真。8路通道中,有6路采用拨码开关实现对通道的工作状态模拟,1路采用滑动变阻器与窗口比较器实现通道的工作状态模拟,还有1路为热电阻Pt100的测温电路,且后两路通道均设置两个阈值,可检测系统工作状态是否处于正常范围之内。该系统能够对多个通道的工作状态(如温度)是否正常进行巡回检测。当某一通道出现故障(如超温)时,由巡回检测系统发出报警并显示故障的通道号,故障排除后,系统可继续进行巡回检测。

二、设计任务 2.1 设计选题 选题八:8路巡回检测、报警系统的设计与实现 2.2 设计任务要求 (1)基本要求:用十进制计数器、数据选择器、显示译码器和适当门电路设计一个8路循环检测报警器,循环检测周期不超过8秒。当某一路出现故障(如超温)时停止检测,并且发出报警和显示故障的通道号; (2)扩展要求1:电源电压模拟:要求采用滑动变阻器设计与实现2路电源电压输出的模拟。电压比较器可设定上、下限电压报警值; (3)扩展要求2:实现1路热电阻Pt100的测温电路。 三、方案设计与论证 接通电源后,555芯片在3口输出10Hz的时钟信号,在此信号的控制下,74ls160开始在0~7内循环计数,通过QA,QB,QC,QD输出BCD码到74ls47和74ls151的A,B,C端口。八路通道的电压输出值送入74LS151八路数据选择器的D0~D7端,74LS151的Y和~W互为反码形式输出,Y接74LS160的控制端ENT,~W接蜂鸣器。正常情况下,~W输出为低电平,无法驱动三极管,蜂鸣器不响。当有某一路或多路出现故障时,Y端输出为低电平,计数器74LS160停止计数,QA,QB,QC输出数据保持为出现故障时接受的二进制码,通过译码器在共阳数码管上显示的是一个不变的值,即故障通道号,~W端输出一个高电平,三极管导通,蜂鸣器响。系统方框图见图1: 图1 系统方框图 此系统全部使用硬件搭建,未使用单片机,无需编程,芯片采用了74系列,在

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

设计一个温度监测和显示报警电路

设计要求:设计一个温度监测和显示报警电路,电路包括:温度监测、显示报警和供电电源3个部分。 1)设计温度监测电路。温度监测范围:0~100℃;对应输出电压0~10V(参考值)。2)设计窗口比较器电路。上下限可调整;为窗口比较器设计状态指示灯,超过上限红灯亮、低于下限绿灯亮、上下限之间黄灯亮;超限时有报警提示音。 3)为上述电路设计配套供电电源。 4)确定上述电路中所有元器件的型号或参数。电阻要给出阻值和功率;电容要给出容量和耐压;变压器要给出输出电压和功率。 5)关键元器件的参数选择要说明计算公式。如放大倍数、工作电流、设定电压等。 1、电路图 电源部分 温度检 测和显 示报警 部分 2、元器 件选择 及参数 计算 (1)变 压器 UI=(整 流输出 +稳压 器压降)×(阻抗压降)×(电源波动) 取整流输出为12V(即VCC),因此UI=(12+3)××。取UI为18V。变压器次级电压为U2=UI/~=15V.电源电路电流约为60mA,取100mA。变压器功率为12×100mA=。所以变压器可选15V/3W。 (2)整流二极管 电源输出电流按计算 桥式电路中每只二极管电流为Id=1/2Iomax=。每只二极管承受的最大反压U(M)==24V。可选用1N4001,其参数为Io=1A,Urm=100V。 (3)滤波电容 一般来说,充电时间常数RC是其充电周期的(2~5)倍。 对于桥式整流电路,滤波电容的充电周期是其交流电源周期的一半,即RC≥(2~5)T/2=(2~5)/2f。取倍,C=830μF,取C=1000μF。考虑电容的耐压值,电网电压最高为Ucmax=×=。综合考虑,C1可选1000μF/50V的电解电容。C2、C3为μF的瓷片电容,用于滤去高频纹波。 (4)NTC热敏电阻的选择 测温电路输出电压Uo=R1×Vcc/(R1+RNTC),根据要测的温度范围和设定的温度电压范围,

温度监测报警系统设计报告

目录 一、设计任务与设计要求 (1) 二、设计原理 (1) 2.1 主要硬件介绍 (1) 2.1.1 DS18B20数字温度传感器 (1) 2.1.2 AT89C51单片机芯片 (3) 2.2 系统原理结构 (3) 三、设计方案 (4) 3.1 硬件部分 (4) 3.1.1 温度测量模块 (4) 3.1.2 LED数码管显示模块 (4) 3.1.3 按键模块 (5) 3.1.4 系统整体结构仿真图 (5) 3.2 软件部分 (5) 3.2.1DS18B20传感器程序 (5) 3.2.2键盘读取及确认程序 (7) 3.2.3DS18B20操作流程图 (8) 四、调试与性能分析 (9) 4.1 proteus仿真结果 (9) 4.2实物测试 (9) 4.2.1正常情况 (9) 4.2.2报警状态 (10) 五、心得体会 (10) 六、成品展示 (11) 七、附录部分 (12) 附件一、电路设计原理图 (12) 附件二、系统设计原始代码程序 (13)

一、设计任务与设计要求 本设计主要利用单片机AT89C51 芯片和以美国MAXIM/DALLAS半导体公司的单总线温度传感器DS18B20相结合来实现装置周围温度的采集,其中以单片机AT89C51 芯片为核心,辅以温度传感器DS18B20和LED数码管及必要的外围电路,构成一个结构简单、测温准确、具有一定控制功能的温度监视警报装系统。 功能要求: 添加温度报警功能,通过4个按键来设置温度的上下限值,当用DS18B20 测得的温度不在所设置的温度范围内,蜂鸣器开始鸣报。 二、设计原理 2.1 主要硬件介绍 2.1.1 DS18B20数字温度传感器 DS18B20 数字温度传感器提供9~12 位摄氏温度的测量,拥有非易失性用户可编程最高与最低触发点告警功能。DS18B20 通过单总线实现通信,单总线通常是DS18B20连接到中央微控制器的一条数据线(和地)。它能够感应温度的范围为-55℃~+125℃,在-10℃~+85℃的测量的精度是±0.5℃,而且DS18B20 可以直接从数据线上获取供电(寄生电源)而不需要一个额外的外部电源。 DS18B20 使用DALLAS 独有的单总线(1—wire)协议使得总线通信只需要一根控制线,控制线需要一个较小的上拉电阻,因为所有的期间都是通过三态或开路端口连接在总线上的(DS18B20 是这种情况)。在这种总线系统中,微控制器(主器件)识别和寻址挂接在总线上具有独特64 位序列号的器件。因为每个器件拥有独特的序列号,因此挂接到总线上的器件在理论上是不受限制的,单总线(1-wire)协议包括指令的详细解释和“时隙”。这个数据表包含在单总线系统(1-WIRE BUS SYSTEM)部分。DS18B20 的另外一个特征是能够在没有外部供电的情况下工作。当总线为高的时候,电源有上拉电阻通过DQ 引脚提供,高总线信号给内部电容(Cpp)充电,这就使得总线为的时候给器件提供电源,这种从单总线上移除电源的方法跟寄生电源有关,作为一种选择,DS8B20 也可以采用引脚VDD 通过外部电源给器件供电。 DS18B20 引脚定义: (1) GND为电源地; (2) DQ为数字信号输入/输出端; (3)VDD 为外接供电电源输入端(在寄生电源接线方式时接地) 图2.1.1 DS18B20 引脚排列图

温度控制电路实验报告

温度控制电路实验报告 篇一:温度压力控制器实验报告 温度、压力控制器设计 实 验 报 告 设计题目:温度、压力控制器设计 一、设计目的 1 ?学习基本理论在实践中综合运用的初步经验,掌握微机控制系统设计的基本方法; 2.学会单片机模块的应用及程序设计的方法; 3?培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.利用赛思仿真系统,以MCS51单片机为CPU设计系统。 2?设计一数据采集系统,每5分钟采集一次温度信号、10分钟采集一次压力信号。并实时显示温度、压力值。 3.比较温度、压力的采集值和设定值,控制升温、降温及升压、降压时间,使温度、压力为一恒值。 4?设温度范围为:-10—+40°C、压力范围为0—100P&;升温、降温时间和温度上升、下降的比例为1°C/分钟,升压、降压时间和压力上升、下降的比例为10P"分钟。

5?画出原理图、编写相关程序及说明,并在G6E及赛思 仿真系统上仿真实现。 三、设计构思 本系统硬件结构以80C51单片机为CPU进行设计,外围扩展模数转换电路、声光报警电路、LED显示电路及向上位PC机的传输电路,软件使用汇编语言编写,采用分时操作的原理设计。 四、实验设备及元件 PC机1台、赛思仿真系统一套 五、硬件电路设计 单片微型计算机又称为微控制器,它是一种面向控制的大规模集成电路芯片。使用80C51来构成各种控制系统,可大大简化硬件结构,降低成本。 1.系统构架 2.单片机复位电路 简单复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器的错误复位,故为了保证复位电路的可靠性,将RC电路接斯密特电路后再接入单片机和外围IC的RESET引脚。 3.单片机晶振电路 晶振采用12MHz,即单片机的机器周期为1卩so 4.报警电路

热敏电阻测温电路设计

电子设计大赛论文 (B组) 热敏电阻测温电路设计 第三十组 K3队 组队成员:顾代辉黄龑罗程 2010年5月23日

摘要:科技发展,很多工业化的生产都需要温度测量,这使得温度测量仪器变成一个 很重要的东西。下面我们将题目所给的温度测量电路进行分析和改动设计。题目所给图是一个在工业场合的温度测量系统,采用RTD 电阻温度检测器。通过分析可知,ref R 两端分到的电压即为ref V ,Vo3输出的电压即为NTC 两段分到的电压。而要求我们设计的电路所用的是NTC 负温度系数热敏电阻器。题目要求我们将电流产生电路的电流控制在0.1m A 。这里我们简 单的将 ref R 改成25k 。对于滤波电路,我们设计各个参数使得其截至频率在100Hz 左右,就 能滤掉1000HZ 的干扰信号;对于基准源,我们都用基本的连接方法,输出电压为2.5V ;对于稳压管,输出电压为恒定的5V ;对于串口连接,我们用到MAX232芯片其中一个接口,与单片机的RXD/TXD 连接传输数据。 关键词:温度传感器 AVR 串口显示 I .电路分析 (1) 电流产生电路分析: 首先对于运放A1,由虚短和虚断,可知 111211 120 V V I I === 有: 1121221 O V V V R R --= 可解得:1121122=O V V V = 即第一个运放功能为将信号放大两倍。 对于运放A2,同理,有 212221 220 V V I I === 有:221O V V =可见,运放A2是一个电压跟随器。

又:24211234( )2 REF O REF O O V V R V V V V R R -?+=+=+ 11122O REF O V V V V ==+ 故: REF R 两端分到的电压为 122R O REF REF O O REF V V V V V V V =-=+-= 由此可见: REF R 两端分压恒为基准电压 REF V ,只要基准电压和 REF R 的值不变,则 通过 REF R 的电流REF REF V I R = 2.5 12.5mA k ==为恒定值,该电路的作用为产生恒定电流。 由于3233p n V V V ==,故Rline 和R6相当于并联, 66'1001R R I I Rline ==,故100'101 I I I =≈ 故可认为恒定电流I 都通过热敏电阻RTD 。 运放A3以及NTD 分析: 由叠加法分析,当31V 接地时,033131317100'6100R k V V V V R k =- =-=- 当32V 接地时,03323276100100''26100R R k k V V V R k ++= == 故0303033231'''2V V V V V =+=- …………………… ① 而32()'RTD V Rline R I =+? …………………… ② 31(2)'RTD V Rline R I =+? …………………… ③

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

基于51单片机的数字温度报警器

摘要:随着传感器在生产生活中更加广泛的应用,一种新型的数字式温度传感器实现对温度的测试与控制得到了更快的开发。本文设计了一种基于单片机AT89C52的温度检测及报警系统。该系统将温度传感器DS18B20接到单片机的一个端口上,单片机对温度传感器进行循环采集。将采集到的温度值与设定的上下限进行比较,当超出设定范围的上下限时,通过单片机控制的报警电路就会发出报警信号,从而实现了本次课程设计的要求。该系统设计和布线简单、结构紧凑、体积小、重量轻、抗干扰能力较强、性价比高、扩展方便,在工农业等领域的温度检测中有广阔的应用前景。本次课程设计的测量范围为0℃--99℃,测量误差为±2℃。 关键字:温度传感器、单片机、报警、数码管显示 一、概述 本次设计可以应用到许多我们用过的软件设计,将前面所学的知识融汇在一起实现温度监测及其报警的功能,来提醒农民当前大棚内温度是否适合农作物的生长。 电子技术是在十九世纪末、二十世纪初开始发展起来的新兴技术,在二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 随着电子技术的飞速发展,电子技术在日常生活中得到了广泛的应用,各类转换电路的不断推出以及电子产品的快速更新,电子技术已成为世界发展和人们生活中必不可少的工具。 本次课设应用Protues软件设计一个温度检测报警系统,用温度传感器DS18B20采集大棚内的温度,当大棚内的温度高于30℃。或低于15℃。时,电路发出报警信号并显示当前温度,达到提醒农民的效果。 本次课设要求设计一个温度监测报警显示电路,要求温度范围:0℃--99℃;测量误差为±2℃;报警下限温度为:15℃;报警上限温度为:30℃。 二、方案论证 设计一个用于温室大棚温度监测系统。大棚农作物生长时,其温度不能太低,也不能太高,太低或太高均不适合农作物生长。该系统可实时测量、显示大棚的温度,当大棚温度超过农作物生长的温度范围时,报警提醒农民。 方案一: 方案一原理框图如图1所示。 图1 大棚温度检测系统的原理框图 方案二: 方案二原理框图如图2所示。

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

温度监测及报警电路(热敏电阻+LM324)

温度监测及报警电路(热敏电阻+LM324)姓名:_____孔亮______ 学号:____0928401116____ 一、元件介绍: 1、热敏电阻MF53-1:

2、LM324: LM324是四运放集成电路,它采用14脚双列直插塑料封装,lm324原理图如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。lm324引脚图见图2。 图一图二由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。 3、LED——发光二极管 LED(Light-Emitting-Diode中文意思为发光二极管,是一种能够将电能转化为可见光的半导体,它改变了白炽灯钨丝发光与节能灯三基色粉发光的原理,而采用电场发光。据分析,LED的特点非常明显,寿命长、光效高、无辐射与低功耗。LED的光谱几乎全部集中于可见光频段,其发光效率可超过150lm/W(2010年)。 一般LED工作时,加10mA足以使之正常工作,故电阻值为V o/10mA,即为外加电阻的值,如+5V的电压下可以使用500欧姆的电阻。 二、设计原理: 检测电路采用热敏电阻RT(MF53-1)作为测温元件;采用LM324作比较电路;用发光二极管实现自动报警。 报警分三级:温度>20O C,一个灯亮; 温度>40O C,二个灯亮; 温度>60O C,三个灯亮。

温度检测电路

第1章绪论 1.1 引言 温度检测在自动控制系统电路设计中的使用是相当广泛的,系统往往需要针对控制系统内部以及外部环境的温度进行检测,并根据温度条件的变化进行必要的处理,如:补偿某些参数、实现某种控制和处理、进行超温告警等。因此,对所监控环境温度进行精确检测是非常必要的,尤其是一些对温度检测精度要求很高的控制系统更是如此。良好的设计可以准确的提取系统的真实温度,为系统的其他控制提供参考;而相对不完善的电路设计将给系统留下极大的安全隐患,对系统的正常工作产生非常不利的影响。本文结合实践经验给出两种在实际应用中验证过的设计方案。 1.2 设计要求 1.确定设计方案画出电路图 2.完成所要求的参数计算 3.对电路进行焊接与组装 4.对电路进行调试 5.写出使用说明书 1.2.1 设计题目和设计指标 设计题目:温度检测电路 技术指标:1. 量程:0-30摄氏度 2. 两位数码管显示 1.2.2 设计功能 1. 温度检测

2. 信号调理 3. 数码显示 1.2.3 硬件设计 1.传感器可选择LM35(因为热敏电阻的精度不高)。 2.模数转换,译码可选择集成芯片ICL7107芯片。 3.显示电路可以选择数码管三位显示室温。 1.3 需要做的工作 1.器件选型 2.原理图绘制 3.各个流程设计 4.仿真之后做出实物

第2章电路的方框图 2.1 数字温度计电路原理系统方框图 数字温度计电路原理系统方框图,如图1-1所示。 图1-1 电路原理方框图 2.2 方框图工作流程介绍 通过温度传感器采集到温度信号,经过放大电路送到A/D 转换器,然后通过译码器驱动数码管显示温度。在温度采集过程中我们选择多种传感器进行比较,但我们最终选择LM35温度传感器,因为它校准方式简单,使用温度范围适中。在A/D转换和译码的过程中,我们选择了ICL7107芯片,因为他集模数转换与译码器于一体,使得外围电路简单,易于焊接,而且抗干扰能力强。

温度监测报警系统

温度监测报警系统

目录 毕业论文(设计)任务书.................................................................................................... - 1 - 摘要.................................................................................................................................... - 6 - 关键词.................................................................................................................................... - 7 - 第一章绪论 (1) 1.1 课题背景 (1) 1.2 课题研究的目的和意义 (1) 1.3 温度检测系统在国内外状况 (1) 第二章硬件系统的总体设计方案 (3) 2.1 总体设计方案 (3) 2.2 温度检测及参数 (3) 2.2.1 温度检测 (3) 2.2.2 温度参数 (4) 2.3 A/D转换模块 (4) 2.4 传感器 (5) 2.4.1传感器的简介 (5) 2.4.2 AD590性能特点与内部结构 (5) 2.5 温度显示电路 (8) 2.6 单片机简介 (9) 2.6.1 AT89C51特性 (9) 2.6.2 引脚图 (10) 2.6.3 管脚说明 (10) 2.6.4 复位键控制模块 (12) 2.7 报警电路 (12) 第三章软件设计 (13) 第四章系统的仿真与实现 (15) 4.1 概述 (15) 4.2 功能特点 (15) 4.3 电路功能仿真 (16)

温度报警器仿真要点

模拟电路基础课程设计报告 温度报警电路的设计与仿真 姓名:FD 学号:----- 背景与简介: 本项目的目标是设计一个温度监测与报警电路。人们的生活与坏境温度息息相关,物理、化学、生物等科学都离不开温度,太阳能热水器、电力、石油、农业大棚经常需要对环境温度进行检测,并根据实际的要求对温度进行控制。例如,在醋和酒等的酿造生产中必须对发酵过程的温度进行检测与控制;许多太阳能热水器中,需要通过温度检测来控制其水泵运作;在农业大棚中,通过温度检测来判断

是否合适农作物种植与生长;许多电子设备都有额定温度单位,没有合适的温度会使电子产品造成故障等等。 已知条件: 1.温度传感器 温度为25℃时,所有电阻的阻值为400Ω 温度每上升1℃,Rt的阻值下降0.01Ω 2.数字电压表:2V满量程,3位半 3.发光二极管:正常发光时正向电流为2~10mA 设计要求: 1.温度为0℃时,数字电压表的指示为0.000V 2.温度为100℃时,数字电压表的指示为1.000V 3.温度低于30℃或高于40℃时,点亮发光二极管报警 4.温度监测与报警误差<±2℃ 分析: 1.由已知条件知:Rt与温度T的关系为: Rt=400.25Ω-0.01T ;

由于Multisim12.0软件里面没有热敏电阻,根据上面的关系式,把Rt 替换成一只399.25Ω与一个1Ω的电位器串联,从而模拟由于温度改变引起的Rt 的阻值变化。 2.根据设计要求1和2: 温度为0℃时,数字电压表的指示为0.000V,即Rt=400.25Ω时, 电压表示数为0.000V;温度为100℃时,数字电压表的指示为 1.000V,即Rt=399.25Ω时,电压表示数为1.000V ; 3.根据设计要求3: 温度低于30℃或高于40℃时,点亮发光二极管报警,即电压小 于0.3V 或大于0.4V 时,输出逻辑高电平,使发光二极管应导通;则此时显然因选用的比较器为窗口比较器。 4.根据设计要求4: 温度监测与报警误差<±2℃,则所选用运放应具有低失调。 系统方案设计与仿真: 一:系统框图 二:单元电路 传感器 信号放大部分 信号采集 比较器 电压表显示 报警

温度采集实验报告

课程设计任务书 题目基于AD590的温度测控系统设计 系(部) 信息科学与电气工程学院 专业电气工程及其自动化 班级电气092 学生姓名刘玉兴 学号090819210 月日至月日共周 指导教师(签字) 系主任(签字) 年月日

摘要 温度是工业生产和自动控制中最常见的工艺参数之一。过去温度检测系统设计中,大多采用模拟技术进行设计,这样就不可避免地遇到诸如传感器外围电路复杂及抗干扰能力差等问题;而其中任何一环节处理不当,就会造成整个系统性能的下降。随着半导体技术的高速发展,特别是大规模集成电路设计技术的发展, 数字化、微型化、集成化成为了传感器发展的主要方向。 以单片机为核心的控制系统.利用汇编语言程序设计实现整个系统的控制过程。在软件方面,结合ADC0809并行8位A/D转换器的工作时序,给出80C51单片机与ADC0908并行A /D转换器件的接口电路图,提出基于器件工作时序进行汇编程序设计的基本技巧。本系统包括温度传感器,数据传输模块,温度显示模块和温度调节驱动电路,其中温度传感器为数字温度传感器AD590,包括了单总线数据输出电路部分。文中对每个部分功能、实现过程作了详细介绍。 关键词:单片机、汇编语言、ADC0809、温度传感器AD590

Abstract Temperature is the most common one of process parameters in automatic control and industrial production. In the traditional temperature measurement system design, often using simulation technology to design, and this will inevitably encounter error compensation, such as lead,complex outside circuit,poor anti-jamming and other issues, and part of a deal with them Improperly, could cause the entire system of the decline. With modern science and technology of semiconductor development, especially large-scale integrated circuit design technologies, digital, miniaturization, integration sensors are becoming an important direction of development. In the control systems with the core of SCM,assembly language programming is used to achieve the control of the whole system.Combining with the operation sequence of ADC0809,the interface circuit diagrams of 80C51 SCM and ADC0809 parallel A/D conveger ale given.The basic skills of assembly language programming based on the operation se—quenee of the chip ale put forward.This system include temperature sensor and data transmission, the moduledisplays

热敏电阻测温电路

热敏电阻测温电路 热敏电阻测量电路 本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 2.2.1 原理电路 本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。 RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。S 为转换开关。 图2.2.1 测温控温电路由RT检测到的温度信息,输入D1的反馈回路。该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。当被控对象的实际温度升到预设值时, D4同相输入电压的绝对值大于反相输入电压的绝对值, D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。如此反复运行,达到预设的控温目的。2.2.2 主要元器件选择本测温控温电路选用PTC热敏电阻为感温

元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内,其电阻-温度特性见图 2.2. 3. 图2.2.2 线化电路线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。继电器的选型取决于负载功率。为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。 2.2.3 安装与调试调试工作主要是调整指示器的零点和满度指示。先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。然后将S接通R1,调节RP2使微安表指满度。最后,按RT的标准阻-温曲线,将RP3调到与设定温度相应的阻值,即可投入使用。本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 图2.2.3 传感测头的标准阻-温特性

相关主题
文本预览
相关文档 最新文档