当前位置:文档之家› 空间统计与空间数据挖掘之地统计分析

空间统计与空间数据挖掘之地统计分析

空间统计与空间数据挖掘之地统计分析
空间统计与空间数据挖掘之地统计分析

空间统计与空间数据挖掘之地统计分析

空间统计与空间数据挖掘之地统计分析地统计是统计

的一类,用于分析和预测与空间或时空现象相关的值。它将数据的空间坐标纳入分析中,以变异函数为主要工具,研究那些分布于空间上既有随机性又有结构性的自然或社会现

象的科学,接下来将介绍地统计研究的工作流程和主要步骤,并结合ArcGIS Geostatistical Analyst工具进行实践演示。

地统计是用于分析和预测与空间或时空现象相关联的值得

统计数据类。利用GIS工具可以构建使用空间坐标的模型。这些模型可以应用于各种情况并通常用于生成未采样位置

的预测,也可以用于生成这些预测的不确定性的度量值。

一般情况下,地统计研究的流程为:第一步仔细检查数据。第二步构建地统计模型,根据研究目的和数据集要素的不同,建模过程的步骤会有些差异。在这一阶段,对数据集进行严密地探索并收集信息,扩增对所研究对象的先验知识,这将决定模型的复杂程度和内插值的准确性,以及不确定性的度量值的准确性。第三步将所建模型与数据集结合来生成感兴趣区域内所有未采样位置的内插值。最后模型的输出应该经过检查,确保内插值和相关的不确定性的度量值是合理的并与预期相匹配。我们继续以上文中提到的某市区垃圾站数据为例,结合GIS工具具体介绍如何利用地统计建模插值。1

探索性空间数据分析19世纪60年代的Tukey面向数据分析的主题,提出了探索性数据分析(EDA,exploratory data analysis)的新思路,解决了传统统计分析中数据不能满足正态假设,基于均值、方差的模型在实际数据分析中缺乏稳定性的问题,并且满足了对海量数据进行分析的要求。EDA 的特点是对数据来源的总体不作假设,并且假设检验也经常被排除在外。这一技术使用统计图表、图形和统计概况的方法对数据的特征进行分析和描述,技术核心是“让数据说话”,在探索的基础上对数据进行更为复杂的建模分析(王远飞,何洪林,2007)。在EDA的基础上衍生而出的是探索性空间数据分析(ESDA,exploratory spatial data analysis),是EDA在空间数据分析领域的推广。

在使用插值方法之前,应该使用ESDA工具浏览数据。此工具能使我们更深入地了解数据并为插值模型选择最合适的

方法和参数。例如,如果使用普通克里金法生成分位数图,应该事先检查数据的分布,因为是在数据是呈正态分布的前提下才能采用这一方法,如果数据不是正态分布的,应该在插值模型中包含数据变换的操作。检测数据的空间趋势也是ESDA的一大功能。ESDA环境允许用户用图形的方法研究数据集,从而能更好的理解所要研究的数据集。每个ESDA 工具都对该数据给出一个不同的视图并在单独的窗口中显

示出来。这些不同的视图包括直方图(histogram)、voronoi

地图、正态QQplot分布图、趋势分析(trend analysis)、半变异/协方差函数云等。对于我们接下去将要介绍的克里格插值方法,如果数据的分布近似于正态分布,使用克里格插值法时将会收到更好的效果。利用直方图与正态QQPlot分布图可以检验数据分布是否呈现正态分布。克里格插值方法是建立在平稳假设的基础上,这个假设要求分布中的数据值具有相同的变异性。而实际情况却是当值增加时,其变异性也增加。需要通过一些数据变换方法让数据变换到正态分布,并满足相同变异性的假设(吴秀芹,2007)。而最常用的数据变换方法包括Box-Cox变换、对数变换、反正弦变换。通过观察均值和中值可以确定分布的中心位置,一般来说,如果数据集的中值和均值非常接近,偏度为零,峰度接近于3,则可以判断其分布近似于正态分布。数据变换中应当注意的是,在对一个数据集进行数据变换后,在生成预测表面时必须进行还原变换,还原变换将给出一个具有近似克里格标准差的近似无偏估计。在ArcMap中可以利用直方图和QQPlot 图直观地检验数据分布的形状,并且当数据分布不理想时,可以通过上文提到的数据变换方法进行变换。

在进行探索性分析时,除了总览数据分布与数据变换,另一大功能便是识别异常值。全局异常值是相对于数据集中的所有值具有异常高值或低值的样本点;而局部异常值是指对于一个样本点,其取值范围对于整个数据集来说是处于一个正

常的范围内,但对于与其相邻的周边的样本值相比呈现异常情况。从数据集中识别出异常值具有十分重要的意义,一方面,异常值可能是空间现象分布中的异常情况,另一方面,则可能是单纯的错误数据,均需要引起特别注意,进行变换处理或剔除。

单数据集方法直方图(histogram)1.统计信息直方图可

以用于观察数据集的总体分布并用于汇总相关的统计数据,比如最大最小值、平均值、标准差、中位数等。如下图所示,可以看出,对于垃圾站的日处理量这个属性并不是呈典型的正态分布,并且在右上角的图例中可以看到一系列常规的统计指标,用于参考。2.数据分布与变换在ArcMap中利用直方图工具可以直观地检验数据分布的形状。如下图所示,数据并没有呈现典型的正态分布,我们可以通过数据变换功能十分便捷的对垃圾站数据进行变换,期望能得到近似的正态分布,分别进行对数变换以及Box-Cox变换(参数设为0.3)。可以看到,进行对数变换的结果也不是特别理想,而进行Box-Cox变换则得到了相对近似的正态分布。 3.异常值识别利用直方图可以很方便直观的筛选出数据集中的异常值,通过探索性分析工具得到数据集的直方图之后,选择直方图尾部的样本点,这些样本点往往会呈现异常高值或低值。当然,通过这样选取的异常点十分不精确,需要进一步的分析验证,才能决定是数据异常还是单纯的数据错误。如下图

所示,选取直方图中的尾值,可以发现这些垃圾站点均为日处理量1000吨以上。voronoi地图 1.查看数据分布通过voronoi地图可以直观的观测数据集的空间可变性和稳定性。如下图所示,基于市区内每个垃圾站点数据,相对应的生成了各自的voronoi多边形。每个点对应的voronoi多边形的

面积的倒数可以作为一个评价点局部密度的指标,还可以帮助我们判断点集的分布属于哪一种形式(随机分布或者集聚、规则分布)。例如下图右下角,多边形面积小且数量较多,

可以看到垃圾站点的分布相对集中。2.查找异常值在查看VORONOI图时,不仅可以通过多边形的大小密度来识别样本值的总体分布情况,还可以根据其中一个多边形与相邻多边形的差异情况来识别研究对象中的异常值。以上图为例,可以很容易找出颜色与周围多边形明显差异的样本点,查看其属性可知,该点所指示的垃圾站的日处理量为1500吨/天,远高于相邻的几个样本点的值,查看其它样本也可以同样得出此结果。正态QQPlot分布图该统计量用于评估所研究的数据集是否表现为正态分布。简单来说,即是使用研究的对象数据集与正态分布的标准数据集对比得出差异,用于观测数据集的相关特征。如下图所示,垃圾站点的经度属性并非典型的正态分布数据,但数据点与正态分布线相对接近,从统计学意义上来说,是有研究意义的。同直方图分析方法一样,QQPlot图也可以对统计分布结果做Box-Cox变换、对

数变换已经反函数变换。如下图所示,对垃圾站日处理量数据,在正态QQPlot图的基础上,进行对数变换和Box-Cox (参数设置为0.3)变换,前者变换的结果不如后者理想.趋势分析(trend analysis)用于查看和检查数据集中的空间趋势。同样以垃圾站数据为例,对于垃圾站的日处理量这一属性,图中底面一根垂直的黑色竖线代表一个样点,蓝色和绿色分别代表两条趋势线。如果经过投影点的趋势线是平的,那么说明不存在趋势。从下图可以看出垃圾站日处理量的属性存在一定的趋势,但是具体的趋势需要更深入的分析才能得出。

半变异/协方差函数云1.查看数据分布利用半变异/协方差函数云可以计算数据集中的空间依赖性。2.查找异常值如果数据集中存在具有异常高值的全局异常值,那么这些异常值在半变异云中也将具有高值,可以结合半变异函数云图与直方图,筛选出数据集中比较突出的异常值,在进行检验之后可以进行错误值的校正或直接剔除。需要注意的是,半变异函数中存在两个点的主要地层,如果选取上层地层中的点,可以发现所有高值来自与单个位置的配对,可以说这些上层点都通过单个异常值配对创建,而下层点则是通过剩余的位置配对创建。以上介绍的几种方法,每次可以用于分析一个数据集的探索性空间属性,接下来的两种方法可以对两个数据集之间的关系进行初步的探索。双数据集方法普通QQPlot

分布图普通QQPlot分布图用于评估两个数据集之间分布的相似程度,与前面的正态QQPlot分布图的绘制类似,不同之处在于,正态QQ分布是利用目标数据集与正态分布相对比得出,而普通QQ分布的对比数据集是另一目标数据集,如果两个数据集具有相同的分布,那么分布曲线将与45度

对角线重合。交叉协方差云交叉协方差云显示了两个数据集之间所有位置对的经验交叉协方差,并且将其作为两位置间距离的函数对其进行绘图。交叉协方差云可以用来检查两个数据集之间空间相关的局部特征,并且能够用于在两个数据集之间的相关中查找空间平移,交叉协方差云的形式如下:2空间插值确定性插值方法确定性插值方法以研究区域内部的相似性、或者以平滑度为基础,由已知样点来创建表面。其中最具代表性的是反距离权重插值法,Inverse Distance Weighted,即IDW。反距离权重插值法是基于相近相似原理,以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本点赋予的权重越大。反距离权重插值法的一般公式如下:

地统计插值方法地统计插值方法中最为典型与常用的就是

克里格插值法。克里格插值法是以空间自相关为基础,利用原始数据和半方差函数的结构性,对区域化变量的未知采样点进行无偏估计的方法。克里格插值法的一般实现流程如下:1. 检查所研究数据是否服从正态分布,如果不服从,需要通

过以上介绍到的数据变换方法进行数据变换,以达到或接近正态分布。2. 根据数据自身特性选择合适的克里格方法。3. 计算样点间的距离矩阵。4. 计算样点间的属性方差并按距离进行分组。5. 根据分组,统计平均距离以及相应的平均方差。

6. 通过工具软件获得方差变异云图以及经验半变异函数图。

7. 拟合理论半变异函数图。8. 计算克里格系数并进行预测。在克里格插值过程中,应该注意的是应该使样点数据尽量充分并符合前提假设,当样本点数足够多时,使用各种克里格方法的结果会基本相同。

不同的克里格方法有其是用的条件:当数据服从正态分布时,选用对数正态克里格;若不服从简单分布时,选用析取克里格;当数据存在主导趋势时,选用泛克里格;当只需要了解属性值是否超过某一阈值时,是用指示克里格;当同一事物的两种属性存在相互关系,且一种属性不易获取时,选用协同克里格方法,它借助另一属性实现该属性的空间内插;当假设属性值的期望值为某一已知常数时,选用简单克里格;当假设属性值的期望值是未知的,选用普通克里格(汤国安,杨昕,2006)。

以下通过垃圾站点数据,对普通克里格方法进行实例介绍。普通克里格方法是区域化变量的线性估计,它假设数据变化成正态分布,认为区域化变量Z的期望值是未知的。插值过程类似于加权滑动平均,权重值的确定来自于空间数据分析。

ArcGIS中普通克里格插值包括创建预测图、创建分位数图、创建概率图和创建标准误差预测图四个部分。

第一步,选择ArcMap中的Geostatistical Wizard工具,在对话框中选择垃圾站数据,属性列选择垃圾站日处理量。插值方法选择Kriging/CoKriging,进行下一步。

第二步,在弹出的对话框中,可供选择的克里格插值方法均一一列出,在此只以普通克里格方法为例,如需更换克里格插值类型,可以返回此步骤重新选择。我们选择Ordinary,即普通克里格法。在左下方可选择生成的表面类型,包括预测表面,,分位数图,概率图和标准误差预测图。我们选择生成预测表面。其他功能图只需重复此步骤操作即可,如下图所示:第三步,生成半变异函数图并查看协方差云图。第四步,确定邻域的搜索范围。第五步,交叉验证。在交叉验证的对话框中列出了对上述参数的训练数据模型精度评价。符合以下标准的模型为最优:标准平均值最接近于0,均方根预测误差最小,平均标准误差最接近于均方根预测误差,标准均方根预测误差最接近于1。第六步,当将各参数值调整至最优之后,就可以生成最后的预测表面。近期课程安排课程安排课程名称:Arcgis应用教程与实践(3 2模式)品牌课程

时间地点:2017年5月12日-5月15日西安课程安排课程名称:Arcgis应用教程与实践(3 2模式)品牌课程

时间地点:2017年6月16日-6月19日山东更多地理信息行业资讯关注公众平台目前100000 人已关注加入我们

分析报告、统计分析和数据挖掘的区别

分析报告、统计分析和数据挖掘的区别 关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力(insight)”。 举个例子说。 你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。 孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。 你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。 数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。 用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。

数据统计与分析(SPSS).

数据统计与分析(SPSS) 一、课程属性说明 适用对象:教育技术学专业,电子信息科学与技术专业,广告学专业 课程代码:11200913 课程类别:专业任选课 所属学科:计算机科学与技术 授课学期:第8学期 学时:讲授54学时,实验34时 学分:3 教材: 《SPSS for Windows 统计与分析》,卢纹岱主编,电子工业版社,2000年版参考书: 考核方式:考查 评分方法:试验报告20%,上机考试 80% 前导课程:计算机基础,线性代数,概率统计

二、大纲制定依据 对数据进行统计分析是一种十分重要的信息获得的方法,很多领域均需要做这方面的工作。传统的统计分析是由人工计算求解;现在随着计算机应用的普及,越来越多的统计分析工作是由计算机来完成的,现在最为流行也最容易被广大用户接受的统计分析软件是SPSS,本课程就以介绍该软件为核心,并渗透介绍一些统计分析的数学方法,从而满足各专业学生对数据统计分析知识和技能的需求。 三、课程概要与目的任务 1.课程概要 本课程主要由三大部分构成:(1)基本概念和基本操作,其中包括SPSS概述、系统运行管理方式、数据统计处理、数据文件的建立与编辑、文件操作与文本文件编辑;(2)统计分析过程,其中包括统计分析概述、基本统计分析、相关分析均值比较与检验、方差分析、回归分析、据类分析与辨别分析、因子分析、非参数检验、生存分析;(3)统计图形生成与编辑,其中包括生成统计图形、编辑统计图形,创建交互式图形、修饰交互图形 2.课程目的和任务 本课程的目的和任务是使学生理解SPSS软件的功能和应用方法,并能开展简单的数据统计与分析工作。

空间数据分析模型

第7 章空间数据分析模型 7.1 空间数据 按照空间数据的维数划分,空间数据有四种基本类型:点数据、线数据、面数据和体数据。 点是零维的。从理论上讲,点数据可以是以单独地物目标的抽象表达,也可以是地理单元的抽象表达。这类点数据种类很多,如水深点、高程点、道路交叉点、一座城市、一个区域。 线数据是一维的。某些地物可能具有一定宽度,例如道路或河流,但其路线和相对长度是主要特征,也可以把它抽象为线。其他的线数据,有不可见的行政区划界,水陆分界的岸线,或物质运输或思想传播的路线等。 面数据是二维的,指的是某种类型的地理实体或现象的区域范围。国家、气候类型和植被特征等,均属于面数据之列。 真实的地物通常是三维的,体数据更能表现出地理实体的特征。一般而言,体数据被想象为从某一基准展开的向上下延伸的数,如相对于海水面的陆地或水域。在理论上,体数据可以是相当抽象的,如地理上的密度系指单位面积上某种现象的许多单元分布。 在实际工作中常常根据研究的需要,将同一数据置于不同类别中。例如,北京市可以看作一个点(区别于天津),或者看作一个面(特殊行政区,区别于相邻地区),或者看作包括了人口的“体”。 7.2 空间数据分析 空间数据分析涉及到空间数据的各个方面,与此有关的内容至少包括四个领域。 1)空间数据处理。空间数据处理的概念常出现在地理信息系统中,通常指的是空间分析。就涉及的内容而言,空间数据处理更多的偏重于空间位置及其关系的分析和管理。 2)空间数据分析。空间数据分析是描述性和探索性的,通过对大量的复杂数据的处理来实现。在各种空间分析中,空间数据分析是重要的组成部分。空间数据分析更多的偏重于具有空间信息的属性数据的分析。 3)空间统计分析。使用统计方法解释空间数据,分析数据在统计上是否是“典型”的,或“期望”的。与统计学类似,空间统计分析与空间数据分析的内容往往是交叉的。 4)空间模型。空间模型涉及到模型构建和空间预测。在人文地理中,模型用来预测不同地方的人流和物流,以便进行区位的优化。在自然地理学中,模型可能是模拟自然过程的空间分异与随时间的变化过程。空间数据分析和空间统计分析是建立空间模型的基础。 7.3 空间数据分析的一些基本问题 空间数据不仅有其空间的定位特性,而且具有空间关系的连接属性。这些属性主要表现为空间自相关特点和与之相伴随的可变区域单位问题、尺度和边界效应。传统的统计学方法在对数据进行处理时有一些基本的假设,大多都要求“样本是随机的”,但空间数据可能不一定能满足有关假设,因此,空间数据的分析就有其特殊性(David,2003)。

统计学和数据挖掘区别

统计学和数据挖掘区别 数据分析微信公众号datadw——关注你想了解的,分享你需要的。 1.简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。 统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展),而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用)。 本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的

研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。 2.统计学的性质 试图为统计学下一个太宽泛的定义是没有意义的。尽管可能做到,但会引来很多异议。相反,我要关注统计学不同于数据挖掘的特性。 差异之一同上节中最后一段提到的相关,即统计学是一门比较保守的学科,目前有一种趋势是越来越精确。当然,这本身并不是坏事,只有越精确才能避免错误,发现真理。但是如果过度的话则是有害的。这个保守的观点源于统计学是数学的分支这样一个看法,我是不同意这个观点的。尽管统计学确实以数学为基础(正如物理和工程也以数学为基础,但没有被认为是数学的分支),但它同其它学科还有紧密的联系。 数学背景和追求精确加强了这样一个趋势:在采用一个方法之前先要证明,而不是象计算机科学和机器学习那样注重经验。这就意味着有时候和统计学家关注同一问题的其它领域的研究者提出一个很明显有用的方法,但它却不能被证明(或还不能被证明)。统计杂志倾向于发表经过数学证明的方法而不是一些特殊方法。数据挖掘作为几门学科的综合,已经从机器学习那里继承了实验的态度。这并不意味着数据挖掘工作者不注重精确,而只是说明如果方法不能产生结果的话就会被放弃。

空间数据分析

空间数据分析报告 —使用Moran's I统计法实现空间自相关的测度1、实验目的 (1)理解空间自相关的概念和测度方法。 (2)熟悉ArcGIS的基本操作,用Moran's I统计法实现空间自相关的测度。2、实验原理 2.1空间自相关 空间自相关的概念来自于时间序列的自相关,所描述的是在空间域中位置S 上的变量与其邻近位置Sj上同一变量的相关性。对于任何空间变量(属性)Z,空间自相关测度的是Z的近邻值对于Z相似或不相似的程度。如果紧邻位置上相互间的数值接近,我们说空间模式表现出的是正空间自相关;如果相互间的数值不接近,我们说空间模式表现出的是负空间自相关。 2.2空间随机性 如果任意位置上观测的属性值不依赖于近邻位置上的属性值,我们说空间过程是随机的。 Hanning则从完全独立性的角度提出更为严格的定义,对于连续空间变量Y,若下式成立,则是空间独立的: 式中,n为研究区域中面积单元的数量。若变量时类型数据,则空间独立性的定义改写成 式中,a,b是变量的两个可能的类型,i≠j。 2.3Moran's I统计 Moran's I统计量是基于邻近面积单元上变量值的比较。如果研究区域中邻近面积单元具有相似的值,统计指示正的空间自相关;若邻近面积单元具有不相似的值,则表示可能存在强的负空间相关。

设研究区域中存在n 个面积单元,第i 个单位上的观测值记为y i ,观测变量在n 个单位中的均值记为y ,则Moran's I 定义为 ∑∑∑∑∑======n i n j ij n i n j ij n i W W n I 11 11j i 1 2i ) y -)(y y -(y )y -(y 式中,等号右边第二项∑∑==n 1i n 1j j i ij )y -)(y y -(y W 类似于方差,是最重要的项,事 实上这是一个协方差,邻接矩阵W 和) y -)(y y -(y j i 的乘积相当于规定)y -)(y y -(y j i 对邻接的单元进行计算,于是I 值的大小决定于i 和j 单元中的变量值对于均值的偏离符号,若在相邻的位置上,y i 和y j 是同号的,则I 为正;y i 和y j 是异号的, 则I 为负。在形式上Moran's I 与协变异图 {}{}u ?-)Z(s u ?-)Z(s N(h)1(h)C ?j i ∑=相联系。 Moran's I 指数的变化范围为(-1,1)。如果空间过程是不相关的,则I 的期望接近于0,当I 取负值时,一般表示负自相关,I 取正值,则表示正的自相关。用I 指数推断空间模式还必须与随机模式中的I 指数作比较。 通过使用Moran's I 工具,会返回Moran's I Index 值以及Z Score 值。如果Z score 值小于-1.96获大于1.96,那么返回的统计结果就是可采信值。如果Z score 为正且大于1.96,则分布为聚集的;如果Z score 为负且小于-1.96,则分布为离散的;其他情况可以看作随机分布。 3、实验准备 3.1实验环境 本实验在Windows 7的操作系统环境中进行,使用ArcGis 9.3软件。 3.2实验数据 此次实习提供的数据为以湖北省为目标区域的bount.dbf 文件。.dbf 数据中包括第一产业增加值,第二产业增加值万元,小学在校学生数,医院、卫生院床位数,乡村人口万人,油料产量,城乡居民储蓄存款余额,棉花产量,地方财政一般预算收入,年末总人口(万人),粮食产量,普通中学在校生数,肉类总产量,规模以上工业总产值现价(万元)等属性,作为分析的对象。

数据的基本统计分析

数据的基本统计分析 数据的基本统计分析 1.数据的描述性统计分析 通常在得到数据并对数据进行除错的预处理后,需要对数据进行描述性的统计分析。比如:对数据中变量的最小值、最大值、中位数、平均值、标准差、偏度、峰度以及正态性检验等进行分析。对于这些经常性遇到的重复过程,我们可以自己编写函数,将函数保存在MATLAB自动搜索文件夹下,然后就可以直接调用自己定义的函数了。对于上述描述性统计分析,我们可以在MATLAB命令窗口中输入:edit description,然后在弹出的窗口中选择yes,就创建了一个文件名为description的M文件。然后在弹出的空白文件中编写以下M函数: function D=description(x) %descriptive statistic analysis %input: %x is a matrix, and each colummn stands for a variable %output: %D:structure variable,denotes Minimium,Maximium,Mean,Median, %Standard_deviation,Skewness,Kurtosis,and normal distribution test,respectively. %notes:when the number of oberservations of the colummn variables less than 30, %Lilliefors test is used for normal distribution test,and output D.LSTA denotes %test statistic and D.LCV denote critical value under 5% significant level; %otherwise, Jarque-Bera test is used, and output D.JBSTA denotes test statistic %and D.JBCV denote critical value under 5% significant level.If test statistic is %less than critical value,the null hypothesis (normal distribution) can not %be rejected under 5% significant level. D.Minimium=min(x); D.Maximium=max(x); D.Mean=mean(x); D.Median=median(x); D.Standard_deviation=std(x); D.Skewness=skewness(x); D.Kurtosis=kurtosis(x); if size(x,1)<30 disp('small observations,turn to Lilliefors test for normal distribution') for i=1:size(x,2) [h(i),p(i),Lilliefors(i),LCV(i)]=lillietest(x(:,i),0.05); end

大数据处理技术的总结与分析

数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。这类系统数据处理特点包括以下几点: 一是事务处理型操作都是细粒度操作,每次事务处理涉及数据量都很小。 二是计算相对简单,一般只有少数几步操作组成,比如修改某行的某列; 三是事务型处理操作涉及数据的增、删、改、查,对事务完整性和数据一致性要求非常高。 四是事务性操作都是实时交互式操作,至少能在几秒内执行完成; 五是基于以上特点,索引是支撑事务型处理一个非常重要的技术。 在数据量和并发交易量不大情况下,一般依托单机版关系型数据库,例如ORACLE、MYSQL、SQLSERVER,再加数据复制(DataGurad、RMAN、MySQL 数据复制等)等高可用措施即可满足业务需求。 在数据量和并发交易量增加情况下,一般可以采用ORALCE RAC集群方式或者是通过硬件升级(采用小型机、大型机等,如银行系统、运营商计费系统、证卷系统)来支撑。 事务型操作在淘宝、12306等互联网企业中,由于数据量大、访问并发量高,必然采用分布式技术来应对,这样就带来了分布式事务处理问题,而分布式事务处理很难做到高效,因此一般采用根据业务应用特点来开发专用的系统来解决本问题。

2 数据统计分析 数据统计主要是被各类企业通过分析自己的销售记录等企业日常的运营数据,以辅助企业管理层来进行运营决策。典型的使用场景有:周报表、月报表等固定时间提供给领导的各类统计报表;市场营销部门,通过各种维度组合进行统计分析,以制定相应的营销策略等。 数据统计分析特点包括以下几点: 一是数据统计一般涉及大量数据的聚合运算,每次统计涉及数据量会比较大。二是数据统计分析计算相对复杂,例如会涉及大量goupby、子查询、嵌套查询、窗口函数、聚合函数、排序等;有些复杂统计可能需要编写SQL脚本才能实现。 三是数据统计分析实时性相对没有事务型操作要求高。但除固定报表外,目前越来越多的用户希望能做做到交互式实时统计; 传统的数据统计分析主要采用基于MPP并行数据库的数据仓库技术。主要采用维度模型,通过预计算等方法,把数据整理成适合统计分析的结构来实现高性能的数据统计分析,以支持可以通过下钻和上卷操作,实现各种维度组合以及各种粒度的统计分析。 另外目前在数据统计分析领域,为了满足交互式统计分析需求,基于内存计算的数据库仓库系统也成为一个发展趋势,例如SAP的HANA平台。 3 数据挖掘 数据挖掘主要是根据商业目标,采用数据挖掘算法自动从海量数据中发现隐含在海量数据中的规律和知识。

空间统计分析实验报告

空间统计分析实验报告 一、空间点格局的识别 1、平均最邻近分析 平均最邻近距离指点间最邻近距离均值。该分析方法通过比较计算最邻近点对的平均距离与随机分布模式中最邻近点对的平均距离,来判断其空间格局,分析结果如图1所示。 图1 平均最邻近分析结果图最邻近比率小于1,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0

计算结果共有5个参数,平均观测距离,预期平均距离,最邻近比率,Z 得分,P值。 P值就是概率值,它表示观测到的空间模式是由某随机过程创建而成的概率,P 值越小,也就是观测到的空间模式是随机空间模式的可能性越小,也就是我们越可以拒绝开始的零假设。最邻近比率值表示要素是否有聚集分布的趋势,对于趋势如何,要根据Z值和P值来判断。 本实验中的最邻近比率小于1 ,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0,该结果说明省详细居民点的分布是聚集分布的,不存在随机分布。 2、多距离空间聚类分析 基于Ripley's K 函数的多距离空间聚类分析工具是另外一种分析事件点数据的空间模式的方法。该方法不同于此工具集中其他方法(空间自相关和热点分析)的特征是可汇总一定距离围的空间相关性(要素聚类或要素扩散)。 本实验中第一次将距离段数设为10,距离增量设为1,第二次将距离段数设为5,距离增量同样为1,得到如图2和图3所示的结果。 从图中可以看出,小于3千米的距离,观测值大于预测值,居民点聚集,大于3千米,观测值小于预测值,居民点离散。且聚集具有统计意义上的聚集,离散并未具有统计意义上的显著性。 图2 K函数聚类分析结果1

matlab数据的基本统计分析

第四讲 数据的基本统计分析 数据的基本统计分析 1.数据的描述性统计分析 通常在得到数据并对数据进行除错的预处理后,需要对数据进行描述性的统计分析。比如:对数据中变量的最小值、最大值、中位数、平均值、标准差、偏度、峰度以及正态性检验等进行分析。对于这些经常性遇到的重复过程,我们可以自己编写函数,将函数保存在MATLAB自动搜索文件夹下,然后就可以直接调用自己定义的函数了。对于上述描述性统计分析,我们可以在MATLAB命令窗口中输入:edit discription,然后在弹出的窗口中选择yes,就创建了一个文件名为discription的M文件。然后在弹出的空白文件中编写以下M函数: function D=discription(x) %descriptive statistic analysis %input: %x is a matrix, and each colummn stands for a variable %output: %D:structure variable,denotes Minimium,Maximium,Mean,Median, %Standard_deviation,Skewness,Kurtosis,and normal distribution test,respectively. %notes:when the number of oberservations of the colummn variables less than 30, %Lilliefors test is used for normal distribution test,and output D.LSTA denotes %test statistic and D.LCV denote critical value under 5% significant level; %otherwise, Jarque-Bera test is used, and output D.JBSTA denotes test statistic %and D.JBCV denote critical value under 5% significant level.If test statistic is %less than critical value,the null hypothesis (normal distribution) can not %be rejected under 5% significant level. D.Minimium=min(x); D.Maximium=max(x); D.Mean=mean(x); D.Median=median(x); D.Standard_deviation=std(x); D.Skewness=skewness(x); D.Kurtosis=kurtosis(x); if size(x,1)<30 disp('small observations,turn to Lilliefors test for normal distribution') for i=1:size(x,2) [h(i),p(i),Lilliefors(i),LCV(i)]=lillietest(x(:,i),0.05); end

统计学和数据挖掘(中文).

统计学和数据挖掘:交叉学科 摘要:统计学和数据挖掘有很多共同点,但与此同时它们也有很多差异。本文讨论了两门学科的性质,重点论述它们的异同。 关键词:统计学知识发现 1.简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家认为数据挖掘是统计学的分支。这是一个不切合实际的看法。 因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。 统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展,而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用。 本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。

统计学和数据挖掘交叉学科

统计学和数据挖掘:交叉学科 摘要:统计学和数据挖掘有很多共同点,但与此同时它们也有很多差异。本文讨论了两门学科的性质,重点论述它们的异同。 关键词:统计学知识发现 1.简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。 因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。 统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展),而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用)。 本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。 2.统计学的性质 试图为统计学下一个太宽泛的定义是没有意义的。尽管可能做到,但会引来很多异议。相反,我要关注统计学不同于数据挖掘的特性。 差异之一同上节中最后一段提到的相关,即统计学是一门比较保守的学科,目前有一种趋势是越来越精确。当然,这本身并不是坏事,只有越精确才能避免错误,发现真理。但是如果过度的话则是有害的。这个保守的观点源于统计学是数学的分支这样一个看法,我是不同意这个观点的(参见【15】,【9】,【14】,【2】,【3】)尽管统计学确实以数学为基础(正如物理和工程也以数学为基础,但没有被认为是数学的分支),但它同其它学科还有紧密的联系。 数学背景和追求精确加强了这样一个趋势:在采用一个方法之前先要证明,而不是象计算机科学和机器学习那样注重经验。这就意味着有时候和统计学家关注同一问题的其它领域的研究者提出一个很明显有用的方法,但它却不能被证明(或还不能被证明)。统计杂志倾向于发表经过数学证明的方法而不是一些特殊方法。数据挖掘作为几门学科的综合,已经从机器学习那里继承了实验的态度。这并不意味着数据挖掘工作者不注重精确,而只是说明如果方法不能产生结果的话就会被放弃。 正是统计文献显示了(或夸大了)统计的数学精确性。同时还显示了其对推理的侧重。尽管统计学的一些分支也侧重于描述,但是浏览一下统计论文的话就会发现这些文献的核心问题就是在观察了样本的情况下如何去推断总体。当然这也常常是数据挖掘所关注的。下面我们会提到数据挖掘的一个特定属性就是要处理的是一个大数据集。这就意味着,由于可行性的原因,我们常常得到的只是一个样本,但是需要描述样本取自的那个大数据集。然而,

大数据与数据挖掘有感

大数据与数据挖掘有感 随着现代信息技术的飞速发展,大数据浪潮正以浩浩荡荡、锐不可当之势向我们袭来。近三年来,全球范围内对大数据的认识得到了前所未有的提升。“大数据”将成为“改变世界的第一科学技术”,必将推动世界经济的发展。 的确,大数据时代的迅猛发展,对统计学与政府统计具有划时代的意义。对统计学而言,大数据将突破通过样本推断总体的传统方法,直接对总体进行相关分析,并更加注重结论的相关性和实时性;对政府统计工作而言,大数据是采用多种数据收集方式、整合多种数据来源的数据,是采用现代信息技术和架构高速处理及挖掘、具有高度应用价值和决策支持功能的数据、方法及其技术集成。 因此,大数据时代的到来,不仅让官方统计迎来重要的发展战略机遇期,也使其面临着前所未有的重大挑战。 一方面,计算机技术、网络技术和空间信息技术的巨大进步,为提高统计生产力提供了广阔空间。海量的非结构化、电子化数据,极大地丰富了统计数据的来源;另一方面,统计调查主体的多元化发展趋势和电子商务、电子政务、搜索引擎等领域的飞速发展,也对官方统计形成了新的挑战。 这些挑战某种程度上对世界统计和各个国家的官方统计都将产生深刻的影响! 中国统计人清醒地认识到:如果中国统计能够把握机会、顺应潮

流、奋力变革,那我们就将永立高峰、再展辉煌;而因循守旧、故步自封,则会让我们错失良机、走向式微。因此,积极主动制定大数据策略,是中国统计谋求长远发展的必然选择! 从此,在“拥抱大数据时代”这一大旗的指引下,中国统计人直面挑战,以时不我待的紧迫感不断变革思想和理念,不断迸发出新活力、开拓出大数据时代统计工作的新局面。 那么,作为与数据打交道、用数据说话的前线统计工作者,如何应对大数据时代的种种挑战?对比《大数据》,结合统计工作实际,本人认为最少应该认真思考和解决好三个问题: 一是提供什么样的数据?在中国,统计部门提供的数据,是各级政府部门和广大人民群众了解国家社会经济发展和人民生活状况主要渠道。只有真实可靠统计数据,才能使政府决策有的放矢,人民了解国家经济与人民生活的真实状况。如果统计数据虚假不实,就会误导政府和人民,让政府失信于人民。因此,我们一定把握好数据的生命线—质量关,确保给国家和人民提供准确、真实、可靠、无误的数据。 二是如何高效有序地收集数据?面对信息大爆炸时代海量数据,必须充分利用高科技手段,高效有序地收集整理各种数据,以满足政府和人民群众越来越广泛的信息需求。为此,我们需要建立完善数据收集网络,包括部门内部的纵向数据收集网络和部门之间的横向数据收集网络,通过这种纵横结合的网络数据收集系统,针对特定主题,持续不断地收集相关数据,为大数据发展提供基础。需要运用互联网、

空间数据分析-什么是空间统计

空间统计简介 1.空间统计经典案例 最早应用空间统计分析思想可以追溯150多年前一次重大的公共卫生事件,1854年英国伦敦霍乱大流行。在这次事件中,John Snow博士利用基于地图的空间分析原理,将死亡病例标注在伦敦地图上,同时还将水井的信息也标注在地图上,通过相关分析,最后将污染源锁定在城中心的一个水井的抽水机上。在他的建议下市政府将该抽水机停用,此后霍乱大幅度下降,并得到有效的控制。John Snow利用空间分析思想控制疫情这件事具有重要的里程碑意义,它被看成了空间统计分析和流行病学两个学科的共同起源;但是此后相当长的一段时间内由于缺乏刻画数据的空间相关性和异质性的方法,人们在分析空间属性的数据时,往往把所涉及的数据自身空间效应作为噪声或者误差来处理,这种缺乏对空间自相关和异质性的刻画,限制了以地图为基础的空间属性数据在公共卫生领域中应用的深入研究。直到1950年Moran首次提出空间自相关测度来研究二维或更高维空间随机分布的现象,1951年南非学者Krige提出了空间统计学萌芽思想,后经法国数学家Matheron完善,于1963年和1967年提出了地统计学和克里金技术。1973年, Cliff和Ord发表了空间自相关(Spatial Autocorrelation)的分析方法,1981年出版了Spatial Process:Model and Application专著,形成了空间统计理论体系,以及Getis’G和Lisa提出的空间异质性的局部统计使空间统计理论日趋成熟[1][2]。近年来随着空间分析技术以及空间分析软件(如GIS、Geoda、SaTScan、Winbugs等)的迅速发展,与疾病分布有关的空间统计分析也得以较快发展。 2.什么是空间统计 空间统计具有明显的多学科交叉特征,其显著特点是思想多源、方法多样、技术复杂,并随着相关学科如计算机软硬件技术的发展而发展。空间统计分析是以地理实体为研究对象,以空间统计模型为工具,以地理实体空间相关性和空间变异性为出发点,来分析地理对象空间格局、空间关系、时空变化规律,进而揭示其成因的一门新科学。经典统计学与空间统计学的区别与联系归纳如表错误!文档中没有指定样式的文字。-1。 表错误!文档中没有指定样式的文字。-1经典统计学与空间统计学的区别与联 系

(完整word版)GIS空间分析与建模期末复习总结

空间分析与建模复习 名词解释: 空间分析:采用逻辑运算、数理统计和代数运算等数学方法,对空间目标的位置、形态、分布及空间关系进行描述、分析和建模,以提取和挖掘地理空间目标的隐含信息为 目标,并进一步辅助地理问题求解的空间决策支持技术。 空间数据结构:是对空间数据的合理组织,是适合于计算机系统存储、管理和处理地图图形的逻辑结构,是地理实体的空间排列方式和相互关系的抽象描述与表达。 空间量测:对GIS数据库中各种空间目标的基本参数进行量算与分析, 元数据:描述数据及其环境的数据。 空间元数据:关于地理空间数据和相关信息的描述性信息。 空间尺度:数据表达的空间范围的相对大小以及地理系统中各部分规模的大小 尺度转换:信息在不同层次水平尺度范围之间的变化,将某一尺度上所获得的信息和知识扩展或收缩到其他尺度上,从而实现不同尺度之间辨别、推断、预测或演绎的跨越。 地图投影:将地球椭球面上的点映射到平面上的方法,称为地图投影。 地图代数:作用于不同数据层面上的基于数学运算的叠加运算 重分类:将属性数据的类别合并或转换成新类,即对原来数据中的多种属性类型按照一定的原则进行重新分类 滤波运算:通过一移动的窗口,对整个栅格数据进行过滤处理,将窗口最中央的像元的新值定义为窗口中像元值的加权平均值 邻近度:是定性描述空间目标距离关系的重要物理量之一,表示地理空间中两个目标地物距离相近的程度。缓冲区分析、泰森多边形分析。 缓冲区:是指为了识别某一地理实体或空间物体对其周围地物的影响度而在其周围建立的具有一定宽度的带状区域。 缓冲区分析:对一组或一类地物按缓冲的距离条件,建立缓冲区多边形,然后将这一图层与需要进行缓冲区分析的图层进行叠加分析,得到所需结果的一种空间分析方法 泰森多边形:所有点连成三角形,作三角形各边的垂直平分线,每个点周围的若干垂直平分线便围成的一个多边形 网络分析:是通过研究网络的状态以及模拟和分析资源在网络上的流动和分配情况,对网络结构及其资源等的优化问题进行研究的一种空间分析方法。(理论基础:计算机图论和运筹学) 自相关:空间统计分析所研究的区域中的所有的值都是非独立的,相互之间存在相关性。在空间和时间范畴内,这种相关性被称为自相关。

考试-空间数据分析报告区域模型

空间数据分析方法 一、绪论 1、空间分析的概念 空间分析( Spatial Analysis):包括空间数据操作、空间数据分析、空间统计分析、空间建模。 1)空间分析是对数据的空间信息、属性信息或二者共同信息的统计描述或说明。 2)空间分析是对于地理空间现象的定量研究,其常规能力是操纵空间数据成为不同的形式,并且提取潜在信息。 3)空间分析是结果随着分析对象位置变化而改变的一系列方法。4)空间分析是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。 2、空间数据的类型 空间点数据、空间线数据、空间面数据、地统计数据 3、属性数据的类型 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。又分为一下几种:1)名义属性:最简单的属性类型,即对地理实体的测度,本质上是对地球实体的分类。包括数字、文字、颜色,即名义属性是数值。其作用只是区分特定的实体类。可以用众数和频率分布进行概括和比较。 2)序数属性:其定义的类型之间存在等级关系,属性值具有逻辑顺

序,本质上是一种分类等级数据,即类型必须分为不同的等级。可以进行优先级的比较运算,对名义和序数数据能够进行分类计数,所以常被称为离散变量,或定性变量。其可以用中位数和箱线图进行概括和比较。 3)间距属性:是一种对地理实体或现象的数量测度方法。其测度的是一个值对另一个值差异的幅度,但不是该值和真实零点之间的差值。由于间距属性的数值测度不是基于自然的或绝对的零点,因此数量关系的运算收到限制。间距属性之间的加减算术运算时有效的,但是乘除运算时无效的。其还可以使用均值、标准差等进行描述。4)比率属性:是数值和其真实零点之间的差异幅度的测度。对于比率属性的数据可以实施各种数学运算。 4、空间分析框架 基于Anselin和Getis(1992)提出的一般框架,GIS环境下空间分析模块的关系见右图。参照GIS输入、存储、分析和输出等功能,GIS环境下空间分析可进一步细分为选择、操作、探索和确认4种。

数据统计分析中应用数据挖掘技术及效益分析

数据统计分析中应用数据挖掘技术及效益分析 传统的数据统计分析方法是利用数据库系统已有的数据进行简单的统计归类分析,可以方便快捷对数据进行录入、查询、修改、更新、统计等功能。但是传统数据统计分析方法无法及时准确地发现数据中存在的关系和规则,无法快速提取企业决策者需要的精准分析数据,致使企业决策者很难根据现有的统计数据预测未来的发展趋势。很容易丢失商机,造成企业的被动,为企业发展壮大带来巨大的阻力。因此急需一种新的技术来实现企业的这些需求。本文重点分析的数据挖掘技术可以替代对海量数据无法胜任的传统数据统计分析方法,它将传统的数据分析方法与处理大量数据的复杂算法相结合。数据挖掘为探查和分析新的数据类型以及用新方法分析旧有数据类型提供了强大准确的处理能力,在海量数据处理方面得到广泛应用并取得非常好的经济及社会效益。 0 引言 新世纪以来,随着互联网及信息技术的飞速发展和应用,使我国的信息化得到前所未有的爆炸式增长,各个行业相继完成信息化改造,极大地提升了人们的生活水平与生产效率。同时,也使各行业进入到信息化发展的轨道上,进一步提升了企业生产效益。正是由于经济的飞速发展,各行业发展都已积累了海量的数据信息。但是传统的数据分析方法和工具仅仅能实现简单的录入、查询、更改、统计、输出等

非常低等的功能,无法及时快速地发现数据跟数据之间存在的关系与规则,无法根据已有的海量数据有效预测未来的发展趋势,不能及时为企业决策提供有力的数据支持。 数据挖掘技术的出现技术填补了大量企业的这一需求,数据挖掘技术可以高效地挖掘数据背后隐藏的关系跟规则,非常方便地把这些海量信息予以统计、分析及利用成为当前各行业需要解决的首个问题。为企业决策提供及时准确的统计学数据支持,为企业发展壮大提供很好的数据分析工具。而海量数据挖掘技术的出现,保证了海量数据信息的合理利用,同时加快了我国信息化技术的发展。 1 数据挖掘技术定义 数据挖掘技术起源于情报分析,其过程是一个从大量的、不完整的、有噪声的、模糊的随机数据被从隐含在大量数据中提取的过程,数据挖掘的情报资料是人们事先不知道的,但可能是有用的信息和知识。在大多数情况下,人们利用计算机等信息工具的时候只知道,存储数据,数据被存储的越来越多,但不知道这些海量数据中隐藏着很多重要的规律、规则等信息,数据挖掘技术就是一种可以从大量的数据中挖掘出有用重要信息的一种数据分析工具。如图1所示。 2 数据挖掘常用的方法

数据统计分析方法

数据统计分析常用方法

目录 1 统计学基础知识 (3) 1.1 统计的含义 (3) 1.2 统计的分类 (3) 1.3 样本 (3) 2 数据的概括性度量 (4) 2.1 总规模度量 (4) 2.1.1 总量指标 (4) 2.2 比较度量 (5) 2.2.1 相对指标 (5) 2.3 平均度量 (6) 2.3.1 概念 (6) 2.3.2 平均数的种类和计算方法 (6) 2.4 离散变量 (8) 2.4.1 变异指标 (8) 2.5 数据的标准化 (11) 2.5.1 Min-max标准化 (11) 2.5.2 Z-score标准化 (11) 3 相关分析 (11) 3.1 概念 (11) 3.2 分类 (12) 3.3 相关分析的作用 (12) 3.4 相关系数的计算 (12) 3.5 相关系数的性质 (12) 3.5.1 相关性类型 (12) 3.5.2 相关性强弱 (12) 4 数据分析 (13) 4.1 数据分析的含义 (13) 4.2 数据分析的作用 (13) 4.3 数据分析方法 (13) 4.3.1 对比分析法 (13) 4.3.2 分组分析法 (14) 4.3.3 结构分析法 (15) 4.3.4 平均分析法 (15) 4.3.5 交叉分析法 (15) 4.3.6 综合评价分析法 (16) 4.3.7 漏斗图分析法 (17) 4.3.8 抽样分析法 (17) 4.3.9 相关分析 (18) 4.3.10 时间序列预测 (20)

1统计学基础知识 1.1统计的含义 “统计”一词在各种实践活动和科学研究领域中都经常出现。然而,不同的人或在不同的场合,对其理解是有差异的。比较公认的看法认为统计有三种含义,即统计活动、统计数据和统计学。 ●统计活动 统计活动又称统计工作,是指收集、整理和分析统计数据,并探索数据的内在数量规律性的活动过程。 ●统计资料 统计资料又称统计数据,即统计活动过程所获得的各种数字资料和其他资料的总称。表现为各种反映社会经济现象数量特征的原始记录、统计台账、统计表、统计图、统计分析报告、政府统计公报、统计年鉴等各种数字和文字资料。 ●统计学 统计学是指阐述统计工作基本理论和基本方法的科学,是对统计工作实践的理论概括和经验总结。它以现象总体的数量方面为研究对象,阐明统计设计、统计调查、统计整理和统计分析的理论与方法,是一门方法论科学。 1.2统计的分类 从统计方法的功能来看,统计学可以分为描述统计学与推断统计学。从方法研究的重点来看,统计学可分为理论统计学和应用统计学。本文中主要按统计方法的功能进行讨论,不涉及理论统计学。 ●描述统计学 研究如何取得反映客观现象的数据,并通过图表形式对所搜集的数据进行加工处理和显示,进而通过综合、概括与分析得出反映客观现象的规律性数量特征。描述统计学的内容包括统计数据的搜集方法、数据的加工处理方法、数据的显示方法、数据分布特征的概括与分析方法等。 ●推断统计学 研究如何根据样本数据去推断总体数量特征的方法,它是在对样本数据进行描述的基础上,对统计总体的未知数量特征作出以概率形式表述的推断。 描述统计是整个统计学的基础,推断统计则是现代统计学的主要内容。 1.3样本 样本是统计学中非常重要的概念,理解这个概念需要注意三大问题: 构成某一样本的每一单位都必须取自某一特定的统计总体,不允许该总体之外的单位介入该总体的样本。 样本单位的抽取应是按一定的概率进行的,而具体样本的产生应是随机的,因此必须排除人的主观因素对样本单位抽取和样本生成的干扰。

相关主题
文本预览
相关文档 最新文档