当前位置:文档之家› 数字电路教案-阎石-第七章-时序逻辑电路

数字电路教案-阎石-第七章-时序逻辑电路

数字电路教案-阎石-第七章-时序逻辑电路
数字电路教案-阎石-第七章-时序逻辑电路

第7章 时序逻辑电路

7.1 概述

时序电路在任何时刻的稳定输出,不仅与该时刻的输入信号有关,而且还与电路原来的状态有关。

图7.1.1 时序逻辑电路的结构框图2、时序电路的分类 (1) 根据时钟分类

同步时序电路中,各个触发器的时钟脉冲相同,即电路中有一个统一的时钟脉冲,每来一个时钟脉冲,电路的状态只改变一次。

异步时序电路中,各个触发器的时钟脉冲不同,即电路中没有统一的时钟脉冲来控制电路状态的变化,电路状态改变时,电路中要更新状态的触发器的翻转有先有后,是异步进行的。 (2)根据输出分类米利型时序电路的输出不仅与现态有关,而且还决定于电路当前的输入。

穆尔型时序电路的其输出仅决定于电路的现态,与电路当前的输入无关;或者根本就不存在独立设置的输出,而以电路的状态直接作为输出。

7.2 时序逻辑电路的分析方法

时序电路的分析步骤:

电路图 时钟方程、输出方程、驱动方程 状态方程 计算 状态表(状态图、时序图) 判断电路逻辑功能 分析电路能否自启动。 7.2.1 同步时序电路的分析方法 分析举例:[例7.2.1]

7.2.2 异步时序电路的分析方法 分析举例:[例7.2.3] 7.3 计数器

概念:在数字电路中,能够记忆输入脉冲CP 个数的电路称为计数器。 计数器累计输入脉冲的最大数目称为计数器的“模”,用M 表示。计数器的“模”实际上为电路的有效状态。计数器的应用:计数、定时、分频及进行数字运算等。

计数器的分类:

(1)按计数器中触发器翻转是否同步分:异步计数器、同步计数器。 (2)按计数进制分:二进制计数器、十进制计数器、N 进制计数器。 (3)按计数增减分:加法计数器、减法计数器、加/减法计数器。 7.3.1 异步计数器

X X Y 1

Y m

输入

一、异步二进制计数器

1、异步二进制加法计数器

分析图7.3.1 由JK触发器组成的4位异步二进制加法计数器。

分析方法:由逻辑图到波形图(所有JK触发器均构成为T/触发器的形式,且后一级触发器的时钟脉冲是前一级触发器的输出Q),再由波形图到状态表,进而分析出其逻辑功能。

2、异步二进制减法计数器

减法运算规则:0000-1时,可视为(1)0000-1=1111;1111-1=1110,其余类推。由JK触发器组成的4位异步二进制减法计数器的工作情况分析略。

二、异步十进制加法计数器

由JK触发器组成的异步十进制加法计数器的由来:在4位异步二进制加法计数器的基础上经过适当修改获得。

有效状态:0000——1001十个状态;无效状态:1010~1111六个状态。

三、集成异步计数器CT74LS290

为了达到多功能的目的,中规模异步计数器往往采用组合式的结构,即由两个独立的计数来构成整个的计数器芯片。如:

74LS90(290):由模2和模5的计数器组成;

74LS92 :由模2和模6的计数器组成;

74LS93 :由模2和模8的计数器组成。

1.CT74LS290的情况如下。

(1)电路结构框图和逻辑功能示意图

(2)逻辑功能

如下表7.3.1所示。

注:5421码十进制计数时,从高位到低位的输出为1230Q Q Q Q 。 2、利用反馈归零法获得N (任意正整数)进制计数器

方法如下:

(1)写出状态S N 的二进制代码。

(2)求归零逻辑(写出反馈归零函数),即求异步清零端(或置数控制端)信号的逻辑表达式。

(3)画连线图。

举例:试用CT74LS290构成模小于十的N 进制计数器。CT74LS290则具有异步清零和异步置9功能。讲解教材P215的[例7.3.1]。注:CT74LS90的功能与CT74LS290基本相同。

7.3.2 同步计数器 一、同步二进制计数器 1.同步二进制加法计数器 2、同步二进制减法计数器

3、集成同步二进制计数器CT74LS161

(1)CT74LS161的引脚排列和逻辑功能示意图

注:74LS163的引脚排列和74LS161相同,不同之处是74LS163采用同步清零方式。 (2)CT74LS161的逻辑功能 ①CR =0时异步清零。C0=0

②CR =1、LD =0时同步并行置数。0123Q Q Q Q CT CO T =

③CR =LD =1且CP T =CP P =1时,按照4位自然二进制码进行同步二进制计数。

123Q Q Q Q CO =

④CR =LD =1且CP T ·CP P =0时,计数器状态保持不变。 4、反馈置数法获得N 进制计数器

方法如下:

·写出状态S N -1的二进制代码。

·求归零逻辑,即求置数控制端的逻辑表达式。 ·画连线图。

(集成计数器中,清零、置数均采用同步方式的有74LS163;均采用异步方式的有74LS193、74LS197、74LS192;清零采用异步方式、置数采用同步方式的有74LS161、74LS160;有的只具有异步清零功能,如CC4520、74LS190、74LS191;74LS90则具有异步清零和异步置9功能。等等)试用CT74LS161构成模小于16的N 进制计数器 5、同步二进制加/减计数器 二、同步十进制加法计数器

8421BCD 码同步十进制加法计数器电路分析 三、集成同计数器

1、集成十进制同步加法计数器CT74LS160 (1)CT74LS160的引脚排列和逻辑功能示意图

图7.3.3 CT74LS160的引脚排列图和逻辑功能示意图

(2)CT74LS160的逻辑功能 ①CR =0时异步清零。C0=0

②CR =1、LD =0时同步并行置数。03Q Q CT CO T =

③CR =LD =1且CP T =CP P =1时,按照BCD 码进行同步十进制计数。

3Q Q CO =

④CR =LD =1且CP T ·CP P =0时,计数器状态保持不变。

2.集成十进制同步加/减计数器CT74LS190

其逻辑功能示意图如教材图7.3.15所示。功能如教材表7.3.10所示。 集成计数器小结:

集成十进制同步加法计数器74160、74162的引脚排列图、逻辑功能示意图与74161、74163相同,不同的是,74160和74162是十进制同步加法计数器,而74161和74163是4位二进制(16进制)同步加法计数器。此外,74160和74162的区别是,74160采用的是异步清零方式,而74162采用的是同步清零方式。

74190是单时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74191相同。74192是双时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74193相同。

7.3.3 利用计数器的级联获得大容量N 进制计数器

计数器的级联是将多个计数器串接起来,以获得计数容量更大的N 进制计数器。 1、异步计数器一般没有专门的进位信号输出端,通常可以用本级的高位输出信号驱动下一级计数器计数,即采用串行进位方式来扩展容量。 举例:74LS290

(1)100进制计数器

Q 0 Q 1 Q 2 Q 3

(b) 逻辑功能示意图

(a) 引脚排列图

V CO Q Q Q Q CT LD

0 1 2 3 P

CR D 0 D 1 D 2 D 3 CT CT CP

CO LD

(2)64进制计数器

2、同步计数器有进位或借位输出端,可以选择合适的进位或借位输出信号来驱动下一级计数器计数。同步计数器级联的方式有两种,一种级间采用串行进位方式,即异步方式,这种方式是将低位计数器的进位输出直接作为高位计数器的时钟脉冲,异步方式的速度较慢。另一种级间采用并行进位方式,即同步方式,这种方式一般是把各计数器的CP 端连在一起接统一的时钟脉冲,而低位计数器的进位输出送高位计数器的计数控制端。 举例:74161 (1)60进制

(2)12位二进制计数器(慢速计数方式)

12位二进制计数器(快速计数方式)

74LS161

Q 0Q 1Q 2Q 3D 0CT P CP

CT T C r LD D 1D 2D 3111

74LS161Q 0Q 1Q 2Q 3D 0CT P CP

CT T C r LD D 1D 2D 3

1

1

&

&

00102030

01112131

7.4 寄存器和移位寄存器

寄存器是由具有存储功能的触发器组合起来构成的。一个触发器可以存储1位二进制代码,存放n 位二进制代码的寄存器,需用n 个触发器来构成。

按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两大类。基本寄存器只能并行送入数据,需要时也只能并行输出。移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输出,还可以并行输入、串行输出,串行输入、并行输出,十分灵活,用途也很广。 7.4.1 基本寄存器

概念:在数字电路中,用来存放二进制数据或代码的电路称为寄存器。 1、单拍工作方式基本寄存器

无论寄存器中原来的内容是什么,只要送数控制

时钟脉冲CP 上升沿到来,加在并行数据输入端的数据D 0~D 3,就立即被送入进寄存器中,即有:

01231

0111213D D D D Q Q Q Q n n n n =++++

2.双拍工作方式基本寄存器

(1)清零。CR=0,异步清零。即有:

00000123=n

n n n Q Q Q Q

(2)送数。CR=1时,CP 上升沿送数。即有:

01231

0111213D D D D Q Q Q Q n n n n =++++

(3)保持。在CR=1、CP 上升沿以外时间,寄存器内容将保持不变。 7.4.2 移位寄存器 1.单向移位寄存器 四位右移寄存器:

时钟方程:CP CP CP CP CP ====3210

驱动方程:n n n i Q D Q D Q D D D 2312010====、、、 状态方程:n

n n n n n i n Q Q Q Q Q Q D Q 21311201110====++++、、、

单向移位寄存器中的数码,在CP 脉冲操作下,可以依次右移或左移。

n 位单向移位寄存器可以寄存n 位二进制代码。n 个CP 脉冲即可完成串行输入工作,此后可从Q 0~Q n-1端获得并行的n 位二进制数码,再用n 个CP 脉冲又可实现串行输出操作。

若串行输入端状态为0,则n 个CP 脉冲后,寄存器便被清零。2.双向移位寄存器

Q Q Q Q CP

移位时钟脉冲

M=0时右移 M=1时左移

???????+=+=+=+=++++SL n n n n n n n n n SR n MD Q M Q MQ Q M Q MQ Q M Q MQ D M Q 213

31122011110 ???????====++++n n n

n n n SR n Q Q Q Q Q Q D Q 2131120

1110 ???????====++++SL n n n n

n n n D

Q Q Q Q Q Q Q 1331221

1110 3.集成双向移位寄存器74LS194

CT74LS194的引脚排列图和逻辑功能示意图:

CT74LS194

M (a) 引脚排列图

V CC Q 0 Q 1 Q 2 Q 3 CP M 1 M 0

CR D SR D 0 D 1 D 2 D 3 D SL GND

M 1

M 0D SL

Q 0 Q 1 Q 2 Q 3

(b) 逻辑功能示意图

D 0 D 1 D 2 D 3

CR

CP D

0 × × × 1 0 0 × 1 0 1 ↑ 1 1 0 ↑ 1 1 1 ×

异步清零 保 持 右 移 左 移 并行输入

7.4.3 一、环形计数器

1、环形计数器是将单向移位寄存器的串行输入端和串行输出端相连, 构成一个

闭合的环。

结构特点:n

n Q D 10-=,即将FF n-1

的输出Q n-1接到

FF 0的输入端D 0。

工作原理:根据起始状态设置的不同,在输入计数脉冲CP 的作用下,环形计数器的有效状态可以循环移位一个1,也可以循环移位一个0。即当连续输入CP 脉冲时,环形计数器中各个触发器的Q 端或端,将轮流地出现矩形脉冲。

实现环形计数器时,必须设置适当的初态,且输出Q 3Q 2Q 1Q 0端初始状态不能完全一致(即不能全为“1”或“0”),这样电路才能实现计数, 环形计数器的进制数N 与移位寄存器内的触发器个数n 相等,即N =n2、能自启动的4位环形计数器

状态图:

由74LS194构成的能自启动的4位环形计数器

时序图

二、扭环形计数器 1、扭环形计数器是将单向移位寄存器的串行输入端和串行反相输出端相连,构成一个闭合的环。

实现扭环形计数器时,不必设置初态。扭环形计数器的进制数 N

与移位寄存器内的触发器个数

n 满足

N =2n

的关

结构特点为:n n Q D 10-=,即将FF n-1的输出1-n Q 接到FF 0的输入端D 0。 状态图:

2、能自启动的4位扭环形计数器

0100→1010→1101→0110 ↑ 无效循环 ↓1001←0010←0101←1011

0000→1000→1100→1110 ↑ 有效循环 ↓0001←0011←0111←1111

排列顺序: n n n n Q Q Q Q 3

210

在数字电路中,能按一定时间、一定顺序轮流输出脉冲波形的电路称为顺序脉冲

发生器。

顺序脉冲发生器也称脉冲分配器或节拍脉冲发生器,一般由计数器(包括移位寄存器型计数器)和译码器组成。作为时间基准的计数脉冲由计数器的输入端送入,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按一定时间、一定顺序轮流为1,或者轮流为0。前面介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发生器。 一、计数器型顺序脉冲发生器

计数器型顺序脉冲发生器一般用按自然态序计数的二进制计数器和译码器构成。 举例:用集成计数器74LS163和集成3线-8线译码器74LS138构成的8输出顺序脉冲发生器。

二、移位型顺序脉冲发生器

其中环形计数器的

0000→1000→1100→1110←1101←1010←0100←1001←0010 ↑ 有效循环 ↓ ↑

0001←0011←0111←1111 0101←1011←0110

(a) 逻辑图

(b) 状态图

排列顺序: n

n n n Q Q Q Q 3

210

计数器

译码器

Q 0

Q 1

见教材P233的图7.4.6和图7.4.7

7.5 同步时序电路的设计(略)

7.6 数字系统一般故障的检查和排除(略)

本章小结

计数器是一种应用十分广泛的时序电路,除用于计数、分频外,还广泛用于数字测量、运算和控制,从小型数字仪表,到大型数字电子计算机,几乎无所不在,是任何现代数字系统中不可缺少的组成部分。

计数器可利用触发器和门电路构成。但在实际工作中,主要是利用集成计数器来构成。在用集成计数器构成N进制计数器时,需要利用清零端或置数控制端,让电路跳过某些状态来获得N进制计数器。寄存器是用来存放二进制数据或代码的电路,是一种基本时序电路。任何现代数字系统都必须把需要处理的数据和代码先寄存起来,以便随时取用。

寄存器分为基本寄存器和移位寄存器两大类。基本寄存器的数据只能并行输入、并行输出。移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据可以并行输入、并行输出,串行输入、串行输出,并行输入、串行输出,串行输入、并行输出。

寄存器的应用很广,特别是移位寄存器,不仅可将串行数码转换成并行数码,或将并行数码转换成串行数码,还可以很方便地构成移位寄存器型计数器和顺序脉冲发生器等电路。在数控装置和数字计算机中,往往需要机器按照人们事先规定的顺序进行运算或操作,这就要求机器的控制部分不仅能正确地发出各种控制信号,而且要求这些控制信号在时间上有一定的先后顺序。通常采取的方法是,用一个顺序脉冲发生器来产生时间上有先后顺序的脉冲,以控制系统各部分协调地工作。

顺序脉冲发生器分计数型和移位型两类。计数型顺序脉冲发生器状态利用率高,但由于每次CP信号到来时,可能有两个或两个以上的触发器翻转,因此会产生竞争冒险,需要采取措施消除。移位型顺序脉冲发生器没有竞争冒险问题,但状态利用率低。

时序逻辑电路51时序逻辑电路的基本概念1时序逻辑电路教学内容

时序逻辑电路51时序逻辑电路的基本概念1时序逻辑电路

第5章时序逻辑电路 5.1 时序逻辑电路的基本概念 1.时序逻辑电路的结构及特点 时序逻辑电路在任何时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关,触发器就是最简单的时序逻辑电路,时序逻辑电路中必须含有存储电路。时序电路的基本结构如图5.1 所示,它由组合电路和存储电路两部分组成。 图5.1 时序逻辑电路框图 时序逻辑电路具有以下特点: (1)时序逻辑电路通常包含组合电路和存储电路两个组成部分,而存储电路要记忆给定时刻前的输入输出信号,是必不可少的。 (2)时序逻辑电路中存在反馈,存储电路的输出状态必须反馈到组合电路的输入端,与输入信号一起,共同决定组合逻辑电路的输出。 2.时序逻辑电路的分类 (1)按时钟输入方式 时序电路按照时钟输入方式分为同步时序电路和异步时序电路两大类。同步时序电路中,各触发器受同一时钟控制,其状态转换与所加的时钟脉冲信号

都是同步的;异步时序电路中,各触发器的时钟不同,电路状态的转换有先有后。同步时序电路较复杂,其速度高于异步时序电路。 (2)按输出信号的特点 根据输出信号的特点可将时序电路分为米里(Mealy)型和摩尔(Moore)型两类。米里型电路的外部输出Z既与触发器的状态Q n有关,又与外部输入X 有关。而摩尔型电路的外部输出Z仅与触发器的状态Q n有关,而与外部输入X 无关。 (3)按逻辑功能 时序逻辑电路按逻辑功能可划分为寄存器、锁存器、移位寄存器、计数器和节拍发生器等。 3.时序逻辑电路的逻辑功能描述方法 描述一个时序电路的逻辑功能可以采用逻辑方程组(驱动方程、输出方程、状态方程)、状态表、状态图、时序图等方法。这些方法可以相互转换,而且都是分析和设计时序电路的基本工具。 5.2 时序逻辑电路的分析方法和设计方法 1.时序逻辑电路的分析步骤 (1)首先确定是同步还是异步。若是异步,须写出各触发器的时钟方程。(2)写驱动方程。 (3)写状态方程(或次态方程)。 (4)写输出方程。若电路由外部输出,要写出这些输出的逻辑表达式,即输出方程。

第六章 时序逻辑电路(阎)

第六章时序逻辑电路

6.1 概述 一、时序逻辑电路的特点 1.功能上:任一时刻的输出不仅取决于该时刻的输入, 还与电路原来的状态有关。 例:串行加法器,两个多位数从低位到高位逐位相加 2. 电路结构上 ①一定包含存储电路 ②存储器状态和输入变量共同决 定输出.

二、时序电路的一般结构形式与功能描述方法

可以用三个方程组来描述:?????===),...,,,...,,(... ),...,,,,....,,() ,(21211212111l j l i q q q x x f y q q q x x x f y Q X F Y 输出方程?????===),...,,,,...,,(...),...,,,,...,,(),(21211212111l i k l i q q q x x x g z q q q x x x g z Q X F Y 驱动方程?????===+++) ,...,,,,...,,(...),...,,,,...,,() ,(2121121211111n l n n i l n l n l n n i n n n q q q z z z h q q q q z z z h q Q Z H Q 状态方程

三、时序电路的分类 1、同步时序电路与异步时序电路 同步:存储电路中所有触发器的时钟使用统一的cp, 触发器状态变化发生在同一时刻。 异步:没有统一的cp,触发器状态的变化有先有后。 2、Mealy 型和Moore 型 Mealy 型:Moore 型:仅取决于电路状态有关、与) Q (F Y Q X ) Q ,X (F Y ==

时序逻辑电路练习题

一、填空题 1. 基本RS触发器,当R、S都接高电平时,该触发器具有____ ___功能。2.D 触发器的特性方程为___ ;J-K 触发器的特性方程为______。 3.T触发器的特性方程为。 4.仅具有“置0”、“置1”功能的触发器叫。 5.时钟有效边沿到来时,输出状态和输入信号相同的触发器叫____ _____。 6. 若D触发器的D端连在Q端上,经100 个脉冲作用后,其次态为0,则现态应为。 7.JK触发器J与K相接作为一个输入时相当于触发器。 8. 触发器有个稳定状态,它可以记录位二进制码,存储8 位二进制信息需要个触发器。 9.时序电路的次态输出不仅与即时输入有关,而且还与有关。 10. 时序逻辑电路一般由和两部分组成的。 11. 计数器按内部各触发器的动作步调,可分为___ ___计数器和____ __计数器。 12. 按进位体制的不同,计数器可分为计数器和计数器两类;按计数过程中数字增减趋势的不同,计数器可分为计数器、计数器和计数器。13.要构成五进制计数器,至少需要级触发器。 14.设集成十进制(默认为8421码)加法计数器的初态为Q4Q3Q2Q1=1001,则经过5个CP脉冲以后计数器的状态为。 15.将某时钟频率为32MHz的CP变为4MHz的CP,需要个二进制计数器。 16. 在各种寄存器中,存放N位二进制数码需要个触发器。 17. 有一个移位寄存器,高位在左,低位在右,欲将存放在该移位寄存器中的二进制数乘上十进制数4,则需将该移位寄存器中的数移位,需要个移位脉冲。 18.某单稳态触发器在无外触发信号时输出为0态,在外加触发信号时,输出跳变为1态,因此其稳态为态,暂稳态为态。 19.单稳态触发器有___ _个稳定状态,多谐振荡器有_ ___个稳定状态。20.单稳态触发器在外加触发信号作用下能够由状态翻转到状态。21.集成单稳态触发器的暂稳维持时间取决于。 22. 多谐振荡器的振荡周期为T=tw1+tw2,其中tw1为正脉冲宽度,tw2为负脉冲宽度,则占空比应为_______。 23.施密特触发器有____个阈值电压,分别称作___ _____ 和___ _____ 。24.触发器能将缓慢变化的非矩形脉冲变换成边沿陡峭的矩形脉冲。25.施密特触发器常用于波形的与。 二、选择题 1. R-S型触发器不具有( )功能。 A. 保持 B. 翻转 C. 置1 D. 置0 2. 触发器的空翻现象是指() A.一个时钟脉冲期间,触发器没有翻转 B.一个时钟脉冲期间,触发器只翻转一次 C.一个时钟脉冲期间,触发器发生多次翻转 D.每来2个时钟脉冲,触发器才翻转一次 3. 欲得到D触发器的功能,以下诸图中唯有图(A)是正确的。

数字电子技术基础实验三 时序电路设计

数字电子技术基础 实验报告 题目:实验三时序电路设计 小组成员: 小组成员:

实验三时序电路设计 一、实验目的 1.熟悉使用QuartusⅡ软件内嵌函数,实现脉冲信号; 2.了解掌握实验开发板上数码管和LED部分 3.强化对74161二进制计数器、7447七段译码器、74194移位寄存器的理解和应用。 二、实验要求 要求1:参照参考内容,用QuartusⅡ软件内嵌函数ipm_counter 实现50M分频,输出频率为1Hz秒脉冲信号,用实验板上绿色LED灯观察。 要求2:参照参考内容中数码管显示控制电路设计方法,用74161二进制计数器、7447七段译码器和若干门电路,用原理图输入方法实现一个七段数码管上显示0、1、2、3、4、5、0、2、4、1、3、5。 要求3:参照参考内容,用74161二进制计数器、74194移位寄存器和若干门电路,用原理图输入方法实现彩灯控制器电路设计。 验收要求:将要求2和要求3同时在电路上实现,验收时能够说明电路设计的原理。 注:如果电脑软件出现Megafunction无法启用,可利用绑定按键开关作为时钟信号,验收时需要演示波形仿真结果。 三、实验设备 (1)电脑一台; (2)数字电路实验箱; (3)数据线一根。 (4)EDO实验开发板一个 四、实验原理 要求1:(1)用QuartusⅡ软件内嵌函数ipm_counter实现50M分频,

输出频率为1Hz秒脉冲信号,并用实验板上绿色LED灯观察。 要求2: (1)74161二进制计数器实现输出序列逻辑;

(2)7447七段译码器驱动七段译码管,共阳极数码管显示; (3)经过卡诺图化简实现码制转换所需序列; 要求3: (1)74161二进制计数器实现输出序列逻辑,同上; (2)四位双向移位寄存器,具有左移,右移、保持、等功能。

组合逻辑电路教案

第8章组合逻辑电路 【课题】 8.1概述 【教学目的】 了解组合逻辑电路和时序逻辑电路的电路结构特点及功能特点。 【教学重点】 1.数字逻辑电路的分类和特点。 2.常用的组合逻辑电路种类。 3.会区分数字逻辑电路的类型。 【教学难点】 区分数字逻辑电路的类型。 【教学方法】 讲授法 【参考教学课时】 1课时 【教学过程】 一、复习提问 1.基本逻辑门电路有哪几种,它们的逻辑功能是什么? 2.画出与非门逻辑符号并说明其逻辑功能。 二、新授内容 1.组合逻辑电路 (1)特点:数字逻辑电路中输出信号没有反馈到输入端,因此任意时刻的输出信号状态只与当前的输入信号状态有关,而与电路原来的输出状态无关。 (2)电路组成框图:教材图8.1。 2.时序逻辑电路 (1)特点:数字逻辑电路中输出信号部分反馈到输入端,输出信号的状态不但与当前的输入信号状态有关,而且与电路原来的输出状态有关。因此,这种电路有记忆功能。 (2)电路组成框图:教材图8.2。 三、课堂小结 1.组合逻辑电路的特点。

2.时序逻辑电路的特点。 四、课堂思考 P176思考与练习题。 五、课后练习 对逻辑代数作重点复习并预习下节课的内容(8.2组合逻辑电路的分析)。 【课题】 8.2组合逻辑电路的分析 【教学目的】 掌握组合逻辑电路的分析方法和步骤。 【教学重点】 1.组合逻辑电路的分析方法和步骤。 2.会对给定的组合逻辑电路进行功能分析。 【教学难点】 对给定的组合逻辑电路作功能说明,并用文字描述。 【教学方法】 讲授法、练习法 【参考教学课时】 1课时 【教学过程】 一、复习提问 公式化简,用练习的方式进行。 二、新授内容 1.组合逻辑电路的分析步骤。 (1)根据给定的逻辑电路图,推导输出端的逻辑表达式。 (2)化简和变换 (3)列真值表 (4)分析说明 2.组合逻辑电路的分析举例 (1)老师举例讲解 (2)老师举例,学生讨论分析 例1 已知逻辑电路如图8.1所示,试分析其逻辑功能,要求写出分析过程。

(完整版)时序逻辑电路习题与答案

第12章时序逻辑电路 自测题 一、填空题 1.时序逻辑电路按状态转换情况可分为时序电路和时序电路两大类。 2.按计数进制的不同,可将计数器分为、和N进制计数器等类型。 3.用来累计和寄存输入脉冲个数的电路称为。 4.时序逻辑电路在结构方面的特点是:由具有控制作用的电路和具记忆作用电路组成。、 5.、寄存器的作用是用于、、数码指令等信息。 6.按计数过程中数值的增减来分,可将计数器分为为、和三种。 二、选择题 1.如题图12.1所示电路为某寄存器的一位,该寄存器为 。 A、单拍接收数码寄存器; B、双拍接收数码寄存器; C、单向移位寄存器; D、双向移位寄存器。 2.下列电路不属于时序逻辑电路的是。 A、数码寄存器; B、编码器; C、触发器; D、可逆计数器。 3.下列逻辑电路不具有记忆功能的是。 A、译码器; B、RS触发器; C、寄存器; D、计数器。 4.时序逻辑电路特点中,下列叙述正确的是。 A、电路任一时刻的输出只与当时输入信号有关; B、电路任一时刻的输出只与电路原来状态有关; C、电路任一时刻的输出与输入信号和电路原来状态均有关; D、电路任一时刻的输出与输入信号和电路原来状态均无关。 5.具有记忆功能的逻辑电路是。 A、加法器; B、显示器; C、译码器; D、计数器。 6.数码寄存器采用的输入输出方式为。 A、并行输入、并行输出; B、串行输入、串行输出; C、并行输入、串行输出; D、并行输出、串行输入。 三、判断下面说法是否正确,用“√"或“×"表示在括号 1.寄存器具有存储数码和信号的功能。( ) 2.构成计数电路的器件必须有记忆能力。( ) 3.移位寄存器只能串行输出。( ) 4.移位寄存器就是数码寄存器,它们没有区别。( ) 5.同步时序电路的工作速度高于异步时序电路。( ) 6.移位寄存器有接收、暂存、清除和数码移位等作用。() 思考与练习题 12.1.1 时序逻辑电路的特点是什么? 12.1.2 时序逻辑电路与组合电路有何区别? 12.3.1 在图12.1电路作用下,数码寄存器的原始状态Q3Q2Q1Q0=1001,而输入数码

数字电路时序分析.pdf

数字电路时序分析 1数字电路时序分析 前面介绍了对器件之间的互连系统进行建模所需要的知识,包括对信号完整性的详细分析并估算了由于非理想因素引起的时序变化。但是要正确设计一个数字系统还需要使系统中器件之间可以互相通信,涉及到的内容主要是设计正确的时序,保证器件的时钟/锁存信号与数据信号之间保证正确的时序关系,满足接收端要求的最小建立和保持时间,使得数据可以被正确的锁存。 在本章中将会介绍共用时钟总线(common-clock)和源同步总线(source synchronous)的基本的时序方程。设计者可以利用时序方程来跟踪分析影响系统性能的有时序要求的器件,设置设计目标,计算最大的总线频率和时序裕量。 1.1. 共用时钟定时(common-clock timing) 在共用时钟总线中,总线上的驱动端和接收端共享同一个时钟。图8.1为一个共用时钟总线的例子,是处理器与外围芯片之间的总线接口,由处理器向外围芯片发送数据。图中还示出了位于每一个输入输出单元(I/O cell)的内部锁存器。完成一次数据传输需要两个时钟脉冲,一个用于将数据锁存到驱动端触发器,另一个用于将数据锁存到接收端触发器。整个数据传输过程分为以下几个步骤: 图8.1 共用时钟总线示意图 a.处理器内核产生驱动端触发器的有效输入D p。

b.系统时钟(clk in)的边沿1由时钟缓冲器输出并沿着传输线传播到处理器用于将驱动端触发器的输入(D p)锁存到输出(Q p)。 c.信号Q p沿着传输线传播到接收端触发器的输入(D c),并由第二个时钟边沿锁存。这样有效数据就在外围信号的内核产生了。 基于前面对数据传输过程的分析,可以得到一些基本的结论。首先,电路和传输线的延时必须小于时钟周期,这是因为信号每次从一个器件传播到另一个器件需要两个时钟周期:第一个周期——驱动端触发器将数据锁存到输出(Qp),第二个周期——接收端触发器将输入数据锁存到芯片内核。由电路和PCB走线引起的总延时必须小于一个时钟周期,这一结论限制了共用时钟总线的最高理论工作频率,因此设计一个共用时钟总线时必须考虑每部分的延时,满足接收端的建立和保持时间(建立和保持时间是为了保证能够正确地锁存数据,数据应该在时钟边沿来到之前和之后必须保持稳定的最小时间,这两个条件必须满足)。 1.1.1.共用时钟总线的时序方程 图8.2的时序图用于推导共用时钟总线的时序方程,每个箭头都表示系统中的一个延时,并在图8.1中已表示出来。实线表示的定时回路(timing loop)可用于推导建立时间时序裕量的计算公式,虚线表示的定时回路可用于推导保持时间时序裕量的计算公式。下面会介绍如何使用定时回路来得到时序方程。 图8.2 共用时钟总线的时序图 时延分为三个部分:T co、飞行时间(flight time)和时钟抖动。T co为时钟有效到数据输出有效的时间;飞行时间(T flt)是指PCB上传输线的延时;时钟抖动

电子技术——几种常用的时序逻辑电路习题及答案

第七章 几种常用的时序逻辑电路 一、填空题 1.(9-1易)与组合逻辑电路不同,时序逻辑电路的特点是:任何时刻的输出信号不仅与____________有关,还与____________有关,是______(a.有记忆性b.无记忆性)逻辑电路。 2.(9-1易)触发器是数字电路中______(a.有记忆b.非记忆)的基本逻辑单元。 3.(9-1易)在外加输入信号作用下,触发器可从一种稳定状态转换为另一种稳定状态,信号终止,稳态_________(a.不能保持下去 b. 仍能保持下去)。 4.(9-1中)JK 触发器是________(a.CP 为1有效b.CP 边沿有效)。 5.(9-1易)1n n n Q JQ KQ +=+是_______触发器的特性方程。 6.(9-1中)1n n Q S RQ +=+是________触发器的特性方程,其约束条件为___________。 7.(9-1易)1n n n Q TQ TQ +=+是_____触发器的特征方程。 8. (9-1中)在T 触发器中,若使T=____,则每输入一个CP ,触发器状态就翻转一次,这种具有翻转功能的触发器称为'T 触发器,它的特征方程是________________。 9.(9-1难)我们可以用JK 触发器转换成其他逻辑功能触发器,令 __________________,即转换成T 触发器;令_______________, 即转换为'T 触发器;令________________,即转换成D 触发器。 10.(9-1难)我们可以用D 触发器转换成其他逻辑功能触发器,令 __________________,即转换成T 触发器;令_______________, 即转换为'T 触发器。

第6章-时序逻辑电路.

6 时序逻辑电路 6.1.1 已知一时序电路的状态表如表题6.1.1所示,A为输入信号,试作出相应的状态图。 解:由状态图的概念及已知的状态表,可画出对应的状态图,如图题解6.1.1所示。 6.1.2已知状态表如表题6.1.2所示,输入为X1X0,试作出相应的状态图。 解:根据表题6.1.2所示的状态表,作出对应的状态图如图题解6.1.2所示。

6.1.3已知状态图如图题6.1.3所示,试列出它的状态表。 解:按图题6.1.3列出的状态表如表题解6.1.3所示。 6.1.5 图题6.1.5所示是某时序电路的状态图,设电路的初始状态为01,当序列A=100110(自左至右输入)时,求该 电路输出Z的序列。 解:由图题6.1.5所示的状态图可知,当初态为01,输入信号的序列A=100110时,该时序 电路将按图题解6.1.5所示的顺序改变状态,因而对应的输出序列为Z=011010。

6.1.6已知某时序电路的状态表如表题6.1.6所示,输入A,试画出它的状态图。如果电路的初始状态在b,输入信号A一次是0、1、0、1、1、1、1,试求出其相应的输出。 解:根据表题6.1.6所示的状态表,可直接画出与其对应的状态图,如图题解6.1.6(a)当从初态b开始,依次输入0、1、0、1、1、1、1信号时,该时序电路将按图题解6.1.6(b)所示的顺序改变状态,因而其对应的输出为1、0、1、0、1、0、1。 6.2 同步时序逻辑电路的分析 6.2.1 试分析图题6.2.1(a)所示时序电路,画出其状态表和状态图。设电路的初始状态为0,试画出6.2.1(b)所示波形作用下,Q和Z的波形图。

通用数字电路与数字电子技术课后答案第七章.doc

第七章 时序逻辑电路 1.电路如图P7.1所示,列出状态转换表,画出状态转换图和波形图,分析电路功能。 图P7.1 解: (1)写出各级的W.Z 。 D 1=21Q Q ,D 2=Q 1,Z=Q 2CP ( 2 ) 列分析表 ( 3 ) 状态转换表 (4 图7.A1 本电路是同步模3计数器。 2. 已知电路状态转换表如表P7.1所示,输入信号波形如图P7.2所示。若电路的初始状态为Q2Q1 = 00,试画出Q2Q1的波形图(设触发器的下降沿触发)。 Q 2 Q 1 D 2 D 1 Q 2n+1 Q 1n+1 Z 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 Q 2 Q 1 Q 2n+1 Q 1n+1 Z 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 CP 表P7.1 X Q 2 Q 1 0 1 00 01 10 11 01/1 10/0 10/0 01/1 11/1 10/0 11/0 00/1 CP X Q 1 0 Q 2 0 Z CP Q 1 0 Q 1 0 Z ( b ) Q 2 Q 1 /Z ( a ) 01/0 11/1 10/1 00/0

解:由状态转换表作出波形图 3. 试分析图P7.3所示电路,作出状态转换表及状态转换图,并作出输入信号为0110111110相应的输出波形(设起始状态Q 2Q 1 = 00 )。 ( a ) ( b ) 解:(1)写W.Z 列分析表 J 1 = XQ 2 J 2 = X Z =12Q Q X K 1 = X K 2 =1Q X ( 2 ) 作出状态转换表及状态转换图 X Q 2 Q 1 0 1 00 01 00/1 00/1 10/1 11/1 X Q 2 Q 1 J 2 K 2 J 1 K 1 Q 2n+1 Q 1n+1 Z 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 CP X 图P7.3 CP X Q 1 0 Q 1 0 Z 图P7.A2 0 /1 0 /1 0 /1 1/1 1/1 0/1 01 11 00

时序逻辑电路51时序逻辑电路的基本概念1时序逻辑电路

第5章时序逻辑电路 5.1 时序逻辑电路的基本概念 1.时序逻辑电路的结构及特点 时序逻辑电路在任何时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关,触发器就是最简单的时序逻辑电路,时序逻辑电路中必须含有存储电路。时序电路的基本结构如图 5.1 所示,它由组合电路和存储电路两部分组成。 图5.1 时序逻辑电路框图 时序逻辑电路具有以下特点: (1)时序逻辑电路通常包含组合电路和存储电路两个组成部分,而存储电路要记忆给定时刻前的输入输出信号,是必不可少的。 (2)时序逻辑电路中存在反馈,存储电路的输出状态必须反馈到组合电路的输入端,与输入信号一起,共同决定组合逻辑电路的输出。 2.时序逻辑电路的分类 (1)按时钟输入方式 时序电路按照时钟输入方式分为同步时序电路和异步时序电路两大类。同步时序电路中,各触发器受同一时钟控制,其状态转换与所加的时钟脉冲信号都是同步的;异步时序电路中,各触发器的时钟不同,电路状态的转换有先有后。同步时序电路较复杂,其速度高于异步时序电路。 (2)按输出信号的特点 根据输出信号的特点可将时序电路分为米里(Mealy)型和摩尔(Moore)型两类。米里型电路的外部输出Z既与触发器的状态Q n有关,又与外部输入X有

关。而摩尔型电路的外部输出Z仅与触发器的状态Q n有关,而与外部输入X无关。 (3)按逻辑功能 时序逻辑电路按逻辑功能可划分为寄存器、锁存器、移位寄存器、计数器和节拍发生器等。 3.时序逻辑电路的逻辑功能描述方法 描述一个时序电路的逻辑功能可以采用逻辑方程组(驱动方程、输出方程、状态方程)、状态表、状态图、时序图等方法。这些方法可以相互转换,而且都是分析和设计时序电路的基本工具。 5.2 时序逻辑电路的分析方法和设计方法 1.时序逻辑电路的分析步骤 (1)首先确定是同步还是异步。若是异步,须写出各触发器的时钟方程。(2)写驱动方程。 (3)写状态方程(或次态方程)。 (4)写输出方程。若电路由外部输出,要写出这些输出的逻辑表达式,即输出方程。 (5)列状态表 (6)画状态图和时序图。 (7)检查电路能否自启动并说明其逻辑功能。 5.2.1 同步时序逻辑电路的设计方法 1.同步时序逻辑电路的设计步骤 设计同步时序电路的一般过程如图5.10所示。 图5.10 同步时序电路的设计过程

数字电路实验八同步时序电路逻辑的设计

实验报告 课程名称:数字电路实验第8 次实验实验名称:同步时序电路逻辑设计 实验时间:2012 年 5 月29 日 实验地点:组号 学号: 姓名: 指导教师:评定成绩:

《数字电路与系统设计》实验指导书 1 一、实验目的: 1.掌握同步时序电路逻辑设计过程。 2.掌握实验测试所设计电路的逻辑功能。 3.学习EDA软件的使用。 二、实验仪器: 三、实验原理: 同步时序电路逻辑设计过程方框图如图8-1所示。

《数字电路与系统设计》实验指导书 2 图8-1 其主要步骤有: 1.确定状态转移图或状态转移表 根据设计要求写出状态说明,列出状态转移图或状态转移表,这是整个逻辑设计中最困难的一步,设计者必须对所需要解决的问题有较深入的理解,并且掌握一定的设计经验和技巧,才能描绘出一个完整的、较简单的状态转移图或状态转移表。 2.状态化简 将原始状态转移图或原始状态转移表中的多余状态消去,以得到最简状态转移图或状态转移表,这样所需的元器件也最少。 3.状态分配 这是用二进制码对状态进行编码的过程,状态数确定以后,电路的记忆元件数目也确定了,但是状态分配方式不同也会影响电路的复杂程度。状态分配是否合理需经过实践检验,因此往往需要用不同的编码进行尝试,以确定最合理的方案。 4.选择触发器 通常可以根据实验室所提供的触发器类型,选定一种触发器来进行设计,因为同步时序电路触发器状态更新与时钟脉冲同步,所以在设计时应尽量采用同一类型的触发器。选定触发器后,则可根据状态转移真值表和触发器的真值表作出触发器的控制输入函数的卡诺图,然后求得各触发器的控制输入方程和电路的输出方程。 5.排除孤立状态 理论上完成电路的设计后,还需检查电路有否未指定状态,若有未指定状态,则必须检查未指定状态是否有孤立状态,即无循环状态,如果未指定状态中有孤立状态存在,应采取措施排除,以保证电路具有自启动性能。 经过上述设计过程,画出电路图,最后还必须用实验方法对电路的逻辑功能进行验证,如有问题,再作必要的修改。时序电路的功能测试可以用静态和动态两种方法进行,静态测试由逻辑开关或数据开关提供输入信号,测试各级输出状态随输入信号变化的情况,可用指示灯观察,用状态转移真值表或功能表来描述。动态测试是在方波信号的作用下,确定各输出端输出信号与输入信号之间的时序图,可用示波器观察波形。 在实际的逻辑电路设计中,以上的设计过程往往不能一次性通过,要反复经过许多次仿真和调试,才能符合设计要求,既费时费力,又提高了产品的成本,而且,随着电路的复杂化,受工作场所及仪器设备等因素的限制,许多试验不能进行。为了解决这些问题,很多国内外的电子设计公司于20世纪80年代末、90年代初,推出了专门用于电子线路仿真和设计

时序逻辑电路习题

触发器 一、单项选择题: (1)对于D触发器,欲使Q n+1=Q n,应使输入D=。 A、0 B、1 C、Q D、 (2)对于T触发器,若原态Q n=0,欲使新态Q n+1=1,应使输入T=。 A、0 B、1 C、Q (4)请选择正确的RS触发器特性方程式。 A、 B、 C、 (约束条件为) D、 (5)请选择正确的T触发器特性方程式。 A、 B、 C、 D、 (6)试写出图所示各触发器输出的次态函数(Q )。 n+1 A、 B、 C、 D、 (7)下列触发器中没有约束条件的是。 A、基本RS触发器 B、主从RS触发器 C、同步RS触发器 D、边沿D触发器 二、多项选择题: (1)描述触发器的逻辑功能的方法有。 A、状态转换真值表 B、特性方程 C、状态转换图 D、状态转换卡诺图 (2)欲使JK触发器按Q n+1=Q n工作,可使JK触发器的输入端。

A、J=K=0 B、J=Q,K= C、J=,K=Q D、J=Q,K=0 (3)欲使JK触发器按Q n+1=0工作,可使JK触发器的输入端。 A、J=K=1 B、J=0,K=0 C、J=1,K=0 D、J=0,K=1 (4)欲使JK触发器按Q n+1=1工作,可使JK触发器的输入端。 A、J=K=1 B、J=1,K=0 C、J=K=0 D、J=0,K=1 三、判断题: (1)D触发器的特性方程为Q n+1=D,与Q 无关,所以它没有记忆功能。() n (2)同步触发器存在空翻现象,而边沿触发器和主从触发器克服了空翻。 () (3)主从JK触发器、边沿JK触发器和同步JK触发器的逻辑功能完全相同。() (8)同步RS触发器在时钟CP=0时,触发器的状态不改变( )。 (9)D触发器的特性方程为Q n+1=D,与Q n无关,所以它没有记忆功能( )。 (10)对于边沿JK触发器,在CP为高电平期间,当J=K=1时,状态会翻转一次( )。 四、填空题: (1)触发器有()个稳态,存储8位二进制信息要 ()个触发器。 (2)在一个CP脉冲作用下,引起触发器两次或多次翻转的现象称为触发器的(),触发方式为()式或()式的触发器不会出现这种现象。 (3)按逻辑功能分,触发器有()、()、()、()、()五种。 (4)触发器有()个稳定状态,当=0,=1时,称为()状态。 时序逻辑电路 一、单项选择题: (2)某512位串行输入串行输出右移寄存器,已知时钟频率为4MHZ,数据从输入端到达输出端被延迟多长时间? A、128μs B、256μs C、512μs D、1024μs (3)4个触发器构成的8421BCD码计数器共有()个无效状态。 A、6 B、8 C、10 D、4 (4)四位二进制计数器模为 A、小于16 B、等于16 C、大于16 D、等于10 (5)利用异步预置数端构成N进制加法计数器,若预置数据为0,则应将()所对应的状态译码后驱动控制端。 A、N B、N-1 C、N+1 (7)采用集成中规模加法计数器74LS161构成的电路如图所示,选择正确答案。 A、十进制加法计数器 B、十二进制加法计数器

最新数字电子技术基础电子教案——第5章时序逻辑电路.docx

第 5 章时序逻辑电路 5.1时序逻辑电路的基本概念 1.时序逻辑电路的结构及特点 时序逻辑电路在任何时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关,触发器就是最简单的时序逻辑电路,时序逻辑电路中必须含有存 储电路。时序电路的基本结构如图 5.1 所示,它由组合电路和存储电路两部分 组成。 图 5.1时序逻辑电路框图 时序逻辑电路具有以下特点: (1)时序逻辑电路通常包含组合电路和存储电路两个组成部分,而存储电路 要记忆给定时刻前的输入输出信号,是必不可少的。 (2)时序逻辑电路中存在反馈,存储电路的输出状态必须反馈到组合电路的 输入端,与输入信号一起,共同决定组合逻辑电路的输出。 2.时序逻辑电路的分类 ( 1)按时钟输入方式 时序电路按照时钟输入方式分为同步时序电路和异步时序电路两大类。同步时序电路中,各触发器受同一时钟控制,其状态转换与所加的时钟脉冲信号都是同步的;异步时序电路中,各触发器的时钟不同,电路状态的转换有先有后。同 步时序电路较复杂,其速度高于异步时序电路。 ( 2)按输出信号的特点 根据输出信号的特点可将时序电路分为米里(Mealy)型和摩尔(Moore)型两类。米里型电路的外部输出 Z 既与触发器的状态 Q n有关,又与外部输入 X 有

关。而摩尔型电路的外部输出Z 仅与触发器的状态Q n有关,而与外部输入X 无关。 ( 3)按逻辑功能 时序逻辑电路按逻辑功能可划分为寄存器、锁存器、移位寄存器、计数器和节拍发生器等。 3.时序逻辑电路的逻辑功能描述方法 描述一个时序电路的逻辑功能可以采用逻辑方程组(驱动方程、输出方程、 状态方程)、状态表、状态图、时序图等方法。这些方法可以相互转换,而且 都是分析和设计时序电路的基本工具。 5.2时序逻辑电路的分析方法和设计方法 1.时序逻辑电路的分析步骤 (1)首先确定是同步还是异步。若是异步,须写出各触发器的时钟方程。 (2)写驱动方程。 (3)写状态方程(或次态方程)。 (4)写输出方程。若电路由外部输出,要写出这些输出的逻辑表达式,即输 出方程。 (5)列状态表 (6)画状态图和时序图。 (7)检查电路能否自启动并说明其逻辑功能。 5.2.1同步时序逻辑电路的设计方法 1.同步时序逻辑电路的设计步骤 设计同步时序电路的一般过程如图 5.10 所示。 图 5.10同步时序电路的设计过程

电子技术基础复习题-时序逻辑电路(1)

《电子技术基础》复习题 时序逻辑电路 一、填空题: 1.具有“置0”、“置1”、“保持”和“计数功能”的触发器是() 2.触发器有门电路构成,但它不同门电路功能,主要特点是:() 型触发器的直接置0端Rd、置1端Sd的正确用法是() 4.按触发方式双稳态触发器分为:() 5.时序电路可以由()组成 6.时序电路输出状态的改变() 7.通常寄存器应具有()功能 8.通常计数器应具有()功能 9. M进制计数器的状态转换的特点是设初态后,每来()个CP时,计数器又重回初态。 10.欲构成能记最大十进制数为999的计数器,至少需要()个双稳触发器。 11. 同步时序逻辑电路中所有触发器的时钟端应()。 二、选择题: 1.计数器在电路组成上的特点是() a)有CP输入端,无数码输入端 b) 有CP输入端和数码输入端 c) 无CP输入端,有数码输 入端 2.按各触发器的状态转换与CP的关系分类,计数器可分为()计数器。 a)加法、减法和加减可逆 b)同步和异步 c)二、十和M进制 3. 按计数器的状态变换的规律分类,计数器可分为()计数器。 a)加法、减法和加减可逆 b)同步和异步 c)二、十和M进制 4 按计数器的进位制分类,计数器可分为()计数器。 a)加法、减法和加减可逆 b)同步和异步 c)二、十和M进制 5. n位二进制加法计数器有()个状态,最大计数值是()。 a)2n-1 b)2n c)2n-1 6.分析时序逻辑电路的状态表,可知它是一只()。 (a) 二进制计数器(b)六进制计数(c) 五进制计数器 7. 分析如图所示计数器的波形图,可知它是一只()。 (a) 六进制计数器(b) 七进制计数器(c) 八进制计数器

最新数字电路教案-阎石-第七章-时序逻辑电路

第7章 时序逻辑电路 7.1 概述 时序电路在任何时刻的稳定输出,不仅与该时刻的输入信号有关,而且还与电路原来的状态有关。 图7.1.1 时序逻辑电路的结构框图2、时序电路的分类 (1) 根据时钟分类 同步时序电路中,各个触发器的时钟脉冲相同,即电路中有一个统一的时钟脉冲,每来一个时钟脉冲,电路的状态只改变一次。 异步时序电路中,各个触发器的时钟脉冲不同,即电路中没有统一的时钟脉冲来控制电路状态的变化,电路状态改变时,电路中要更新状态的触发器的翻转有先有后,是异步进行的。 (2)根据输出分类米利型时序电路的输出不仅与现态有关,而且还决定于电路当前的输入。 穆尔型时序电路的其输出仅决定于电路的现态,与电路当前的输入无关;或者根本就不存在独立设置的输出,而以电路的状态直接作为输出。 7.2 时序逻辑电路的分析方法 时序电路的分析步骤: 电路图 时钟方程、输出方程、驱动方程 状态方程 计算 状态表(状态图、时序图) 判断电路逻辑功能 分析电路能否自启动。 7.2.1 同步时序电路的分析方法 分析举例:[例7.2.1] 7.2.2 异步时序电路的分析方法 分析举例:[例7.2.3] 7.3 计数器 概念:在数字电路中,能够记忆输入脉冲CP 个数的电路称为计数器。 计数器累计输入脉冲的最大数目称为计数器的“模”,用M 表示。计数器的“模”实际上为电路的有效状态。计数器的应用:计数、定时、分频及进行数字运算等。 计数器的分类: (1)按计数器中触发器翻转是否同步分:异步计数器、同步计数器。 (2)按计数进制分:二进制计数器、十进制计数器、N 进制计数器。 (3)按计数增减分:加法计数器、减法计数器、加/减法计数器。 7.3.1 异步计数器 X X Y 1 Y m 输入 输 出

《数字逻辑电路(A)》复习题第六章时序电路

时序逻辑电路 一、选择题 1.同步计数器和异步计数器比较,同步计数器的显著优点是。 A.工作速度高 B.触发器利用率高 C.电路简单 D.不受时钟C P控制。 3.下列逻辑电路中为时序逻辑电路的是。 A.变量译码器 B.加法器 C.数码寄存器 D.数据选择器 4.N个触发器可以构成最大计数长度(进制数)为的计数器。 A.N B.2N C.N2 D.2N 5.N个触发器可以构成能寄存位二进制数码的寄存器。 A.N-1 B.N C.N+1 D.2N 6. 7.同步时序电路和异步时序电路比较,其差异在于后者。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 8.一位8421B C D码计数器至少需要个触发器。 A.3 B.4 C.5 D.10 9.欲设计0,1,2,3,4,5,6,7这几个数的计数器,如果设计合理,采用同 步二进制计数器,最少应使用个触发器。 A.2 B.3 C.4 D.8 10.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。 A.1 B.2 C.4 D.8 二、判断题(正确打√,错误的打×) 1.同步时序电路由组合电路和存储器两部分组成。(√) 2.组合电路不含有记忆功能的器件。(√) 3.时序电路不含有记忆功能的器件。(×) 4.同步时序电路具有统一的时钟CP控制。(√) 5.异步时序电路的各级触发器类型不同。(×) 6.环形计数器在每个时钟脉冲CP作用时,相临状态仅有一位触发器发生状态更新。(×) 7.环形计数器如果不作自启动修改,则总有孤立状态存在。(√) 8.计数器的模是指构成计数器的触发器的个数。(×) 10.D触发器的特征方程Q n+1=D,而与Q n无关,所以,D触发器不是时序电路。(×)

实验三时序逻辑电路

实验三时序逻辑电路 学习目标: 1、掌握时序逻辑电路的一般设计过程 2、掌握时序逻辑电路的时延分析方法,了解时序电路对时钟信号相关参数的基本要求 3、掌握时序逻辑电路的基本调试方法 4、熟练使用示波器和逻辑分析仪观察波形图 实验内容: 1、广告流水灯(第 9 周课内验收)用触发器、组合函数器件和门电路设计一个广告流水灯,该流水灯由 8 个 LED 组成,工作时始终为 1 暗 7 亮,且这一个暗灯循环右移。 (1) 写出设计过程,画出设计的逻辑电路图,按图搭接电路 (2) 将单脉冲加到系统时钟端,静态验证实验电路 (3) 将 TTL 连续脉冲信号加到系统时钟端,用示波器观察并记录时钟脉冲 CP、触发器的输出端 Q2、Q1、 Q0 和 8 个 LED 上的波形。 2、序列发生器(第 10 周课内实物验收计数器方案)分别用 MSI 计数器和移位寄存器设计一个具有自启动功能的 01011 序列信号发生器 (1) 写出设计过程,画出电路逻辑图 (2) 搭接电路,并用单脉冲静态验证实验结果 (3) 加入 TTL 连续脉冲,用示波器观察观察并记录时钟脉冲 CLK、序列输出端的波形。 3、4 位并行输入-串行输出曼切斯特编码电路(第10周课内验收,基础要求占70%,扩展要求占30%) 在电信与数据存储中, 曼彻斯特编码(Manchester coding),又称自同步码、相位编码(phase encoding,PE),它能够用信号的变化来保持发送设备和接收设备之间的同步,在以太网中,被物理层使用来编码一个同步位流的时钟和数据。曼彻斯特编码用电压的变化来分辨 0 和 1,从高电平到低电平的跳变代表 0,而从低电平到高电平的跳变代表 1。信号的保持不会超过一个比特位的时间间隔。即使是 0 或 1 的序列,信号也将在每个时间间隔的中间发生跳变。这种跳变将允许接收设备的时钟与发送设备的时钟保持一致,图 3.1 为曼切斯特编码的例子。 设计一个电路,它能自动加载 4 位并行数据,并将这4位数据逐个串行输出(高位在前),每个串行输出位都被编码成曼切斯特码,当 4 位数据全部传输完成后,重新加载新数据,继续传输,如图 3.2 所示。

最新数字电路第六章时序逻辑电路练习题CAO

第六章时序逻辑电路复习练习题 一、填空题: 1.构造一个模6计数器需要个状态,个触发器。构成一个1位十进制同步加法计数器至少需要()个JK触发器,一个1位5进制同步加法计数器至少需要()个JK触发器。 2.若要构成七进制计数器,最少用_________个触发器,它有______个无效状态。 3.构成一异步n2进制加法计数器需要 n 个触发器,一般将每个触发器接成计数或T’型触发器。计数脉冲输入端相连,高位触发器的 CP 端与邻低位Q端相连。 4. 一个4位移位寄存器,经过 4 个时钟脉冲CP后,4位串行输入数码全部存入寄存器;再经过 4 个时钟脉冲CP后可串行输出4位数码。 5. 要组成模15计数器,至少需要采用 4 个触发器。 6.按计数器中各触发器翻转时间可分为_同步计数器_,异步计数器_。 7. 74LS161是_a_(a.同步b.异步)二进制计数器。它具有_清除_,_置数__,_保持_和计数等四种功能。 8. 74LS290是__b__(a.同步b.异步)非二进制计数器。 9.在计数过程中,利用反馈提供置数信号,使计数器将指定数置入,并由此状态继续计数,可构成N进制计数器,该方法有_同步_置数和_异步置数两种。 10.将模为M和N的两片计数器a_(a.串接b.并接),可扩展成__M*N__进制的计数器。 二、选择题: 1、一个计数器的状态变化为:000 001 010 011 100 000,则该计数器是( 2 )进制(3 )法计数器。 (1)4 (2)5 (3)加(4)减 2、用n个触发器构成计数器,可得到的最大计数长度为( A ) A. 2n B.2n C.2n D.n 3、一块7490十进制计数器中,它含有的触发器个数是( A ) A. 4 B. 2 C. 1 D. 6 4.一位8421BCD码计数器至少需要(B)个触发器。 A.3 B.4 C.5 D.10 5、利用中规模集成计数器构成任意进制计数器的方法有( ABC ) A.复位法 B.预置数法 C.级联复位法 三.判断题 (1)异步时序电路的各级触发器类型不同。(×)(2)把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(×)(3)具有 N 个独立的状态,计满 N 个计数脉冲后,状态能进入循环的时序电路,称之模N计数器。(√) (4)计数器的模是指构成计数器的触发器的个数。(×)1、二进制加法计数器从0计数到十进制24时,需要5个触发器构成,有7个

第七章:时序逻辑电路设计

第七章 时序逻辑电路的设计 1、 选择题 1.下列逻辑电路中为时序逻辑电路的是 。 A.变量译码器 B.加法器 C.数码寄存器 D.数据选择器 2.同步时序电路和异步时序电路比较,其差异在于后者 。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 3.若要设计一个脉冲序列为1101001110的序列脉冲发生器,应选用 个触发器。 .3 C.4 D.10 A.2 B 2、 判断题(正确打√,错误的打×) 1.同步时序电路由组合电路和触发器两部分组成。( ) 2.组合电路不含有记忆功能的器件。( ) 3.时序电路不含有记忆功能的器件。( ) 4.同步时序电路具有统一的时钟CP控制。( ) 5.异步时序电路的各级触发器类型不同。( ) 6.在同步时序电路的设计中,若最简状态表中的状态数为2N,而又是用N级触发器来实现其电路,则不需检查电路的自启动性。( ) 7.时序逻辑电路与组合逻辑电路的最大区别在于,它具有存储和记忆功能。() 8.异步时序电路中的各触发器的状态转换不是在同一时刻进行的。() 3、 填空题 1.寄存器按照功能不同可分为两类: 寄存器和 寄存器。 2.数字电路按照是否有记忆功能通常可分为两类: 、。 3.由四位移位寄存器构成的顺序脉冲发生器可产生 个顺序脉冲。

4.时序逻辑电路按照其触发器是否有统一的时钟控制分为 时序电路和 时序电路。 四、分析题 1:用JK触发器和门电路设计一个同步七进制计数器。 2:分析图7202所示时序电路的逻辑功能,设各触发器为TTL型,初始状态为Q = 0,试写出: 1、驱动方程; 2、状态方程; 图7202 3:分析如图7209所示时序电路的逻辑功能,试写出: 1、各触发器的驱动方程; 2、状态方程和输出方程; 3、画出电路的状态转换图; 图7209 4:分析如图7208时序逻辑电路的功能,设触发器初始状态为0,试写出: 1、各触发器的驱动方程; 2、状态方程和输出方程; 3、画出状态转换图,时序图;

相关主题
文本预览
相关文档 最新文档