当前位置:文档之家› 《数字逻辑电路(A)》复习题第六章时序电路

《数字逻辑电路(A)》复习题第六章时序电路

《数字逻辑电路(A)》复习题第六章时序电路
《数字逻辑电路(A)》复习题第六章时序电路

时序逻辑电路

一、选择题

1.同步计数器和异步计数器比较,同步计数器的显著优点是。

A.工作速度高

B.触发器利用率高

C.电路简单

D.不受时钟C P控制。

3.下列逻辑电路中为时序逻辑电路的是。

A.变量译码器

B.加法器

C.数码寄存器

D.数据选择器

4.N个触发器可以构成最大计数长度(进制数)为的计数器。

A.N

B.2N

C.N2

D.2N

5.N个触发器可以构成能寄存位二进制数码的寄存器。

A.N-1

B.N

C.N+1

D.2N

6.

7.同步时序电路和异步时序电路比较,其差异在于后者。

A.没有触发器

B.没有统一的时钟脉冲控制

C.没有稳定状态

D.输出只与内部状态有关

8.一位8421B C D码计数器至少需要个触发器。

A.3

B.4

C.5

D.10

9.欲设计0,1,2,3,4,5,6,7这几个数的计数器,如果设计合理,采用同

步二进制计数器,最少应使用个触发器。

A.2

B.3

C.4

D.8

10.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。

A.1

B.2

C.4

D.8

二、判断题(正确打√,错误的打×)

1.同步时序电路由组合电路和存储器两部分组成。(√)

2.组合电路不含有记忆功能的器件。(√)

3.时序电路不含有记忆功能的器件。(×)

4.同步时序电路具有统一的时钟CP控制。(√)

5.异步时序电路的各级触发器类型不同。(×)

6.环形计数器在每个时钟脉冲CP作用时,相临状态仅有一位触发器发生状态更新。(×)

7.环形计数器如果不作自启动修改,则总有孤立状态存在。(√)

8.计数器的模是指构成计数器的触发器的个数。(×)

10.D触发器的特征方程Q n+1=D,而与Q n无关,所以,D触发器不是时序电路。(×)

13.同步二进制计数器的电路比异步二进制计数器复杂,所以实际应用中较少使用同步二进制计数器。(×)

14.利用反馈归零法获得N进制计数器时,若为异步置零方式,则状态S N只是短暂的过渡状态,不能稳定而是立刻变为0状态。(√)

三、填空题

1.寄存器按照功能不同可分为两类:寄存器和寄存器。2.数字电路按照是否有记忆功能通常可分为两类:、。3.由四位环形移位寄存器构成的顺序脉冲发生器可产生个顺序脉冲。4.时序逻辑电路按照其触发器是否有统一的时钟控制分为时序电路和

时序电路。

5.用电位触发的D触发器(同步式触发器)构成的寄存器称为。6.n个触发器构成的环形计数器,其模数是,又是进制计数器,也是一个分频电路,也是一个顺序脉冲发生器。该环形计数器自启动能力的。

7.n个触发器构成的扭环形计数器,其模数是,又是进制计数器,也是一个分频电路,该环形计数器自启动能力的。

四、时序电路的分析

1、分析以下电路,说明电路功能。

2、分析下图所示时序电路,作出状态表和状态图,指出其逻辑功能。

第七章答案

一、选择题

1.A

2.D

3.C

4.D

5.B

6.A

7.B

8.B

9.B

10. D

11. D

12. A

13. B

14.AB

15. A

16. C

二、判断题

1.√

2.√

3.√

4.√

5.×

6.×

7.√

8.×

9.× 10.×

11.√ 12.× 13.× 14.√

三、填空题

1.移位数码

2.组合逻辑电路时序逻辑电路

3.4

4.同步异步

5.锁存器

6.N, n n n 无

7.2n, 偶数,2n 无

四、1.(1)、01Q J = , 10Q J = , 110==K K

(2)、n n Q Q Q 1011=+、 n n Q Q Q 0110=+

(3)、

(4)、

该电路是3进制减法计数器

2 . 驱动方程

状态方程:

一个五进制加法计数器

时序逻辑电路试题

第五章时序电路 一、选择题 1.同步计数器和异步计数器比较,同步计数器的显著优点是。 A.工作速度高 B.触发器利用率高 C.电路简单 D.不受时钟C P控制。 2.把一个五进制计数器与一个四进制计数器串联可得到进制计数器。 3.下列逻辑电路中为时序逻辑电路的是。 A.变量译码器 B.加法器 C.数码寄存器 D.数据选择器 4.N个触发器可以构成最大计数长度(进制数)为的计数器。 》 5.N个触发器可以构成能寄存位二进制数码的寄存器。 +1 6.五个D触发器构成环形计数器,其计数长度为。 7.同步时序电路和异步时序电路比较,其差异在于后者。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 8.一位8421B C D码计数器至少需要个触发器。 [ 9.欲设计0,1,2,3,4,5,6,7这几个数的计数器,如果设计合理,采用同 步二进制计数器,最少应使用级触发器。 10.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。 11.用二进制异步计数器从0做加法,计到十进制数178,则最少需要个触发器。 12.某电视机水平-垂直扫描发生器需要一个分频器将31500H Z的脉冲转换为60H Z的脉冲,欲构成此分频器至少需要个触发器。

13.某移位寄存器的时钟脉冲频率为100K H Z ,欲将存放在该寄存器中的数左移8 位,完成该操作需要 时间。 μS μS μS [ 14.若用J K 触发器来实现特性方程为AB Q A Q n 1n +=+,则J K 端的方程为 。 =A B ,K =B A + =A B ,K =B A =B A +,K =A B =B A ,K =A B 15.要产生10个顺序脉冲,若用四位双向移位寄存器CT74LS194来实现,需要 片。 16.若要设计一个脉冲序列为10的序列脉冲发生器,应选用 个触发器。 二、判断题(正确打√,错误的打×) 1.同步时序电路由组合电路和存储器两部分组成。( ) 2.组合电路不含有记忆功能的器件。( ) ~ 3.时序电路不含有记忆功能的器件。( ) 4.同步时序电路具有统一的时钟CP 控制。( ) 5.异步时序电路的各级触发器类型不同。( ) 6.环形计数器在每个时钟脉冲CP 作用时,仅有一位触发器发生状态更新。( ) 7.环形计数器如果不作自启动修改,则总有孤立状态存在。( ) 8.计数器的模是指构成计数器的触发器的个数。( ) 9.计数器的模是指对输入的计数脉冲的个数。( ) 10.D 触发器的特征方程Q n +1=D ,而与Q n 无关,所以,D 触发器不是时序电路。( ) 11.在同步时序电路的设计中,若最简状态表中的状态数为2N ,而又是用N 级 触发器来实现其电路,则不需检查电路的自启动性。( ) 12.把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。( ) < 13.同步二进制计数器的电路比异步二进制计数器复杂,所以实际应用中较少使 用同步二进制计数器。( ) 14.利用反馈归零法获得N 进制计数器时,若为异步置零方式,则状态S N 只是 短暂的过渡状态,不能稳定而是立刻变为0状态。( )

第6章_时序逻辑电路 课后答案

第六章 时序逻辑电路 【题 6.3】 分析图P6.3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 Y 图P6.3 【解】驱动方程: 11323131233 J =K =Q J =K =Q J =Q Q ;K =Q ?? ??? 输出方程:3Y Q = 将驱动方程带入JK 触发器的特性方程后得到 状态方程为: n+11313131n 1 2121221n+1 3321 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +?=+=?=+=⊕??=? 电路能自启动。状态转换图如图A6.3 【题 6.5】 分析图P6.5时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入逻辑变量。 图A6.3

Y 图P6.5 【解】 驱动方程: 12 21212() D AQ D AQ Q A Q Q ?=??==+?? 输出方程: 21Y AQ Q = 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+1 12 n+1 212() Q AQ Q A Q Q ?=??=+?? 电路的状态转换图如图A6.5 1 图A6.5 【题 6.6】 分析图P6.6时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。说明电路实现的功能。A 为输入变量。

A Y 图P6.6 【解】驱动方程: 11221 1 J K J K A Q ==?? ==⊕? 输出方程: 1212Y AQQ AQQ =+ 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+111 n+1 212 Q Q Q A Q Q ?=??=⊕⊕?? 电路状态转换图如图A6.6。A =0时作二进制加法计数,A =1时作二进制减法计数。 01图A6.6 【题 6.7】 分析图P6.7时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。

第六章 时序逻辑电路(阎)

第六章时序逻辑电路

6.1 概述 一、时序逻辑电路的特点 1.功能上:任一时刻的输出不仅取决于该时刻的输入, 还与电路原来的状态有关。 例:串行加法器,两个多位数从低位到高位逐位相加 2. 电路结构上 ①一定包含存储电路 ②存储器状态和输入变量共同决 定输出.

二、时序电路的一般结构形式与功能描述方法

可以用三个方程组来描述:?????===),...,,,...,,(... ),...,,,,....,,() ,(21211212111l j l i q q q x x f y q q q x x x f y Q X F Y 输出方程?????===),...,,,,...,,(...),...,,,,...,,(),(21211212111l i k l i q q q x x x g z q q q x x x g z Q X F Y 驱动方程?????===+++) ,...,,,,...,,(...),...,,,,...,,() ,(2121121211111n l n n i l n l n l n n i n n n q q q z z z h q q q q z z z h q Q Z H Q 状态方程

三、时序电路的分类 1、同步时序电路与异步时序电路 同步:存储电路中所有触发器的时钟使用统一的cp, 触发器状态变化发生在同一时刻。 异步:没有统一的cp,触发器状态的变化有先有后。 2、Mealy 型和Moore 型 Mealy 型:Moore 型:仅取决于电路状态有关、与) Q (F Y Q X ) Q ,X (F Y ==

时序逻辑电路设计

引言 人类社会进步,各种仪器测试设备的以电子设备代替成为趋势,各类测试仪器都希望通过电子设备来实现。电子设备在实现相应参数的测量时,具有简单容易操作,而且数据便于计算机处理等优点。目前科技的飞速进展与集成电路的发展应用,有密不可分的关系。十九世纪工业革命主要以机器节省人力,二十世纪的工业的革命则主要以电脑为人脑分劳。而电脑的发展归于集成电路工业。 集成电路是将各种电路器件集成于半导体表面而形成的电路。近年来集成电路几乎成为所有电子产品的心脏。由于集成电路微小化的趋向,使电子产品得以“轻、薄、短、小”。故集成电路工业又称微电子工业。差不多在同时数字计算机的发展提供了应用晶体管的庞大潜在市场。 20世纪90年代以后,电子科学和技术取得了飞速的发展,其标志就是电子计算机的普及和大规模集成电路的广泛应用。在这种情况下,传统的关于数字电路的内容也随之起了很大的变化,在数字电路领域EDA工具已经相当成熟,无论是电路内容结构设计还是电路系统设计,以前的手工设计都被计算机辅助设计或自动设计所取代。 通过长期的学习微电子专业理论知识,我们应该多动手实践把理论知识与实践相结合,加强对理论知识的把握。本文是十进制同步计数器的设计,对十进制同步计数器的设计进行电路原理图设计以及仿真,版图设计,版图验证。 1 设计技术要求 (1)项目名称:十进制同步计数器的设计 (2)使用工艺:2.0um硅栅工艺(tanner)或者1.0um硅栅工艺(cadence) (3)供电电源:5V (4)输入要求:异步清除,CMOS电平 (5)进行原理图设计,并完成电路的仿真 (6)版图设计,完成LVS一致性检验,生成相应的GDSII文档 2 设计构思及理论 2.1 设计思路 十进制同步计数器的设计可以细化成下列步骤: ①建立最简原始状态图。 ②确定触发器级数,进行状态编码。 ③用状态装换卡诺图化简,求状态方程和输出方程。 ④查自启动特性。 ⑤确定触发类型,求驱动方程。 ⑥画逻辑图。

时序逻辑电路练习题

一、填空题 1. 基本RS触发器,当R、S都接高电平时,该触发器具有____ ___功能。2.D 触发器的特性方程为___ ;J-K 触发器的特性方程为______。 3.T触发器的特性方程为。 4.仅具有“置0”、“置1”功能的触发器叫。 5.时钟有效边沿到来时,输出状态和输入信号相同的触发器叫____ _____。 6. 若D触发器的D端连在Q端上,经100 个脉冲作用后,其次态为0,则现态应为。 7.JK触发器J与K相接作为一个输入时相当于触发器。 8. 触发器有个稳定状态,它可以记录位二进制码,存储8 位二进制信息需要个触发器。 9.时序电路的次态输出不仅与即时输入有关,而且还与有关。 10. 时序逻辑电路一般由和两部分组成的。 11. 计数器按内部各触发器的动作步调,可分为___ ___计数器和____ __计数器。 12. 按进位体制的不同,计数器可分为计数器和计数器两类;按计数过程中数字增减趋势的不同,计数器可分为计数器、计数器和计数器。13.要构成五进制计数器,至少需要级触发器。 14.设集成十进制(默认为8421码)加法计数器的初态为Q4Q3Q2Q1=1001,则经过5个CP脉冲以后计数器的状态为。 15.将某时钟频率为32MHz的CP变为4MHz的CP,需要个二进制计数器。 16. 在各种寄存器中,存放N位二进制数码需要个触发器。 17. 有一个移位寄存器,高位在左,低位在右,欲将存放在该移位寄存器中的二进制数乘上十进制数4,则需将该移位寄存器中的数移位,需要个移位脉冲。 18.某单稳态触发器在无外触发信号时输出为0态,在外加触发信号时,输出跳变为1态,因此其稳态为态,暂稳态为态。 19.单稳态触发器有___ _个稳定状态,多谐振荡器有_ ___个稳定状态。20.单稳态触发器在外加触发信号作用下能够由状态翻转到状态。21.集成单稳态触发器的暂稳维持时间取决于。 22. 多谐振荡器的振荡周期为T=tw1+tw2,其中tw1为正脉冲宽度,tw2为负脉冲宽度,则占空比应为_______。 23.施密特触发器有____个阈值电压,分别称作___ _____ 和___ _____ 。24.触发器能将缓慢变化的非矩形脉冲变换成边沿陡峭的矩形脉冲。25.施密特触发器常用于波形的与。 二、选择题 1. R-S型触发器不具有( )功能。 A. 保持 B. 翻转 C. 置1 D. 置0 2. 触发器的空翻现象是指() A.一个时钟脉冲期间,触发器没有翻转 B.一个时钟脉冲期间,触发器只翻转一次 C.一个时钟脉冲期间,触发器发生多次翻转 D.每来2个时钟脉冲,触发器才翻转一次 3. 欲得到D触发器的功能,以下诸图中唯有图(A)是正确的。

第6章-时序逻辑电路.

6 时序逻辑电路 6.1.1 已知一时序电路的状态表如表题6.1.1所示,A为输入信号,试作出相应的状态图。 解:由状态图的概念及已知的状态表,可画出对应的状态图,如图题解6.1.1所示。 6.1.2已知状态表如表题6.1.2所示,输入为X1X0,试作出相应的状态图。 解:根据表题6.1.2所示的状态表,作出对应的状态图如图题解6.1.2所示。

6.1.3已知状态图如图题6.1.3所示,试列出它的状态表。 解:按图题6.1.3列出的状态表如表题解6.1.3所示。 6.1.5 图题6.1.5所示是某时序电路的状态图,设电路的初始状态为01,当序列A=100110(自左至右输入)时,求该 电路输出Z的序列。 解:由图题6.1.5所示的状态图可知,当初态为01,输入信号的序列A=100110时,该时序 电路将按图题解6.1.5所示的顺序改变状态,因而对应的输出序列为Z=011010。

6.1.6已知某时序电路的状态表如表题6.1.6所示,输入A,试画出它的状态图。如果电路的初始状态在b,输入信号A一次是0、1、0、1、1、1、1,试求出其相应的输出。 解:根据表题6.1.6所示的状态表,可直接画出与其对应的状态图,如图题解6.1.6(a)当从初态b开始,依次输入0、1、0、1、1、1、1信号时,该时序电路将按图题解6.1.6(b)所示的顺序改变状态,因而其对应的输出为1、0、1、0、1、0、1。 6.2 同步时序逻辑电路的分析 6.2.1 试分析图题6.2.1(a)所示时序电路,画出其状态表和状态图。设电路的初始状态为0,试画出6.2.1(b)所示波形作用下,Q和Z的波形图。

同步时序电路的设计步骤

同步时序电路的设计步骤 同步时序电路的设计步骤 同步时序电路的分析是根据给定的时序逻辑电路,求出能反映该电路功能的状态图。状态图清楚地表明了电路在不同的输入、输出原状态时,在时钟作用下次态状态的变化情况。同步时序电路的设计的设计是分析的反过程,其是根据给定的状态图或通过对设计要求的分析得到的状态图,设计出同步时序电路的过程。 这里主要讨论给定状态图的情况下的同步时序电路的设计,对于具体的要求得到状态图的过程一般是一个较复杂的问题,这是暂不讲。根据已知状态图设计同步时序电路的过程一般分为以下几步: 1.确定触发器的个数。首先根据状态的个数来确定所需要触发器的个数,如给定的状态个数为n,由应满足 n≤2K,K为实现这来状态所需要的触发器的个数。(实际使用时可能给定的状态中存在冗余项,这时一般还须对状态进行化简。) 2.列出状态转移真值表。根据状态列出状态转移真值表,也称状态表、状态转移表。 3.触发器选型。选择合适的触发器,通常可选的触发器有:JK-FF,D-FF,T-FF,一般使用较广的为JK-FF。根据状态图和给出的触发器的型号写出其输入方程,通常在写输入方程时须对其进行化简,以使电路更简单。 4.求出输出方程。根据状态表,求出输出逻辑函数Z的输出方程,还过有些电路没有独立的输出,这一步就省了。 5.画出逻辑图。根据输入方程、输出方程画出逻辑电路图。 6.讨论设计的电路能否自启动。在设计的电路中可能出现一些无关的状态,这些状态能否经过若干个时钟脉冲后进行有效的状态。 同步时序电路设计举例 例按下图状态图设计同步时序电路。 1.根据状态数确定触发器的数目:由状态图可以看出,其每个状态由两个状态,故可用两个触发器。其变量可 用Q 1,Q 表示; 2.根据状态图列出状态表:状态表的自变量为输入变量x和触发器当前状态Q 1 n,Q n,而应变量为触发器的次态 Q 1n+1Q n+1、及输出z,列表时将自变量的所有组合全部列出来,其中当Q 1 n Q n=01的状态为不出现,其输出可看作任意 项处理。

第五章时序逻辑电路

第五章时序逻辑电路

第五章 触发器 本章教学目的、要求: 1. 掌握各种触发器的逻辑功能和工作原理。 2. 熟悉各种触发器的电路结构及动作特点。 3. 了解不同功能触发器之间的相互转换。 重点:触发器的逻辑功能和动作特点。 难点:触发器的不同电路结构及各自的动作特点。 第一节 概 述 触发器:(Flip-Flop)能存储一位二进制信号的基本单元。用FF 表示。 特点: 1.具有两个能自行保持的稳定状态,用来表示逻辑状态的0和1,或二进制数的0和1。 2.根据不同的输入信号可以置成 1 或 0 状态。 根据电路结构不同分为:基本RS 触发器、同步RS 触发器、主从触发器、边沿触发器。 按逻辑功能分:RSFF 、DFF 、JKFF 、TFF 等。 3.根据存储数据的原理不同分为:静态触发器和动态触发器。 第二节 SR 锁存器 一、电路结构与工作原理 1.电路结构和工作原理: 触发器的1状态:0,1='=Q Q 触发器的0状态:1,0='=Q Q ① 当R'D =0, S' D =1时,无论触发器原来处于什么状态,其次态一定为0,即Q =0,Q' =1,称触发器处于置0(复位)状态。 ② 当R'D =1,S'D =0时,无论触发器原来处于什么状态,其次态一定为1,即Q =1,Q'=0, S R 图形符号 Q Q ' D 'S D 'R 置位端 或置1 复位端 或 Q Q ' D 'S D 'R 电路结构

称触发器处于置1(置位)状态。 ③ 当R'D =1,S'D =1时,触发器状态不变,即Q *=Q ,称触发器处于保持(记忆)状态。 ④ 当R'D =0,S'D =0时,两个与非门输出均为1(高电平),此时破坏了触发器的互补输出关系,而且当R'D 、S'D 同时从0变化为1时,由于门的延迟时间不一致,使触发器的次态不确定,即Q *=?,这种情况是不允许的。因此规定输入信号R'D 、S'D 不能同时为0,它们应遵循R'D + S'D =1的约束条件。 从以上分析可见,基本RS 触发器具有置0、置1和保持的逻辑功能,通常称S'D 为置1端或置位(SET)端,R'D 称为置0或复位(RESET)端,因此该触发器又称为置位—复位(SetReset)触发器或R D S D 触发器,其逻辑符号如上图所示。因为它是以R'D 和S'D 为低电平时被清0和置1的,所以称R'D 、S'D 低电平有效,且在图中输入端加有小圆圈。 2.逻辑功能的描述 ①特性表 用与非门构成的基本RSFF 也可用右表描述。 只需将表中的R'D 和S'D 看作是该触发器输入信号 ②特性方程: ③状态转换图:(简称状态图) *='+=D D D D R S Q R S Q R = 0 R = ×S =0S =× R =0 R = 1S = 0 置1 置0 不允许 保持

第5章-时序逻辑电路思考题与习题题解

思考题与习题题解 5-1 填空题 (1)组合逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与电路原来所处的状态无关;时序逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与信号作用前电路原来所处的状态有关。 (2)构成一异步n2进制加法计数器需要 n 个触发器,一般将每个触发器接成计数或T’型触发器。计数脉冲输入端相连,高位触发器的 CP 端与邻低位Q端相连。 (3)一个4位移位寄存器,经过 4 个时钟脉冲CP后,4位串行输入数码全部存入寄存器;再经过 4 个时钟脉冲CP后可串行输出4位数码。 (4)要组成模15计数器,至少需要采用 4 个触发器。 5-2 判断题 (1)异步时序电路的各级触发器类型不同。(×)(2)把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(×)(3)具有 N 个独立的状态,计满 N 个计数脉冲后,状态能进入循环的时序电路,称之模N计数器。(√)(4)计数器的模是指构成计数器的触发器的个数。(×) 5-3 单项选择题 (1)下列电路中,不属于组合逻辑电路的是(D)。 A.编码器 B.译码器 C. 数据选择器 D. 计数器 (2)同步时序电路和异步时序电路比较,其差异在于后者( B )。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 (3)在下列逻辑电路中,不是组合逻辑电路的有( D )。 A.译码器 B.编码器 C.全加器 D.寄存器 (4)某移位寄存器的时钟脉冲频率为100KHz,欲将存放在该寄存器中的数左移8位,完成该操作需要(B)时间。 A.10μS B.80μS C.100μS D.800ms (5)用二进制异步计数器从0做加法,计到十进制数178,则最少需要( C )个触发器。 A.6 B.7 C.8 D.10 (6)某数字钟需要一个分频器将32768Hz的脉冲转换为1HZ的脉冲,欲构成此分频器至少需要(B)个触发器。 A.10 B.15 C.32 D.32768

时序逻辑电路习题解答

5-1 分析图所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。 CLK Z 图 题 5-1图 解:从给定的电路图写出驱动方程为: 0012 10 21()n n n n n D Q Q Q D Q D Q ?=??=?? =?? e 将驱动方程代入D 触发器的特征方程D Q n =+1 ,得到状态方程为: 10012110 12 1()n n n n n n n n Q Q Q Q Q Q Q Q +++?=??=??=??e 由电路图可知,输出方程为 2 n Z Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-1(a )所示,时序图如图题解5-1(b )所示。 题解5-1(a )状态转换图

1 Q 2/Q Z Q 题解5-1(b )时序图 综上分析可知,该电路是一个四进制计数器。 5-2 分析图所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入变量。 Y A 图 题 5-2图 解:首先从电路图写出驱动方程为: () 0110101()n n n n n D AQ D A Q Q A Q Q ?=? ?==+?? 将上式代入触发器的特征方程后得到状态方程 () 1011 10101()n n n n n n n Q AQ Q A Q Q A Q Q ++?=? ?==+?? 电路的输出方程为: 01n n Y AQ Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-2所示

Y A 题解5-2 状态转换图 综上分析可知该电路的逻辑功能为: 当输入为0时,无论电路初态为何,次态均为状态“00”,即均复位; 当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。 5-3 已知同步时序电路如图(a)所示,其输入波形如图 (b)所示。试写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。 X (a) 电路图 1234CLK 5678 X (b)输入波形 图 题 5-3图 解:电路的驱动方程、状态方程和输出方程分别为: 0010110001101101 1, ,n n n n n n n n n n J X K X J XQ K X Q X Q XQ X Q XQ Q XQ XQ XQ Y XQ ++?==??==???=+=?? ?=+=+?= 根据状态方程和输出方程,可分别做出11 10,n n Q Q ++和Y 的卡诺图,如表5-1所示。由此 做出的状态转换图如图题解5-3(a)所示,画出的时序图如图题解5-3(b )所示。

单元15-时序逻辑电路

第十六单元时序逻辑电路 (8学时——第49~56学时) 主要容:时序逻辑电路的分析与设计 教学重点:时序逻辑电路的分析与设计方法 教学难点:时序逻辑电路的设计 教学方法:启发式教学、探究式教学 教学手段:实验、理论、实际应用相结合 第一部分知识点 一、时序电路概述 时序电路的状态及输出是与时间顺序有关的,由组合电路和存储电路(多为触发器)组成,1、特点 任意时刻的输出,不仅与该时刻的输入有关、还与电路原来的状态有关。 2、分类 按逻辑功能分为计数器、寄存器等,按触发器工作分为同步电路和异步电路,按电路输出信号特性分为Mealy型(输出与输入及电路现态有关)和Moore型(输出仅与电路现态有关)电路。 二、时序电路的分析 1、分析步骤 (1)写出电路的时钟方程(各触发器的CP表达式)、输出方程(各输出端表达式)及驱动方程(各触发器的触发信号表达式)。 (2)求出电路的状态方程(各触发器的状态表达式) (3)计算得出电路工作状态表 (4)画状态图及时序图 (5)分析电路功能 2、分析举例 分析时序电路

(1)时钟方程CP0=CP1=CP2=CP 输出方程n n n Q Q Q Y 1 2 = 驱动方程n Q J 2 =、n Q K 2 =,n Q J 1 =、n Q K 1 =,n Q J 1 2 =、n Q K 1 2 =(2)状态方程 将J、K代入JK触发器特征方程n n n Q K Q J Q+ = +1得各触发器状态方程: n n Q Q 2 1 = +、n n Q Q 1 1 = +、n n Q Q 1 1 2 = + (3)计算得到状态表 现态次态输出 n Q 2 n Q 1 n Q 1 2 | n Q+1 1 + n Q1 + n Q Y 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 (4)画状态图及时序图 (5)逻辑功能 这是一个有六个工作状态的同步工作电路,属Moore型电路。 (6)有效态和无效态

第5章 时序逻辑电路思考题与习题题解

思考题与习题题解 5-1填空题 (1)组合逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与电路原来所处的状态无关;时序逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与信号作用前电路原来所处的状态有关。 (2)构成一异步n2进制加法计数器需要 n 个触发器,一般将每个触发器接成计数或T’型触发器。计数脉冲输入端相连,高位触发器的 CP 端与邻低位Q端相连。 (3)一个4位移位寄存器,经过 4 个时钟脉冲CP后,4位串行输入数码全部存入寄存器;再经过 4 个时钟脉冲CP后可串行输出4位数码。 (4)要组成模15计数器,至少需要采用 4 个触发器。 5-2 判断题 (1)异步时序电路的各级触发器类型不同。(×)(2)把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(×)(3)具有 N 个独立的状态,计满 N 个计数脉冲后,状态能进入循环的时序电路,称之模N计数器。(√)(4)计数器的模是指构成计数器的触发器的个数。(×) 5-3 单项选择题 (1)下列电路中,不属于组合逻辑电路的是(D)。 A.编码器 B.译码器 C. 数据选择器 D. 计数器 (2)同步时序电路和异步时序电路比较,其差异在于后者( B )。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 (3)在下列逻辑电路中,不是组合逻辑电路的有( D )。 A.译码器 B.编码器 C.全加器 D.寄存器 (4)某移位寄存器的时钟脉冲频率为100KHz,欲将存放在该寄存器中的数左移8位,完成该操作需要(B)时间。 A.10μS B.80μS C.100μS D.800ms (5)用二进制异步计数器从0做加法,计到十进制数178,则最少需要( C )个触发器。 A.6 B.7 C.8 D.10 (6)某数字钟需要一个分频器将32768Hz的脉冲转换为1HZ的脉冲,欲构成此分频器至少需要(B)个触发器。 A.10 B.15 C.32 D.32768 (7)一位8421BCD码计数器至少需要(B)个触发器。 A.3 B.4 C.5 D.10

时序逻辑电路的设计方法

5.2 时序逻辑电路的设计方法 本次重点内容: 1、同步时序逻辑电路的设计方法。 2、异步时序逻辑电路的设计方法。 教学过程 5.2.1 同步时序逻辑电路的设计 一、同步时序逻辑电路的设计方法 设计关键:根据设计要求→确定状态转换的规律→求出各触发器的驱动方程。 设计步骤:(先简单介绍,通过以下的举例后,再进行总结,特别再点出设计关键)1.根据设计要求,设定状态,确定触发器数目和类型。画出状态转换图。 2.状态化简 前提:保证满足逻辑功能要求。 方法:将等价状态(多余的重复状态)合并为一个状态。 3.状态分配,列出状态转换编码表 通常采用自然二进制数进行编码。N为电路的状态数。 每个触发器表示一位二进制数,因此,触发器的数目n可按下式确定 2n≥N>2n–1 4.画状态转换卡诺图,求出状态方程、输出方程 选择触发器的类型(一般可选JKF/F或DF/F,由于JK触发器使用比较灵活,因此,在设计中多选用JK触发器。)将状态方程和触发器的特性方程进行比较→驱动方程。 5.根据驱动方程和输出方程画逻辑图。 6.检查电路有无自启动能力。 如设计的电路存在无效状态时,应检查电路进入无效状态后,能否在时钟脉冲作用下自动返回有效状态工作。如能回到有效状态,则电路有自启动能力;如不能,则需修改设计,使电路具有自启动能力。 二、同步时序逻辑电路的设计举例 [例1] 试设计一个同步七进制加法计数器。

解:设计步骤 (1)根据设计要求,设定状态,画状态转换图。 七进制→7个状态→用S0,S1,…,S6表示 状态转换图如下所示: (2)状态化简。 本例中7个状态都是有效状态。 (3)状态分配,列状态转换编码表。 根据式2n≥N>2n–1,→ N=7,n=3,即采用三个触发器。 选用三位自然二进制加法计数编码→列出状态转换编码表。 (4)选择触发器的类型,求出状态方程,驱动方程和输出方程。根据状态转换编码表→得到各触发器次态和输出函数的卡诺图。得 输出方程为: Y= Q2n Q1n

(完整版)时序逻辑电路习题与答案

第12章时序逻辑电路 自测题 一、填空题 1.时序逻辑电路按状态转换情况可分为时序电路和时序电路两大类。 2.按计数进制的不同,可将计数器分为、和N进制计数器等类型。 3.用来累计和寄存输入脉冲个数的电路称为。 4.时序逻辑电路在结构方面的特点是:由具有控制作用的电路和具记忆作用电路组成。、 5.、寄存器的作用是用于、、数码指令等信息。 6.按计数过程中数值的增减来分,可将计数器分为为、和三种。 二、选择题 1.如题图12.1所示电路为某寄存器的一位,该寄存器为 。 A、单拍接收数码寄存器; B、双拍接收数码寄存器; C、单向移位寄存器; D、双向移位寄存器。 2.下列电路不属于时序逻辑电路的是。 A、数码寄存器; B、编码器; C、触发器; D、可逆计数器。 3.下列逻辑电路不具有记忆功能的是。 A、译码器; B、RS触发器; C、寄存器; D、计数器。 4.时序逻辑电路特点中,下列叙述正确的是。 A、电路任一时刻的输出只与当时输入信号有关; B、电路任一时刻的输出只与电路原来状态有关; C、电路任一时刻的输出与输入信号和电路原来状态均有关; D、电路任一时刻的输出与输入信号和电路原来状态均无关。 5.具有记忆功能的逻辑电路是。 A、加法器; B、显示器; C、译码器; D、计数器。 6.数码寄存器采用的输入输出方式为。 A、并行输入、并行输出; B、串行输入、串行输出; C、并行输入、串行输出; D、并行输出、串行输入。 三、判断下面说法是否正确,用“√"或“×"表示在括号 1.寄存器具有存储数码和信号的功能。( ) 2.构成计数电路的器件必须有记忆能力。( ) 3.移位寄存器只能串行输出。( ) 4.移位寄存器就是数码寄存器,它们没有区别。( ) 5.同步时序电路的工作速度高于异步时序电路。( ) 6.移位寄存器有接收、暂存、清除和数码移位等作用。() 思考与练习题 12.1.1 时序逻辑电路的特点是什么? 12.1.2 时序逻辑电路与组合电路有何区别? 12.3.1 在图12.1电路作用下,数码寄存器的原始状态Q3Q2Q1Q0=1001,而输入数码

Moore型同步时序逻辑电路的设计与分析

实验九Moore型同步时序逻辑电路的分析与设计 22920132203686 薛清文周2下午实验 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.D,JK触发器的特性机器检测方法。 2.掌握时序逻辑电路的测试方法。 3.了解时序电路自启动设计方法。 4.了解同步时序电路状态编码对电路优化作用。 二.实验原理: 二、 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

《时序逻辑电路》练习题及答案

《时序逻辑电路》练习题及答案 [6.1] 分析图P6-1时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 图P6-1 [解] 驱动方程:311Q K J ==, 状态方程:n n n n n n n Q Q Q Q Q Q Q 13131311⊕=+=+; 122Q K J ==, n n n n n n n Q Q Q Q Q Q Q 12212112 ⊕=+=+; 33213Q K Q Q J ==,, n n n n Q Q Q Q 12313 =+; 输出方程:3Q Y = 由状态方程可得状态转换表,如表6-1所示;由状态转换表可得状态转换图,如图A6-1所示。电路可以自启动。 表6-1 n n n Q Q Q 123 Y Q Q Q n n n 111213+++ n n n Q Q Q 123 Y Q Q Q n n n 1112 13+++ 0 00 00 1 010 01 1 0010 0100 0110 1000 100 10 1 110 11 1 000 1 011 1 010 1 001 1 图A6-1 电路的逻辑功能:是一个五进制计数器,计数顺序是从0到4循环。 [6.2] 试分析图P6-2时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入逻辑变量。

图P6-2 [解] 驱动方程:21 Q A D =, 21 2Q Q A D = 状态方程:n n Q A Q 21 1 =+, )(122112n n n n n Q Q A Q Q A Q +==+ 输出方程:21Q Q A Y = 表6-2 由状态方程可得状态转换表,如表6-2所示;由状态转换表 可得状态转换图,如图A6-2所示。 电路的逻辑功能是:判断A 是否连续输入四个和四个以上“1” 信号,是则Y=1,否则Y=0。 图A6-2 [6.3] 试分析图P6-3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,检查电路能否自启动。 图P6-3 [解] 321Q Q J =,11=K ; 12Q J =,312Q Q K =; 23213Q K Q Q J ==, =+11n Q 32Q Q ·1Q ; 211 2 Q Q Q n =++231Q Q Q ; 3232113Q Q Q Q Q Q n +=+ Y = 32Q Q 电路的状态转换图如图A6-3所示,电路能够自启动。 图A6-3 [6.4] 分析图P6-4给出的时序电路,画出电路的状态转换图,检查电路能否自启动,说明电路实现的功能。A 为输入变量。 n n Q AQ 12 Y Q Q n n 1 112++ 000 00 1 010 01 1 100 11 1 110 10 1 010 100 110 00 1 11 1 100 010 000

第5章--时序逻辑电路习题解答

5-1 分析图5.77所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。 CLK Z 图5.77 题 5-1图 解:从给定的电路图写出驱动方程为: 0012 10 21()n n n n n D Q Q Q D Q D Q ?=??=?? =?? e 将驱动方程代入D 触发器的特征方程D Q n =+1 ,得到状态方程为: 10012110 12 1()n n n n n n n n Q Q Q Q Q Q Q Q +++?=??=??=??e 由电路图可知,输出方程为 2 n Z Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-1(a )所示,时序图如图题解5-1(b )所示。 题解5-1(a )状态转换图

1 Q 2/Q Z Q 题解5-1(b )时序图 综上分析可知,该电路是一个四进制计数器。 5-2 分析图5.78所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入变量。 Y A 图5.78 题 5-2图 解:首先从电路图写出驱动方程为: () 0110101()n n n n n D AQ D A Q Q A Q Q ?=? ?==+?? 将上式代入触发器的特征方程后得到状态方程 () 1011 10101()n n n n n n n Q AQ Q A Q Q A Q Q ++?=? ?==+?? 电路的输出方程为: 01n n Y AQ Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-2所示

Y A 题解5-2 状态转换图 综上分析可知该电路的逻辑功能为: 当输入为0时,无论电路初态为何,次态均为状态“00”,即均复位; 当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。 5-3 已知同步时序电路如图5.79(a)所示,其输入波形如图5.79 (b)所示。试写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。 X (a) 电路图 1234CLK 5678 X (b)输入波形 图5.79 题 5-3图 解:电路的驱动方程、状态方程和输出方程分别为: 0010110001101101 1, ,n n n n n n n n n n J X K X J XQ K X Q X Q XQ X Q XQ Q XQ XQ XQ Y XQ ++?==??==???=+=?? ?=+=+?= 根据状态方程和输出方程,可分别做出11 10,n n Q Q ++和Y 的卡诺图,如表5-1所示。由此 做出的状态转换图如图题解5-3(a)所示,画出的时序图如图题解5-3(b )所示。

最新数字电路第六章时序逻辑电路练习题CAO

第六章时序逻辑电路复习练习题 一、填空题: 1.构造一个模6计数器需要个状态,个触发器。构成一个1位十进制同步加法计数器至少需要()个JK触发器,一个1位5进制同步加法计数器至少需要()个JK触发器。 2.若要构成七进制计数器,最少用_________个触发器,它有______个无效状态。 3.构成一异步n2进制加法计数器需要 n 个触发器,一般将每个触发器接成计数或T’型触发器。计数脉冲输入端相连,高位触发器的 CP 端与邻低位Q端相连。 4. 一个4位移位寄存器,经过 4 个时钟脉冲CP后,4位串行输入数码全部存入寄存器;再经过 4 个时钟脉冲CP后可串行输出4位数码。 5. 要组成模15计数器,至少需要采用 4 个触发器。 6.按计数器中各触发器翻转时间可分为_同步计数器_,异步计数器_。 7. 74LS161是_a_(a.同步b.异步)二进制计数器。它具有_清除_,_置数__,_保持_和计数等四种功能。 8. 74LS290是__b__(a.同步b.异步)非二进制计数器。 9.在计数过程中,利用反馈提供置数信号,使计数器将指定数置入,并由此状态继续计数,可构成N进制计数器,该方法有_同步_置数和_异步置数两种。 10.将模为M和N的两片计数器a_(a.串接b.并接),可扩展成__M*N__进制的计数器。 二、选择题: 1、一个计数器的状态变化为:000 001 010 011 100 000,则该计数器是( 2 )进制(3 )法计数器。 (1)4 (2)5 (3)加(4)减 2、用n个触发器构成计数器,可得到的最大计数长度为( A ) A. 2n B.2n C.2n D.n 3、一块7490十进制计数器中,它含有的触发器个数是( A ) A. 4 B. 2 C. 1 D. 6 4.一位8421BCD码计数器至少需要(B)个触发器。 A.3 B.4 C.5 D.10 5、利用中规模集成计数器构成任意进制计数器的方法有( ABC ) A.复位法 B.预置数法 C.级联复位法 三.判断题 (1)异步时序电路的各级触发器类型不同。(×)(2)把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(×)(3)具有 N 个独立的状态,计满 N 个计数脉冲后,状态能进入循环的时序电路,称之模N计数器。(√) (4)计数器的模是指构成计数器的触发器的个数。(×)1、二进制加法计数器从0计数到十进制24时,需要5个触发器构成,有7个

实验二 时序逻辑电路的设计[1]

实验二 时序逻辑电路的设计 一、实验目的: 1、 掌握时序逻辑电路的分析方法。 2、 掌握VHDL 设计常用时序逻辑电路的方法。 3、 掌握时序逻辑电路的测试方法。 4、 掌握层次电路设计方法。 5、 理解时序逻辑电路的特点。 二、实验的硬件要求: 1、 EDA/SOPC 实验箱。 2、 计算机。 三、实验原理 1、时序逻辑电路的定义 数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。 2、同步时序逻辑电路的设计方法 同步时序逻辑电路的设计是分析的逆过程,其任务是根据实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。同步时序电路的设计过程: (1)根据给定的逻辑功能建立原始状态图和原始状态表。 ①明确电路的输入条件和相应的输出要求,分别确定输入变量和输出变量的数目和符号; ②找出所有可能的状态和状态转换之间的关系; ③根据原始状态图建立原始状态表; (2)状态化简---求出最简状态图。 合并等价状态,消去多余状态的过程称为状态化简。 等价状态:在相同的输入下有相同的输出,并转换到同一个次态去的两个状态称为等价状态。 (3)状态编码(状态分配)。 给每个状态赋以二进制代码的过程。 根据状态数确定触发器的个数,n n M 221-≤∠(M 为状态数;n 为触发器的个数)。 (4)选择触发器的类型。 (5)求出电路的激励方程和输出方程。 (6)画出逻辑图并检查自启动能力。 3、时序逻辑电路的特点及设计时的注意事项 ①时序逻辑电路与组合逻辑电路相比,输出会延时一个时钟周期。 ②时序逻辑电路一般容易消除“毛刺”。 ③用VHDL 描述时序逻辑电路时,一般只需将时钟信号和异步控制(如异步复位)信号作为敏感信号。

相关主题
文本预览
相关文档 最新文档