当前位置:文档之家› TiO薄膜的半导体和气敏特性

TiO薄膜的半导体和气敏特性

TiO薄膜的半导体和气敏特性
TiO薄膜的半导体和气敏特性

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu 2 O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的Ⅲ A 族至Ⅶ A 族分布着11种具有半导性的元素,下表的黑框中 即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。 -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I 化合物,其中CuBr、CuI ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体薄膜材料分析

半導體薄膜材料分析 李文鴻 化學工程系 黎明技術學院 摘要 使用電子迴旋共振電漿化學氣相沉積法(electron cyclotron resonance plasma chemical vapor deposition, ECRCVD)以CH4/SiH4/Ar混合氣體於低溫下成長碳化矽薄膜為例,藉由穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、傅立葉轉換紅外線光譜儀(FTIR)、X射線光電子能譜儀(XPS; ESCA)、歐傑電子能譜儀(AES)、拉塞福背向散射儀(RBS)、低能量電子繞射(LEED)、反射式高能量電子繞射(RHEED)、拉曼光譜儀(Raman)來研究碳化矽薄膜的微結構、表面型態及化學組成與沉積參數之間的關係,藉由二次離子質譜儀(SIMS)來研究沉積膜的雜質濃度分佈,利用光子激發光(PL)來量測發光波長範圍。 關鍵字:材料分析、電子迴旋共振電漿化學氣相沉積法、碳化矽薄膜 一、前言光電半導體產業的發展非常迅速,其中

積體電路製程技術的發展朝向尺寸微小化,目前已邁入0.13μm以下製程及邁向奈米的範疇,並朝多層薄膜的趨勢。然而新材料和製程的開發及其分析更是必須掌握的。本文將以跨世紀的接班材料-碳化矽(silicon carbide)為例,介紹材料之薄膜成長及其分析。 碳化矽為具有許多優異特性的電子材料,如寬能隙、高電子遷移率、高飽和飄移速度、高崩潰電壓、高操作溫度、高熱傳導度、化學惰性、高融點及高硬度【1】,並具耐熱震(thermal shock resistance)、抗高溫氧化、比矽低的介電常數等優點。由Johnson 之優值指標(評估元件在高功率及高頻下運作的指標)碳化矽(β-SiC)為矽之1137.8倍,及Keyes 之優值指標(評估元件在高速下運作的指標) 碳化矽(β-SiC)為矽之5.8倍【2】,故碳化矽元件能在高功率、高頻及高速下操作的特性,在光電元件的製造上,具極大之應用價值,且可用於微機電系統(microelectromechanical system;MEMS)元件之薄膜【3】、封裝材料及濾材之分離膜等【4】。在商業應用發展方面,Cree Research、日本三洋公司及信越半導體等的碳化矽藍光LED已商品化,Motorola將碳化矽應用於RF 及微波的高頻高功率元件,General Electric 應用於高功率及高溫元件之感測器,Westinghouse 應用於高頻MESFET元件等。可見碳化矽具多用途且具發展潛力,因此被諭為跨世紀的接班材料。 由於材料之製程會影響材料結構及性質進而影響其應用,因此本文將介紹碳化矽材

型半导体材料的设计与性能分析

景德镇陶瓷学院 半导体课程设计报告 设计题目n型半导体材料的设计与性能分析专业班级 姓名 学号 指导教师 完成时间

一﹑杂质半导体的应用背景 半导体中的杂质对电离率的影响非常大,本征半导体经过掺杂就形成杂质半导体,半导体中掺杂微量杂质时,杂质原子的附近的周期势场的干扰并形成附加的束缚状态,在禁带只能够产生的杂质能级。能提供电子载流子的杂质称为施主杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。 一、N型半导体在本征半导提硅(或锗)中掺入微量的5价元素,例如磷,则磷原子就取代了硅晶体中少量的硅原子,占据晶格上的某些位置。 磷原子最外层有5个价电子,其中4个价电子分别与邻近4个硅原子形成共价键结构,多余的1个价电子在共价键之外,只受到磷原子对它微弱的束缚,因此在室温下,即可获得挣脱束缚所需要的能量而成为自由电子,游离于晶格之间。失去电子的磷原子则成为不能移动的正离子。磷原子由于可以释放1个电子而被称为施主原子,又称施主杂质。 在本征半导体中每掺入1个磷原子就可产生1个自由电子,而本征激发产生的空穴的数目不变。这样,在掺入磷的半导体中,自由电子的数目就远远超过了空穴数目,成为多数载流子(简称多子),空穴则为少数载流子(简称少子)。显然,参与导电的主要是电子,故这种半导体称为电子型半导体,简称N型半导体。 二、P型半导体在本征半导体硅(或锗)中,若掺入微量的3价元素,如硼,这时硼原子就取代了晶体中的少量硅原子,占 据晶格上的某些位置。硼原子的3个价电子分别与其邻近的3个硅原子中的3个价电子组成完整的共价键,而与其相邻的另1个硅原子的共价键中则缺少1个电子,出现了1个空穴。这个空穴被附近硅原子中的价电子来填充后,使3价的硼

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

半导体材料的特性参数和要求

半导体材料的特性参数和要求有哪些? 半导体材料-特性参数 LED灯泡半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。 常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。 禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。 电阻率、载流子迁移率反映材料的导电能力。 非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。 位错是晶体中最常见的一类晶体缺陷。 位错密度可以用来衡量半导体单晶材料晶格完整性的程度。当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。 半导体材料-特性要求 LED灯泡半导体材料的特性参数对于材料应用甚为重要。因为不同的特性决定不同的用途。 晶体管对材料特性的要求:根据晶体管的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。用载流子迁移率大的材料制成的晶体管可以工作于更高的频率(有较好的频率响应)。晶体缺陷会影响晶体管的特性甚至使其失效。晶体管的工作温度高温限决定于禁带宽度的大小。禁带宽度越大,晶体管正常工作的高温限也越高。 光电器件对材料特性的要求:利用半导体的光电导(光照后增加的电导)性能的辐射探测器所适用的辐射频率范围与材料的禁带宽度有关。材料的非平衡载流子寿命越大,则探测器的灵敏度越高,而从光作用于探测器到产生响应所需的时间(即探测器的弛豫时间)也越长。因此,高的灵敏度和短的弛豫时间二者难于兼顾。对于太阳电池来说,为了得到高的转

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

分子束外延技术(MBE)的原理及其制备先进材料的研究进展

分子束外延技术(MBE)的原理 及其制备先进材料的研究进展 XX (XXXX大学材料学院,西安710000) 摘要:分子束外延(MBE)是50年代用真空蒸发技术制备半导体薄膜材料发展而来的,是为了满足在电子器件工艺中越来越高的要求.MBE是一个动力学过程,而不是一个热力学过程.与其它外延薄膜生长技术相比,MBE具有许多特点,如生长速率低、衬底温度较低等.在超薄层材料外延生长技术方面,MBE的问世使原子、分子数量级厚度的外延生长得以实现,开拓了能带工程这一新的半导体领域.半导体材料科学的发展对于半导体物理学和信息科学起着积极的推动作用.MBE是制备新型器件较为有用的方法,但是有其缺点.未来的发展趋势是结合其他生长技术不断改进MBE,如MBE与VPE并用、气态源分子束外延(GSMBE)、激光分子束外延(LaserMBE)等. 关键词:分子束外延;薄膜;生长技术;半导体 The principle of Molecular Beam Epitaxy (MBE) and the research progress in the preparation of advanced materials XX (Department of Materials,XXX,Xian 710000) Abstract:Molecular Beam Epitaxywas developed forthe preparation of semiconductor thin film materials by vacuumevaporationtechnique in the 50's,which aims to meet the requirements ofthe electronic devices in the process of higher and higher.MBE is a dynamic process, not a thermodynamic process.MBE has many characteristics whencomparing with other epitaxial thin film growth techniques , such as low growth rate, low substrate temperature and so on.The advent of MBE letthe thicknessof order of magnitudeof atomic, molecular of epitaxial growth be achieved in ultrathin layer epitaxial growth technique, that has opened upBand Engineering,anew field of semiconductors.The development of semiconductor materials science plays an active role in the development of semiconductor physics and information science.MBE is a more useful way to prepare new devices, but there areshortcomings.In the future,the development trend is to continuous improving MBE with the combination of other growth techniques,such as combining MBE with VPE,Gas Source Molecular Beam Epitaxy,Laser Molecular Beam Epitaxy etc. Key words:Molecular Beam Epitaxy;thin film;growth techniques;semiconductor

薄膜材料与薄膜技术复习资料

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空 105~102Pa 粘滞流,分子间碰撞为主低真空 102~10-1 Pa 过渡流高真空 102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空 10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空 10-8 Pa 以下

半导体的光学性质

半导体的光学性质 如果用适当波长的光照射半导体,那么电子在吸收了光子后将由价带跃迁到导带,而在 价带上留下一个空穴,这种现象称为光吸收。半导体材料吸收光子能量转换成电能是光电器件的工作基础。光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: I。1 式中,I x表示距离表面x远处的光强;I 0为入射光强;r为材料表面的反射率;为材料吸收系数,与材料、入射光波长等因素有关。 1本征吸收 半导体吸收光子的能量使价带中的电子激发到导带,在价带中留下空穴,产生等量的电 子与空穴,这种吸收过程叫本征吸收。 要发生本征光吸收必须满足能量守恒定律,也就是被吸收光子的能量要大于禁带宽度 E g,即h E g,从而有: 0 E g ;. h 0 he E g 1.24 m eV E g 其中h是普朗克常量,v是光的频率.c是光速,V):材料的频率阈值,Z0 :材料的波长阈值,下表列出了常见半导体材料的波长阀值。 几种重要半导体材料的波长阈值

电子被光激发到导带而在价带中留下一个空穴,这种状态是不稳定的,由此产生的电子、 空穴称为非平衡载流子。隔了一定时间后,电子将会从导带跃迁回价带,同时发射出一个光子,光子的能量也由上式决定,这种现象称为光发射。光发射现象有许多的应用,如半导体发光管、半导体激光器都是利用光发射原理制成的,只不过其中非平衡载流子不是由光激发 产生,而是由电注入产生的。发光管、激光器发射光的波长主要由所用材料的禁带宽度决定,如半导体红色发光管是由GaP晶体制成,而光纤通讯用的长波长( 1.5呵)激光器则是由 Ga x ln i-x As 或Ga x ln i-x As y P i-y 合金制成的。 2非本征吸收 非本征吸收包括杂质吸收、自由载流子吸收、激子吸收和晶格吸收等。 2.1杂质吸收 杂质能级上的电子(或空穴)吸收光子能量从杂质能级跃迁到导带(空穴跃迁到价带) 这种吸收称为杂质吸收。杂质吸收的波长阈值多在红外区或远红外区。 2.2自由载流子吸收 导带内的电子或价带内的空穴也能吸收光子能量,使它在本能带内由低能级迁移到高能 级,这种吸收称为自由载流子吸收,表现为红外吸收。 2.3 激子吸收 价带中的电子吸收小于禁带宽度的光子能量也能离开价带,但因能量不够还不能跃迁到导带成为自由电子。这时,电子实际还与空穴保持着库仑力的相互作用,形成一个电中性系统,称为激子。能产生激子的光吸收称为激子吸收。这种吸收的光谱多密集与本征吸收波长阈值的红外一侧。

薄膜物理学 课程教学大纲

薄膜物理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:薄膜物理与技术 所属专业:电子器件与材料工程 课程性质:必修课 学分:3 (二)课程简介、目标与任务; 本课程讲授薄膜的形成机制和原理、薄膜结构和缺陷、薄膜各项物理性能和分析方法等物理内容;讲授薄膜各种制备技术。通过本课程学习,使学生具备从事电子薄膜、光学薄膜、以及各种功能薄膜研究与开发的能力 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 《量子力学》、《热力学与统计物理》、《固体物理》、《电子技术》、《电路分析》等。 (四)教材与主要参考书。 教材:杨邦朝,王文生. 《薄膜物理与技术》,成都:电子科技大学出版社,1994 主要参考书:1.陈国平.《薄膜物理与技术》,东南大学出版社,1993 2.田民波,薄膜技术与薄膜材料,清华大学出版社,2006-8 二、课程内容与安排 本课程全部为课堂讲授。重点:真空的获得和真空测量的工作原理;物理气相沉积和化学气相沉积的原理及方法;薄膜生长的机理。 难点:磁控溅射的机理及控制;MOCVD技术;薄膜形成过程的机理 (一)绪论2学时 1、薄膜的概念和历史 2、薄膜材料与薄膜技术的发展 3、薄膜科学是边缘交叉学科 4、薄膜产业是腾飞的高科技产业

(二)真空技术基础2学时 1、真空的基本知识 2、真空的获得 3、真空的测量 (三)真空蒸发镀膜4学时 1、真空蒸发原理 2、蒸发源的蒸发特性及膜厚分布 3、蒸发源的类型 4、合金及化合物的蒸发 5、膜厚和淀积速率的测量与控制 (四)溅射镀膜4学时 1、溅射镀膜的特点 2、溅射的基本原理 3、溅射镀膜类型 4、溅射镀膜的厚度均匀性 (五)离子镀膜2学时 1、离子镀原理 2、离子镀的特点 3、离子轰击的作用 4、离子镀的类型 (六)化学气相沉积镀膜4学时 1、化学气相沉积的基本原理 2、化学气相沉积的特点 3、化学气相沉积方法简介 4、低压化学气相沉积 5、等离子体化学气相沉积 6、其他化学气相沉积 (七)溶液镀膜法2学时 1、化学反应沉积 2、阳极氧化法

半导体纳米材料的的光学性能

半导体纳米材料的的光学性能 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子,空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 由于量子尺寸效应导致能隙增大,半导体纳米材料的吸收光谱向高能方向移动,即吸收蓝移。同时,由于电子和空穴的运动受限,他们之间的波函数重叠增大,激子态振子强度增大,导致激子吸收增强,因此很容易观察到激子吸收峰,导致吸收光谱结构化. 通常通过吸收光谱来研究半导体纳米微粒的量子尺寸效应和激子能级结构,近年来,研究较多的有[14~20]:Ⅲ-Ⅴ族半导体GaAs、InSb和GaP;Ⅱ-Ⅵ族半导体ZnS、CdS、CdSe和CdTe;Ⅰ-Ⅶ族半导体Cu-Cl、CuBr和CuI;PbS、PbI和间接带隙半导体材料Ag-Br;过渡金属氧化物Fe2O3、Cu2O、ZnO和非过渡金属氧化物SnO2、In2O3、Bi2O3等。余保龙等人[21]研究发现,SnO2纳米微粒用表面活性剂分子包覆时,由于表面的介电限域效应其吸收带边发生红移,而且随着表面包覆物与SnO2的介电常数差值增大和包覆物的浓度增大,其红移量增大。

半导体纳米微粒受光激发后产生电子-空穴对(即激子),电子与空穴复合的途径有 (1)电子和空穴直接复合,产生激子态发光。由于量子尺寸效应的作用,发射波长随着微粒尺寸的减小向高能方向移动(蓝移)。 (2)通过表面缺陷态间接复合发光[9,22]。在纳米微粒的表面存在着许多悬挂键、吸附类等,从而形成许多表面缺陷态。微粒受光激发后,光生载流子以极快的速度受限于表面缺陷态,产生表面态发光。微粒表面越完好,表面对载流子的陷获能力越弱,表面态发光就越弱。 (3)通过杂质能级复合发光。 对半导体纳米材料的研究开辟了人类认识世界的新层次,也开辟了材料科学研究的新领域。总的看来,半导体纳米材料的光学性能研究已取得了很大进展,人们已建立起了半导体纳米微粒中电子能态的理论模型,在材料的线性和非线性光学性能方面都开展了大量的工作,获得了很多有重要意义的成果。但是还有许多问题需要进一步深入研究,例如半导体纳米材料激子能级的理论结果与实验数据之间仍有差距,间接带隙半导体纳米材料的发光机理还有待研究,非线性光学性能的实验工作所涉及纳米材料的范围不够广,掺杂半导体纳米体系中杂质离子与基质间的相互作用还有许多新的物理内容需要揭示和探索等等。随着研究的进一步深入,一些与传统材料物理不同的新现象、新概念还会不断

第六章 新型半导体薄膜材料

第六章
新型半导体薄膜材料
本章主要介绍硅基非晶半导体薄膜材料的结 构特点、制备方法、光学和电学特性以及这 些材料的研究现状。同时还将介绍微晶Si薄 膜和多晶Si薄膜的结构特点、制备方法及其 应用。在应用方面,将重点介绍高效率、长 寿命、低价格、大面积非晶硅(a-Si:H)太 阳能电池的工作原理及发展现状。

概 述
? 新型半导体薄膜材料的研究与发展,主要 是以研究和发展非晶态半导体薄膜材料制 备与器件应用最为活跃,已成为材料学科 的一个重要组成部分 ? 随着非晶态半导体在科学和技术上的飞速 发展,它已在高新技术领域中得到广泛应 用,并正在形成一类新兴产业。

例如,用高效、大面积非晶硅(a-Si:H)薄 膜太阳电池制作的发电站已并网发电(它是 无任何污染的绿色电源);用a-Si薄膜晶体 管制成的大屏幕液晶显示器和平面显像电视 机已作为商品出售;非晶硅电致发光器件和 高记录速度大容量光盘等。也正在向实际应 用和商业化方向发展。 大量事实说明,研究非晶态半导体薄膜材料 的意义不仅在于技术上能够产生新材料、新 器件和新工艺,而且对于认识固体理论中的 许多基本问题也会产生深远的影响。

硅基非晶态半导体薄膜
“非晶”固体或“无定形”(Amorphous)固 体是一种不具有晶体结构的固体。通常“非晶” 或“无定形”是同义词。但是,严格说来,所 谓“非晶”就是指那些不结晶的物质。液体等 也包括在内。所谓“无定形”是指“玻璃态”的 物质。“玻璃”这一术语多半是指将熔化状态 的物质通过冷急法冻结成的固体。

薄膜制备新技术及应用

河南工业职业技术学院Henan Polytechnic Institute 毕业设计 题目薄膜制备新技术及应用 系别光电工程系 专业 班级 姓名 学号 指导教师 日期 2011.10

目录 目录 (2) 1 真空蒸发沉积 (3) 2溅射沉积 (4) 3 分子束外延 (5) 4 脉冲激光沉积 (5) 5 化学气相沉积 (7) 5.1 金属有机化合物化学气相沉积 (7) 5.2 等离子体增强化学气相沉积 (8) 6 溶胶2凝胶工艺 (8) 7 结束语 (9)

1 真空蒸发沉积 真空蒸发沉积是制备光学薄膜最常用的方法 ,目前也被广泛地用作制备光 电薄膜。它的基本原理是把被蒸发材料加热到蒸发温度 ,使之蒸发沉积到衬底上形成所需要的膜层。早期做法是用电阻加热法 (R 法) 来制备金属膜或介质膜 ,常用的不外乎 ZnS ,MgF2 ,Na3AlF6 等极有限的几种材料 ,由于其机械性能较 差 ,不耐磨、抗激光损伤强度低 ,所以严重地限制了它的使用 ,更无法满足激光器件 (如耐磨擦、抗高功率等) 的要求。 为适应激光的发展而产生的电子束蒸发法(EB法) 开创了蒸发镀膜的新领 域 ,即用其来蒸发氧化物材料即得所谓的“硬膜”。由于氧化物材料 , 如ZrO2 ,TiO2 ,Ta2O5 ,SiO2 等熔点高又耐磨 ,所以得到的膜层与用热蒸发镀制的“软膜”相比 ,其化学性能和物理性能都要稳定得多。上蒸镀时 ,是用电子束的动能将其熔化 ,被蒸发的气体分子又获得了一定的动能 ,所以膜的致 密度、粘附力均得到提高 ,抗激光破坏的阈值也得到改善。但是采用上述蒸发镀膜所获得的薄膜一般呈柱状结构 ,还不够十分致密 ,所以膜层很容易吸附大气中诸如水蒸汽、H2 和 O2等 ,这将导致薄膜性能发生改变。 除了上述传统的热蒸发沉积及电子束蒸发以外 ,日本京都大学教Takag等于 1972 年发明了离化团簇束沉积 ( ICBD 技术 ,ICBD 是一种非平衡条件)下 的真空蒸发与离子束相结合的薄膜沉积技术 ,是一种可在室温条件下获得高质 量薄膜甚至单晶膜的沉积方法。ICB 膜生长有以下 3 个主要特点:①离化原子团的荷质比小 ,能在低能量获得高的沉积速率 ; ②容易控制离化原子团的能量和离子含量 ,在低温衬底上容易获得附着力强的薄膜 ; ③离化原子团和衬底碰撞时 ,增加了原子的迁移率 ,改善了膜的结晶状态。 20 多年来 , Katagi 等就 ICB 机制包括原子团的形成、原子团的尺寸、强度和离化条件及其薄膜生长机理进行了广泛的研究。ICB 技术已被用于制备各种功能薄膜 , 其中包括半导体、金属、介质、光学涂层、光电材料、热电材料、磁性材料及有机材料等。除日本、美国外 ,俄国和韩国等学者也开展了ICB 方法的研究。在国内 ,北京大学、南京大学、复旦大学、武汉大学和一些科研院所也已掌握了 ICB技术 ,开展多种薄膜材料的研究工作。例如 , Yamada等在 Si (111) 和 Si (100) 衬底上用 ICB 外延方法制备了 400 nm 的

半导体薄膜技术与物理复习

第一章真空技术 1、真空的定义:真空是指在给定的空间内压力低于一个大气压的稀薄气体状态。 2、真空度:通常用压强为单位来描述“真空”状态下的气体稀薄程度——真空度。(压强高则真空度低,压强低则真空度高) 3、真空度单位: 毫米汞柱(mmHg)托(Torr)帕斯卡(Pa)巴(bar) 单位之间的换算:1 Pa =1 牛顿/米2=1 千克/米*秒2=10 达因/cm2=0.0075 Torr 4、真空不同分区的特点:在气压高于10 Torr 的真空范围区域,气体性质和常压,气流特性也以分子间的碰撞为主;当压力渐渐减小,分子密度降低,平均自由程增加,分子间的碰撞开始减少;当达到高真空区域,真空特性以气体分子和真空器壁的碰撞为主;在超高真空区,气体分子在空间活动减少,而以在固体表面上吸附停留为主。 5、常用的真空泵:机械运动——机械泵、涡轮分子泵 蒸气流喷射——扩散泵 化学吸附——吸气剂泵:升华泵 吸气剂离子泵:溅射离子泵 6、一般机械泵的极限真空度为0.1Pa, 可以在大气中与大气相连工作。 7、扩散泵使用注意事项: A.扩散泵不能单独工作,一定要用机械泵作为前级泵,并使系统抽到0.1Pa 量级时才能启动扩散泵。

B.泵体要竖直,按规定量加油和选用加热电炉功率。 C.牢记先通冷却水,后加热。结束时则应先停止加热,冷却一段时间后才能关闭。 8、常用真空计:热电偶真空计、电阻真空计、热阴极电离真空计、冷阴极电离真空计、电容薄膜真空计、压缩式真快计、压敏真空计(记住常用的三种即可以了)。 9、真空系统的质量:指系统真空度的好坏,特别是系统内所含水蒸气与油污染的程度。 10、真空镀膜的过程(大致了解见书18面) 11、要保持较高真空度需要: A、减少蒸发分子与残余气体分子的碰撞; B、抑制它们之间的反应,减少对衬底表面的污染。 第二章蒸发技术 1、物理气相沉积:指在一定的真空条件下,利用热蒸发或辉光放电或弧光放电等物理过程使材料沉积在衬底上的薄膜制备技术。 2、真空蒸发镀膜法(简称蒸镀):指将固体材料置于高真空环境中加热,使之升华或蒸发并沉积在特定衬底上以获得薄膜的工艺方法。 3、真空蒸发所得到的薄膜,一般都是多晶膜或无定形膜,薄膜以岛状生长为主,历经成核和成膜两个过程。 4、真空蒸发多晶薄膜的结构和性质,与蒸发速度、衬底温度有密切关系。 5、饱和蒸气压:指在一定温度下,真空室中蒸发材料的蒸气在与固体或液体平衡过程中所表现出的压力就为该温度下的饱和蒸气压。

相关主题
文本预览
相关文档 最新文档