当前位置:文档之家› 最新中考数学专题---最短距离问题

最新中考数学专题---最短距离问题

最新中考数学专题---最短距离问题
最新中考数学专题---最短距离问题

中考数学专题---最短距离问题

考查知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

问题原型:“饮马问题”,“造桥选址问题”。

出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”

几何基本模型:

条件:如下左图,A、B是直线l同旁的两个定点.

问题:在直线l上确定一点P,使PA PB

+的值最小.

方法:作点A关于直线l的对称点A',连结A B'交l于

点P,则PA PB A B'

+=的值最小

模型转化应用:

在锐角三角形中探求线段和的最小值

如图1,在锐角三角形ABC中,AB=2

4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.

在等边三角形中探求线段和的最小值

(2010 山东滨州)如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .

在直角梯形中探求线段和的最小值

(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB 上一个动点,当PC+PD的和最小时,PB的长为__________.

在等腰梯形中探求线段和的最小值

如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.

在菱形中探求线段和的最小值

如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.

在正方形中探求线段和的最小值

如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.

A

B

A'

P

l

(2009达州)如图7,在边长为2cm 的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为 cm .(结果不取近似值).

在圆背景下探求线段和的最小值

(2010年荆门)如图8,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则PA +PB 的最小值为________ 在反比例函数图象背景下探求线段和的最小值 (2010山东济宁)如图9,正比例函数x y 21=

的图象与反比例函数)0(≠=k x

k

y 在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知三角形OAM 的面积为1.如果B 为反比例函数在第一象限图象上的点(点B 与

点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA+PB 最小,则点P 坐标为_________. 在二次函数背景下探求线段和的最小值

(2010年玉溪改编)如图10,在平面直角坐标系中,点A 的坐标为(1,3) ,△AOB 的面积是3.在过点A 、O 、B 的抛物线的对称轴上是否存在点C ,使△AOC 的周长最小?若存在,求出点C 的 坐标;若不存在,请说明理由;

在平面直角坐标系背景下探求线段和的最小值 (2010年天津)如图11,在平面直角坐标系中,矩形的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的

正半轴上,OA=3,OB=4,D 为边OB 的中点.

(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;

(2)若E 、F 为边OA 上的两个动点,且EF=2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.

A

D

E P

B

C

经典考题

如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与

D 关于直线AC 对称.连结ED 交AC 于P ,则PB P

E +的最小值是_______.

如图2,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,则PQR △周长的最小值为_________.

(2009年抚顺)如图3所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6

(2009年鄂州) 如图3所示,已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17

17

2

B 、

17174 C 、 17

178

D 、3 如图,四边形ABCD 是正方形, 10AB cm =,

E 为边BC 的中点,P 为BD 上的一个动点,则PC PE +的最小值为____________.

如图,若四边形ABCD 是菱形,10AB cm =,45ABC ∠=°,E 为边BC 上的一个动点,P 为BD 上的一个动点,则PC PE +的最小值为_____________.

如图,若四边形ABCD 是矩形,10AB cm =,20BC cm =,E 为边BC 上的一个动点,P 为BD 上的一个动点,则PC PE +的最小值为_____________.

O

A

B P

R

Q 图2

A

B E

C P 图1

A D

B

C

A

D

B

C

E

P

A

C

D

A

C N

M

E O P

F D

B

(2009陕西)如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是_________.

如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。 如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。

如图,AB 、CD 是半径为5的⊙O 的两条弦,AB = 8,CD = 6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则P A +PC 的最小值为 .

长方体ABCD —D C B A ''''中,AB =4,A A '=2,AD =1,有一只小虫从顶点D′ 出发,沿长方体表面爬到B 点,问这只小虫爬行距离最短为___________

景泰蓝厂的工人师傅要给一个底面半径为2,高为10的圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A 点,绕一周之后终点为B 点,金线的用量最少为________.

有一底面半径为3,高为4的圆锥如下图,A 、B 在同一母线上,B 为AO 的中点,试求以A 为起点,以B 为终点且绕圆锥侧面一周的最短路线长为________.

如图,在圆柱形的桶外,有一只蚂蚁要从桶外的A 点爬到桶内的B 点去寻找食物,已知A 点沿母线到桶口C 点的距离是12厘米,B 点沿母线到桶口 D 点的距离是8厘米,而C 、D 两点之间的(桶口)弧长是15厘米.如果蚂蚁爬行的是最短路线,则爬行路程总长是______.

(2011湖北荆州)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为 .

我终于明白了

夜微凉,雨细碎,昏暗路灯下,一个孤寂的灵魂在默默哭涕。

“你看,风筝飞得真高啊。”一个女孩高兴得对她爸爸说,父女两人脸上洋溢着幸福的微笑,这种情景,好熟悉,而现在,爸爸总是那冷冰冰的脸,没有一丝灿烂。

“你就知道玩,看上次考的那几分,给我在家里呆着。”爸爸摔门而去。玩是孩子天性,怎么可以阻止我的快乐!越想越委屈,几滴滚烫泪珠悄悄滑落,只有眼泪明白我的心。于是,我开始看书,虽然是被逼无奈,但畅游书海,常常能体会到乐趣,深夜,总会有俩间屋亮,桌上会不知不觉多一杯热牛奶,可是,这些都不足以让我感动,我讨厌爸爸。

微风扫过枯叶,便零零散散飞起,卖弄着最后美丽,那课棵柿子树依然健壮,那是小时候和爸爸一起种的,时光飞逝,转眼间,都十年了,没每到这个季节,柿子们就会露出一个个金黄的笑脸,朝人们微笑。今年亦是如此,忽然想吃它们,便要去叫爸爸帮我,可是,我犹豫了,最后,还是自己搬来梯子,努力向上够,可一不小心,我竟然从上面狠狠摔了下来,好痛。此刻,似乎一个背影在着急的朝我张望,果然,第二天,桌上多了一些柿子,是他?

走进们,听见他在跟妈妈嘀咕:“女儿终于知道学习了,我真欣慰,今天包饺子吧,女儿最爱吃了。”忽然,不知为何,我的眼角湿润了。

望着马路上孩子们的喧闹,我仿佛和他们是两个世界,那些跑闹似乎也没什么意思,多学一点,为了今后的幸福而努力,岂不更好。以书为伴的我,终于明白了你的良苦用心。

昏暗路灯下,是我们一家三口在散步,爸爸的脸上不知何时又多了几条皱纹,虽有寒酸,但最多的是开心。

中考专题复习——最短路径问题

B C D A L 图(3) C 中考专题复习——路径最短问题 一、具体内容包括: 蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理: 两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化) 三、例题: 例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 ②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。请在图中找出点P 的位置,并计算PA+PB 的最小值。 ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。 四、练习题(巩固提高) (一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。 3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。 4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值 第2题 张村 李庄 A B B 第1题 第3题

中考数学知识点总结

中考数学知识点总结 一、常用数学公式 公式分类公式表达式 乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角 二、基本方法 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理

2021年中考数学总复习:专题52 中考数学最值问题(解析版)

2021年中考数学总复习:专题52 中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。 一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。 二、解决代数最值问题的方法要领 1.二次函数的最值公式 二次函数y ax bx c =++2 (a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。y ac b a min =-442; ②若a <0当x b a =-2时,y 有最大值。y ac b a max =-442。 2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得?≥0,进而求出y 的取值范围,并由此得出y 的最值。 4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。 5. 利用非负数的性质.在实数范围内,显然有a b k k 22 ++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。 6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。 7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

中考数学专题复习-轨迹问题

E 中考数学核心知识专题复习----轨迹问题探究 符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹 六种常用的基本轨迹: ①到已知线段的两个端点距离相等的点的轨迹是这条线段的垂直平分线。 ②到已知角的两边距离相等的点的轨迹是这个角的平分线。 ③到已知直线的距离等于定长的点的轨迹是与这条直线平行,且与已知直线的距离等于定长的两条直线。 ④到两条平行线距离相等的点的轨迹是和这两条平行线平行且到这两条平行线距离相等的一条直线。 ⑤到定点的距离等于定长的点轨迹是与定点为圆心,定长为半径的圆。 ⑥和已知线段的两个端点的连线的夹角等于已知角的点的轨迹是以已知线段为弦,所含圆周角等于已知角的两段弧(端点除外)。 一、尺规作图:轨迹法确定动点位置 1)已知∠AOB,求作点P,使得点P到角两边距离相等,且满足OP=2 2)已知∠AOB和直线L,在直线L上确定点P,使得使得点P到角两边距离相等 3)已知∠AOB和线段CD,使得点P到角两边距离相等且满足PC=PD 4)已知线段AB和直线L,在直线L上确定点P使得∠APB=600 C A A D O B O B 1)2) L A L O B A B 3)4) 二交轨法应用 1.在正方形ABCD中,为AD边上一点,以BE边所在直线为折痕将?ABE对折之?PBE位置。若AB=2,且PC=1. 1)不全图形

B 2) 求 tan ∠ PCD 的值 A D B C 2.如图,在 △Rt ABC 中,∠CAB =90°,∠ACB=300,BC =8,D 为线段 AB 上的动点,过点 A 作 AH ⊥CD 于点 H ,连接 BH ,则 ② 求 AB 的长 ②求 BH 的最小值。 A D H C B 3.等边三角形 ABC 的边长为 6,在 AC ,BC 边上各取一点 E ,F ,连接 AF ,BE 相交于点 P .且 AE =CF ; (1)求证:AF =BE ,并求∠APB 的度数; (2)若 AE =2,试求 AP AF 的值; (3)当点 E 从点 A 运动到点 C 时,试求点 P 经过的路径长. 4.如图,以 G (0,1)为圆心,半径为 2 的圆与 x 轴交于 A ,B 两点,与 y 轴交于 C ,D 两点,点 E 为⊙G 上一动点, CF ⊥ AE 于 F .当点 E 从点 B 出发顺时针运动到点 D 时,点 F 所经过的路径长 y C G E A D

中考数学要点难点分析整理复习总结

初一上册 有理数、整式的加减、一元一次方程、图形的初步认识。 (1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。 考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。 (2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。 考察内容: ①整式的概念和简单的运算,主要是同类项的概念和化简求值 ②完全平方公式,平方差公式的几何意义 ③利用提公因式发和公式法分解因式。 (3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。 考察内容: ①方程及方程解的概念 ②根据题意列一元一次方程 ③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。 (4)几何:角和线段,为下册学三角形打基础 初一下册

相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。 (1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。 考察内容: ①平行线的性质(公理) ②平行线的判别方法 ③构造平行线,利用平行线的性质解决问题。 (2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。 考察主要内容: ①考察平面直角坐标系内点的坐标特征 ②函数自变量的取值范围和球函数的值 ③考察结合图像对简单实际问题中的函数关系进行分析。 (3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。 考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。 (4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。 主要考察内容: ①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。 ②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。 ③留意不等式(组)和函数图像的结合问题。

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据: 两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于 点C,则点C就是所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于 点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何 A·M 处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥 N E

要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在 河边什么地方,?可使所修的渠道最短,试在图中确定该点。 作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。 证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD, ∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB 所以抽水站应建在河边的点D 处, 例:某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C 关于直线 OA 的对称点点D, 2. 作点C 关于直线 OB 的对称点点E, 3.连接DE 分别交直线OA.OB 于点M.N , 则CM+MN+CN 最短 例:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮 · · C D A B E a

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

中考数学轨迹问题精选

运动轨迹 1、如图1,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角 形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_______. 2、正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分 别在AC,AB上,将△RPQ沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P 第一次回到原来位置,则点P运动的路径长为_______ cm.(结果保留π) 3、如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D, 当点C在⊙O上运动一周,点D运动的路径长为_______ 4、如图,一块边长为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺 时针方向旋转到△A′B′C′的位置,则边AB的中点D运动的路径长是_______ 5、如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1. (1)求O点所运动的路径长;(2)O点走过路径与直线L围成图形的面积. 6、如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB上两个动点,点C是线段PQ的中点,且PQ=4.则动点C运动形成的路径长是______ 7、如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为______ .

8、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF. (1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C →D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长. (4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值. 9、如图,抛物线y=ax2+bx+3过点A(1,0),B(3,0),与y轴相交于点C. (1)求抛物线的解析式; (2)若点E为抛物线对称轴上的一点,请探索抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,请求出所有点F的坐标;若不存在,请说明理由; (3)若点P为线段OC上的动点,连接BP,过点C作CN垂直于直线BP,垂足为N,当点P从点O运动到点C时,求点N运动路径的长.

中考数学三轮易错复习:最短路径问题(含解析)

中考数学三轮易错复习:专题15最短路径问题 【例1】(2019·河南南阳一模)如图,已知一次函数y=1 2 x+2的图象与x轴、y轴交于点A、C,与反比 例函数y=k x 的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9. (1)点A的坐标为,点C的坐标为,点P的坐标为; (2)已知点Q在反比例函数y=k x 的图象上,其横坐标为6,在x轴上确定一点M,是的△PQM的周 长最小,求出点M的坐标. 【变式1-1】(2017·新野一模)已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+ 1 2 交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N. (1)求抛物线的解析式; (2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标; (3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【变式1-2】(2019·三门峡二模)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA =6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,

连接DE,设OD=m. (1)问题发现 如图1,△CDE的形状是三角形. (2)探究证明 如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由. 图1 图2 强化精炼: 1.(2018·焦作一模)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为,点C的坐标; (2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标; (3)如图2,当点P位于抛物线的对称轴的右侧,若将△APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标. 图1 图2 2.(2019·中原名校大联考)如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c 与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3) (1)求抛物线的解析式; (2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.

中考数学公式总结

2019年中考数学公式总结 圆与弧的公式: 正n边形的每个内角都等于(n-2)180/n 弧长计算公式:L=n兀R/180 扇形面积公式:S扇形=n兀R^2/360=LR/2 内公切线长=d-(R-r)外公切线长=d-(R+r) ①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(Rr)⑤两圆内含dr) 定理相交两圆的连心线垂直平分两圆的公共弦 定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 弧长计算公式:L=n兀R/180 因式分解公式: 公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) 平方差公式:a平方-b平方=(a+b)(a-b) 完全平方和公式:(a+b)平方=a平方+2ab+b平方 完全平方差公式:(a-b)平方=a平方-2ab+b平方

两根式: ax^2+bx+c=a[x-(-b+(b^2-4ac))/2a][x-(-b-(b^2-4ac))/2 a]两根式 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2) 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2) 完全立方公式:a^33a^2b+3ab^2b^3=(ab)^3. 扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r) 一元二次方程公式与判别式: 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

中考数学轨迹问题

1.如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG . (1)设AE =x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)P 是MG 的中点,请直接写出点P 运动路线的长. 2.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终为10cm 2.设EP =x cm ,FQ =y cm ,解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. A B C D E F (备用图) A B C D E F Q P 图①

3.如图,在平面直角坐标系中,矩形OABC 的两边OA 、OC 分别在x 轴、y 轴的正半轴上,OA =4,OC =2.点P 从点O 出发,沿x 轴以每秒1个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转90°得点D ,点D 随点P 的运动而运动,连接DP 、DA . (1)请用含t 的代数式表示出点D 的坐标; (2)求t 为何值时,△DP A 的面积最大,最大为多少? (3)在点P 从O 向A 运动的过程中,△DP A 能否成为直角三角形?若能,求t 的值;若不能,请说明理由; (4)请直接写出随着点P 的运动,点D 运动路线的长. 4.如图,直角坐标系中,已知点A (2,4),B (5,0),动点P 从B 点出发沿BO 向终点O 运动,动点Q 从A 点出发沿AB 向终点B 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x 秒. (1)Q 点的坐标为( , )(用含x 的代数式表示); (2)当x 为何值时,△APQ 是一个以AP 为腰的等腰三角形? (3)记PQ 的中点为G .请你直接写出点G 随点P ,Q 运动所经过的路线的长度.

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

中考数学题型及方法总结

初中数学中的固定题型及惯性思维 一、角平分线的考点 1.定义 2.性质(垂直于角的两边) 3.对称性(垂直于角 平分线,构造全等,得到中点) 二、中点的三个考点 1.斜边中线(直角与中点) 2.三线合一(等腰与中点) 3.中位线(两个中点) 附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。 三、等腰三角形的考点 1.等角对等边 2.等边对等角 3.三线合一 四、全等三角形 1.五个全等三角形的判定定理 2.对应边对应角相等 五、轴对称图形 1.角的对称性(性质) 2.线段的对称性(性质) 3.等腰三角形的对称性(三线合一) 附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。 六、勾股定理 1.勾股定理的公式 2.勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形) 附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5;6,8,10; 5,12,13; 7,24,25 七、平面直角坐标系 1.平面直角坐标系是用来确定点及图像的位置的 2.坐标轴及象限的划分

附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势。 八、二次根式 1.二次根式的非负性 2.同类二次根式 3.最简二次根式 4.二次根式的比较大小 5.二次根式的加减乘除 附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。 九、一元二次方程 1.定义(二次项系数不为0) 2.四种解法(优先考虑因式分解法,主要是十字相乘) 3.一元二次方程根的个数的判别式 4.一元二次方程根与系数的关系,即韦达定理 附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法。 十、二次函数 1.定义(最高次为2,二次项系数不为0) 2.二次函数的图像(开口、与X轴的交点、对称轴、顶点坐标、与Y轴的交点位置) 3.二次函数的增减性 4.二次函数的动点问题 附注:初中阶段所有函数的知识点都比较少,更多的是知识点的迁移变化与综合应用。 十一、分式方程 1.分式方程的定义(有可能考选择题) 2.分式方程的解的情况 3.已知分式方程的解的情况,求未知实数的取值范围 附注:1.增根是分式方程无解的特殊情况 2.如果告诉分式方程的解为负数,解出X之后,一方面x<0,另外千万不要忘记x不能等于增根,这个是比较容易出错的一个点。 十二、圆 1.相关定义,比如直径、圆心、弦、切线、弧、圆周角、圆心角等等 2.切线长定理 3.垂径定理 直径:直径所对圆周角是90度

中考数学最短路径问题(珍藏版纯word版)

第11讲:轴对称 【问题概述】初中数学最值问题是每年中考必出题,更是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.一.【十二个基本问题】 在直线l上求一点 +PB 值最小。 【问题2】作图 在直线l上求一点 A+PB 值最小. 【问题3】“将军饮马”作图 在直线l1 、l2 上分别 求点M、N,使△PMN 周长最小. 【问题 4】作图 在直线l1、l2上分别求 M 、N ,使四 PQMN的周长最小。

直线m∥ n,在m、 上分别求点M、N,使 m,且AM+MN+BN 值最小。 【问题 6】作图 在直线l上求两点M、 在左),使MN a,并使 +MN+NB 的值最小 作图 l1上求点A,在l2 B,使P A+AB值最小. 【问题 8】作图 A 为l1上一定点,B 上;A 为l1上一定点, B 为l2上一定点,在 上求点M在l1上求点N 作图 在直线l上求一点 PA-的值最小 PB

二.“一次对称”常见模型:在直线 l 上求一点 PB PA -的值最大作图 在直线 l 上求一点 PB -的值最大 .【问题 12】“费马点”作图 ABC 中每一内角都小120°,在△ABC 内求一点P ,使 P A +PB +PC 最小.

中考数学动点问题最值基本题型汇总

中考数学动点问题最值基本题型汇总 一、最值类型 1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。 2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。 3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。 4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。 5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。 6.结合型:即以上类型的综合运用,大多为饮马+小垂、小垂+穿心、饮马+穿心饮马+转换等 ※二、分类例析 一、饮马型 例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ . 解析:如图 例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____.

解析:如下图 二、小垂型 例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________. 解析:如下图 三、穿心型 例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____. 解析:如下图

中考数学轨迹问题集锦

动点问题讲义 1、如图1,已知线段 AB= 6, C D 是AB 上两点,且 AC = DB= 1, P 是线段CD 上一动点,在 AB 同侧 分别作等边三角形 APE 和等边三角形PBF G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移 动的路径长度为 . 2、正△ ABC 的边长为3cm,边长为1cm 的正△ RPQ 的顶点R 与点A 重合,点P, Q 分别在AC, AB 上,将△ RPQ 沿着边AB BC, CA 逆时针连续翻转(如图所示),直至点 P 第一次回到原来位置,则点 P 运动的路径长为 3、如图,AB 为O O 的直径,AB=8,点C 为圆上任意一点,ODL AC 于D,当点C 在O 0上运动一周,点 D 运动 的路径长为 ______________ 4、如图,一块边长为 6cm 的等边三角形木板 ABC 在水平桌面上绕 C 点按顺时针方向旋转到厶 A B ' C'的 位置,则边AB 的中点D 运动的路径长是 ____________________ 5、如图所示,扇形 OAB 从图①无滑动旋转到图②,再由图②到图③,/ 0=60°, OA=1. (1 )求O 点所运动的路径长; (2) O 点走过路径与直线 L 围成图形的面积 .cm .(结果保留n) O A O 图L 图2 C

6、如图,0从0B,垂足为0, P、Q分别是射线OA 0B上两个动点,点C是线段PQ的中点,且PQ=4则动 点C运动形成的路径长是_______ 90°的扇形0AB的弧AB上有一运动的点P.从点P向半径0A引垂线PH交当点 P在弧AB上从点A运动到点B时,内心I所经过的路径长为. &如图,正方形ABC啲边长是2, M是AD的中点,点E从点A出发,沿AB运动到点B停止?连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G连结EG FG (1 )设AE= x时,△ EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围; (2) P是MG的中点,请直接写出点P运动路线的长.

中考数学知识点总结(完整版)

中考数学总复习资料 代数部分 第一章:实数 基础知识点: 一、实数的分类: ?????? ???????????????????????????????????????无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成 q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a 的相反数是 -a ; (2)a 和b 互为相反数?a+b=0 2、倒数: (1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数?1=ab ;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况:

?????-==0,0, 00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n 次方根 (1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。 (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a 叫实数a 的立方根。 (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。 三、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 四、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。 2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 五、实数的运算 1、加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加; (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。 2、减法: 减去一个数等于加上这个数的相反数。 3、乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。

平面几何轨迹问题分类例析

平面几何轨迹问题分类例析 近年来,在各地中考中出现了一类求动点轨迹的路径长的问题,由于较难确定动点轨迹的形状,往往导致学生无从下手.本文以部分中考题为例,就如何确定动点轨迹的形状进行分类解析,供读者参考. 一、直线型动点轨迹 事实上,要说明一动点轨迹为直线型(直线、射线或线段),必须证明两点:第一、该轨迹恒过一定点(确定位置);第二、轨迹上任一点与该定点的连线和一定直线的夹角为定值或平行(明确方向). 例1 (2013年湖州)如图1,已知点A 是第一象限内横坐标为AN x ⊥轴于点M ,交直线y x =-于点N .若点P 是线段ON 上的一个动点,30APB ∠=?, BA PA ⊥,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到 点N 时,点B 运动的路径长是___. 图1 解析 如图2,由点P 位于O 、N 时,点B 所对应的位置0B 、n B 以及点P 在线段OC 上运动,可猜想点B 的轨迹是线段0n B B .如何证明呢? 显然,点B 的轨迹已经过0B 点,下面只需证明0AB B ∠为定值,即证明它与某一个定角相等即可. 观察可得,APN ∠就是与0AB B ∠相等的 定角,再由两角的位置特征和题设条件,不难 想到用三角形相似来证明两角相等. 由0tan30,tan30AB AO AB AP =?=?,得0::tan30AB AO AB AP ==? 又易知0OAC B AB ∠=∠ ,得0AB B ?∽AOP ?, 所以0AB B AOP ∠=∠为定值. 故点B 在线段0n B B 上,

即线段0n B B 就是点B 运动的路径(或轨迹). 同理可证 0n A B B ?∽AON ?,且相似比为 t a n 3?, 则 0t a n 22 n B B O N = ?= 图2 注 例1利用角来确定动点的运动方向,还可用与定直线平行确定动点的运动方向. 例2 (2010年桂林)如图3,已知AB =10,点C 、D 在线段AB 上,且2AC DB ==. P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边AEP ?和等边PFB ?,连结EF ,设EF 的中点为G .当点P 从点C 运动到点D 时,点G 移动路径的长 是 . 图3 解析 如图4,分别延长AE 、BF 交于点H ,由60EAP FBP ∠=∠=?可知,当点P 在线段CD 上移动时,点E 、F 分别在线段AH 、BH 上移动. 图4 由60A FPB ∠=∠=?,知AH //PF , 同理BH //PE .

相关主题
文本预览
相关文档 最新文档