当前位置:文档之家› 液氮垂直流动沸腾的双流体模型分析

液氮垂直流动沸腾的双流体模型分析

液氮垂直流动沸腾的双流体模型分析
液氮垂直流动沸腾的双流体模型分析

补上一课6 能量流动分流模型解读及相关计算.doc

高考常考,重点强化,思维建模,跨越障碍,全取高考拉分题 重点题型1能量流动分流模型解读 1.能量流经不同营养级示意图 2.构建能量流动模型(表示方法) 方法一: 说明:两个去向:同化量(b)=呼吸作用消耗量(d)+用于生长发育和繁殖的能量(e);摄入量(a)=同化量(b)+粪便量(c) 方法二:

说明:三个去向:同化量=呼吸作用消耗量+分解者分解量+下一营养级的同化量 方法三: 说明:四个去向:同化量=自身呼吸作用消耗量(A)+未利用(B)+分解者的分解量(C)+下一营养级的同化量(D) 【典例】如图是生态系统的能量流动图解,N1~N6表示能量数值。请回答下列有关问题。 (1)流经该生态系统的总能量为(用N1~N6中的字母表示)。 (2)由初级消费者传递给蜣螂的能量为。 (3)图中N3表示__________________________________________。 (4)能量由生产者传递给初级消费者的传递效率为。(用N1~N6中的字母表示)。 (5)生态系统具有自我调节能力的基础是。若要提高生态系统的抵抗力稳定性,一般可采取的措施为___________________________________。 审题指导

答案(1)N2(2)0(3)生产者用于生长、发育和繁殖的能量(4)N5/N2×100%(5)负反馈调节增加各营养级的生物种类 (1)最高营养级能量去路只有流向分解者和呼吸消耗。 (2)分解者分解作用的实质仍然是呼吸作用。 (3)流经各营养级的总能量:对生产者而言强调关键词“固定”而不能说“照射”,对各级消费者而言强调关键词“同化”而不能说“摄入”。 (4)若系统中含有输入的有机物(饵料、有机污染物等),则总能量=生产者固定的能量+输入有机物中能量 1.下图表示能量流经某生态系统第二营养级示意图[单位J/(cm2·a)],据图分析,有关说法正确的是() A.该生态系统第一营养级同化的能量至少为400 B.第二营养级用于生长、发育和繁殖的能量是100 C.能量由第二营养级到第三营养级的传递效率是20% D.该生态系统第三营养级同化的能量是15 解析题图为能量流经某生态系统第二营养级的示意图,其中A表示该营养级摄入的能量,B表示该营养级同化的能量,C表示该营养级用于生长、发育和繁殖的能量,D表示呼吸作用中以热能的形式散失的能量,E表示分解者利用的能量,B错误;题图仅表示能量流经第二营养级的过程,并不能得出第三营养级的

FLUENT中两相流多相流中模型的的选择问题

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;← 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;←应用范←围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;← 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”← 二.多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid Model)←

混合模型(Mixture Model)← 欧拉模型(Eulerian Model)← 1.VOF模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0←<α1<1,表示该控制容积中有两相交界面; VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。← 2.混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型;← 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动;← 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;← 缺点:界面特性包括不全,扩散和脉动特性难于处理。← 3.欧拉模型(Eulerian Model) 欧拉模型指的是欧拉—欧拉模型;← 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;←颗粒群与气体有相互作用,并且颗粒与颗粒之间相互作用,颗粒群紊流输运取决于与气相间的相互作用而不是颗粒间的相互作用;← 各颗粒相在空间中有连续的速度、温度及体积分数分布。← 怎样选择? 1. VOF模型适合于分层流动或自由表面流; Mixture和Eulerian模型适合于流动

气固两相湍流模型的分类

气固两相湍流模型的分类 对两相流的研究有两种不同的观点:一是把流体作为连续介质,在欧拉坐标系内加以描述,而把颗粒群作为离散体系,在拉氏坐标系内加以描述;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体,两相在空间共存和互相渗透,两相都在欧拉坐标系内加以描述。不同观点描述两相流所得数学模型也不同,目前常用的模拟模型有:单流体模型(无滑移模型)、小滑移模型、双流体模型(多流体模型或滑移-扩散的多连续介质模型)、颗粒轨道模型。 单流体模型 把单相流体力学概念直接推广到两相流中,把含有颗粒群流体看成一个单一的流体,提出了一种模拟气粒两相流动简化模型,即单流体模型或无滑移模型。与单相流体流动方程相比,单流体模型仅增加了几个颗粒相连续方程(类似于气相组分扩散方程),并在气相方程中增加了颗粒源项,因此该模型相当简单。该模型的主要优点是处理方法简单,计算方便。其缺点是未考虑颗粒相及气相之间的阻力作用(即假设气体与颗粒之间无速度和温度滑移),以及认为颗粒扩散系数和气体扩散系数相等,与实际的气固两相流动情况差异很大,故目前应用的较少。 小滑移模型 小滑移模型则是在单流体模型的基础上发展的,在此模型中,或者颗粒相对流体流动的影响被认为是小扰动,或者该影响被完全忽略。模型中假设颗粒的运动单纯由流体流动引起,流体与颗粒的速度滑移相对于平均流动来说是小量,这一滑移是颗粒扩散的结果。它考虑了颗粒的滑移并涉及了颗粒和气相间因滑移而引起的阻力,从而增加了颗粒群的动量方程,但求解典型程序仍与无滑移模型相同。其优点是考虑了颗粒的湍流扩散、湍流粘性以及滑移引起的阻力,相对接近于实际情况。 双流体模型 该模型的出发点是把颗粒群和气体都作为连续介质,两者相互渗透组成双流体或多流体系统,在欧拉坐标系下考察气粒两相流动,即欧拉—欧拉模拟湍流两相流动。近年来双流体模型已用于模拟一维非定常水汽两相流、炮膛内非定常二维湍流气粒两相流、气粒两相射流、有蒸发的液雾气体射流、闭式同轴射流中气体液雾流动与燃烧、带有或不带高速射流的突扩燃烧室中二维及三维湍流回流气粒两相流动和燃烧、四角喷燃炉中三维湍流旋流回流气粒两相流动和流化床中二维气化过程等。 颗粒轨道模型 颗粒轨道模型可分为:颗粒群轨道模型和随机轨道模型。前者假设不存在颗粒扩散,而后者利用Monte-Carlo法计算,考虑了颗粒扩散。 颗粒轨道模型的主要优点是计算工作量小,对有蒸发、挥发和异相反应的颗粒相复杂经历时,能较好的追踪颗粒的运动,颗粒相用拉格朗日处理数值计算也不会产生伪扩散。其缺点是对颗粒湍流扩散缺乏较好的处理方法,不能全面模拟颗粒的紊流扩散过程,而且计算所得到的拉氏

电厂双流体喷枪SNCR

电厂双流体喷枪SNCR-EE-2.2使用说明 1.喷枪安装时注意末端进口是进水口,剩余的一个为进气口,如果有护管, 护管上的进口为护管进气口,护管进气阀门始终保持一个小的开度,吹入微量压缩空气即可。主气路连接方式如下图所示,可以实现远程控制,也可以只接一个手动阀们现场手动控制,不使用时留一个小的开度,使微量压缩空气通过。喷枪不使用时水管不需要接气。 图一.气路连接方式 2.实际安装图如图纸所示,上边的原喷枪孔装两只喷枪,喷头弯度在同一 竖直面内,下边的原喷枪孔装一只喷枪,弯头朝下,该喷枪有护管保护。 3.喷枪所有进气、进水口为G1/2”钢管外螺纹,安装时可以使用软管连 接,每条软管接一个阀门,软管长度应该保证足够的喷枪完全抽出和完

全伸入的余量,与喷枪连接使用快接接头,也可使用其他固定方式。安装时,千万注意进气、进水口的位置,不能装反。 4.在喷枪固定时,先测量原套管到法兰外壁的总长度,然后喷枪法兰的固 定位置与之相配合,保证喷枪固定好以后喷头与套管的前端齐平或者稍稍伸出一点(最好不要超过20mm,带护管的可以稍长一些)。 5.使用时,为了保证喷雾效果,应该先开气再开水,每只喷枪的流量可调 范围为20-180l/h,当气压固定时,喷枪的准确流量可以依据流量计来调节,如果没有流量计,可以根据水气压值得出大致流量,理论上在水压比气压低0.1-0.2mpa时,喷枪的流量在50l/h左右,实际流量依据现场使用情况确定。 6.该型号喷枪压缩空气的压力范围为0.2-0.5mpa,水压范围为 0.1-0.6mpa,最佳的雾化效果时,水压应该比气压略低。 7.本型号喷枪的最终解释权归我公司所有。

FLUENT中两相流多相流中模型的的选择问题

F L U E N T中两相流多相流中模型的的选择问题 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;? 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;? 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;? 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”?

双流体的原理说明介绍简要说明

双流体特点说明 1设备工作原理 本系统的基本功能是根据烟气温度的变化自动调节喷枪的喷水量,保证烟道出口温度维持在适当的温度范围内。工作时,冷却水自水源水箱经过过滤器过滤后由变频水泵升压并调节到一定的压力和流量,经出口管路送到喷枪,在压缩空气的作用下雾化,产生非常细小的雾化颗粒,水雾在高温烟气中迅速蒸发,吸收烟气的大量热量,使烟气温度迅速降低并维持在一定温度范围内。当出口测温组件检测烟气温度超过温度设定值范围时,在控制器的控制下,变频水泵自动调节转速,增大供水压力和流量,使喷水量增大,从而使烟气温度降低到指定范围内;当出口温度降低超过温度设计值范围时,在控制器的控制下,变频水泵自动调节转速,减小供水压力和流量,使喷水量减小,从而使烟气温度回升到指定范围内。 2设备主要工作模式 A:自动模式(对应正常使用) B:安全模式(对应某些允许喷雾但有一部分非常情况) C:停机模式(有危险或不需要喷雾而不允许喷雾状态) 3:为什么使用数量很少的喷枪就可以? 烟气冷却的趋势是在保证水量,保证完全蒸发的前提下,尽可能使用少的喷枪来达到目的,降低设备投资及安装费用,简化控制系统,提高设备稳定性。 我们每支喷枪实际的喷水量约为5吨左右/小时,平均雾粒为130um, 最

大雾粒为280um。在烟道内,可以在5.2秒之内完全蒸发,而烟气在烟道内实际的滞留时间为13秒左右,允许的最大雾粒约为530 um。 我们也经常使用喷水量为3.2吨左右/小时,平均雾粒为60um, 最大雾粒为180um。在烟道内,可以在2秒之内完全蒸发,而烟气在烟道内实际的滞留时间为3秒左右,允许的最大雾粒约为530 um。 从以上可以知道:我们不但使用较少数量喷枪可以,而且我们的喷雾技术在烟气冷却中有足够的余量,可以大大降低烟道湿底的可能性,很大的安全余量消除生产线因湿底而停产的可能,其它的技术经常产生湿底而导致生产停线。 4:对水质有什么要求? 整套系统对水质没有什么特别的要求,河水及湖水进行粗过滤即可; 在水箱与水泵之间,安装并联管路过滤器,在过滤器的两端分别装有球阀, 检修人员可以通过过滤器后面的球阀门开关,在线清洗和更换滤芯而不影响系统的正常运行。如没有特别的要求,一般过滤器滤精度为为30目,过滤器主要目的是保护水泵及后面的控制元器件,喷枪对水质没有特殊要求。 节省成本: A水费:城市自来水越来越贵,以每小时喷水10吨,工业用水每吨1.2元/吨计算,每年300天计算,每天24小时计算,每年费用为7.2万元;如直接用河水则节省这部分费用; B高压过滤器:节省其它高压系统所要求的高压水系列。

两相流整理

1、 扩散速度:相速度与混合物质心速度之差,kcm k cm v v v =- v =k k g g g l l l v cm k v v dv v V v V m dv ρρρρ+= ?? 2、 表观摩擦压降:就是按折算介质流速来计算的摩擦压降。 3、 真实密度:两相流场中单位体积的质量成为真实密度。 4、 面积质量流速:单位流通截面的质量流量。 5、 质量含气率:流场中某一控制单元内气相所占的质量份额,称为质量含气率。 6、 滑速比:气液两相速度的比值。 7、说明均相模型、分相模型、二流体模型的优缺点、适应性和局限性. 答:见下表: 8.给出水平管气液两相流型分类,并绘制Baker 流型图 答:水平管气液两相流型分类:1) 泡状流;2)团状流;3)层状流;4) 波状流;5) 冲击流;6) 环状流;7) 雾状流。 9、请写出垂直和水平倾斜气液两相管流的压降计算的相关式模型方法名称各4种共8种。 答:水平倾斜气液两相管流的压降计算的相关式模型:洛克哈特蒂内利(Lockhart -Martinelli )、杜克勒(Dukler )?、杜克勒(Dukler )??、贝克(Baker )、杜克勒-埃顿-弗莱尼根(Dukler-Eaton-Flanigan )、埃顿(Eaton)、贝格斯-布里尔(Beggs-Brill )、弗莱尼根(Flanigan )、奥维德·巴克尔(Ovid Buckle )。 垂直气液两相管流的压降计算的相关式模型:Orkiszewski 法、 Hagedorn-Brown 法、Beggs-Brill 法、Hasan-Kabir 法、Duns-Ros 法和Cornish 法、 Aziz-Govier-Fogaras 法、 Ansari 法。

双流体喷嘴雾化过程的模拟分析

本科毕业设计(论文)任务书 毕业设计(论文)题目:双流体喷嘴雾化过程的模拟分析 适用专业:热能工程 下达任务日期:2014. 2.24 关键词:喷雾,流动,速度场,模拟 内容要求:(阐明与毕业设计(论文)题目相关、需要通过毕业设计解决、或通过毕业论文研究的主要问题。后面应列出建议学生在毕业设计(论文)前期研读的重要参考资料(书目、论文、手册、标准等) 本毕业设计课题利用Fluent 6.3对双流体喷雾过程进行数值模拟,探讨不同的工况下的喷雾流场包括压力场、浓度场、速度场的分布规律。毕业设计旨在提高学生综合运用基础理论知识的能力,培养其独立分析实际问题、解决实际工程问题的能力。本课题可以促进学生掌握流动、传热与传质的基本理论,熟悉液体雾化设备的基本结构与原理,培养其工程设计、科学实验与理论分析的基本技能,锻炼其计算、数据处理、数据分析等基本能力。 参考文献: 1陶文铨编著. 数值传热学. 西安交通大学出版社, 2001. 2曹建明编著. 喷雾学. 机械工业出版社, 2005.05. 3王福军编著. 计算流体动力学分析CFD软件原理与应用. 清华大学出版社, 2004.09. 4王瑞金,张凯,王刚编著. Fluent技术基础与应用实例. 清华大学出版社, 2007. 5侯凌云,侯晓春编著. 喷嘴技术手册. 中国石化出版社, 2002. 6《工业锅炉设计计算方法》编委会,工业锅炉设计计算方法,中国标准出版社,2005 7范维澄等.计算燃烧学.合肥市:安徽科学技术出版社, 1987. 8Lefebvre, A. H.. Atomization and sprays [M]. New York:Hemisphere, 1989. 9程勇,汪军,蔡小舒. 旋流燃烧室中NO 排放的数值计算. 上海理工大学学报.2004,V ol.26 10周力行. 湍流气粒两相流动和燃烧的理论与数值模拟.[M].北京:科学出版社,1994 11 A Datta,S K Som. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Applied Thermal Engineering 19 (1999) 949-967 12舒宝万,毛羽. 雾化效果对液雾燃烧过程影响的数值模拟.工业炉.2004,26(4) 13张波,尧命发,郑尊清,陈征. 正庚烷均质压燃燃烧特性和排放特性的实验研究. 天津大学学报.2006,39(6):663-669 14刘霞,葛新锋.FLUENT软件及其在我国的应用.能源研究与利用,2003.2,pp36-38

双流体干雾抑尘系统简介

双流体干雾抑尘系统简介 1、粉尘治理理念--源头治理 微米级喷雾抑尘装置,其能够产生直径在1-10微米的水雾颗粒,对悬浮在空气中的粉尘—特别是直径在2.5微米以下的可入肺颗粒进行有效的吸附而聚结成团,受重力作用而沉降,从而达到抑尘作用。 突破传统粉尘治理技术,减少粉尘的收集、输送等工序,直接在粉尘的源头抑制粉尘的扩散,直接治理。用最低能源消耗达到最好的治理效果,减少用电、用水量,达到真正的节能减排。 2、微米级喷雾抑尘理论依据 根据美国《煤炭时代杂志》发表的题为“科罗拉多矿业学院解决可吸入尘埃的控制”一文中提到:水雾颗粒与尘埃颗粒大小相近时吸附、过滤、凝结的机率最大为原理, 水雾颗粒与尘埃颗粒大小相近时,尘埃颗粒随气流运动时与水雾颗粒发生碰撞、吸附、凝结,形成的尘埃团在重力作用下降落,从而达到过滤尘埃的目的。 研究证明:粉尘治理的范围主要是150微米以下的颗粒,特别是10微米以下的可吸入性粉尘颗粒对人体健康危害最大。所以,只要产生与可吸入粉尘颗粒大小相当的微米级水雾颗粒,在污染源处使粉尘与之吸附、相互粘结、聚结增大并在自身重力的作用下沉降,就可在污染源头控制可吸入粉尘颗粒,从而降低粉

尘对人体的伤害,达到最佳的粉尘治理效果。 3、微米级喷雾抑尘工作原理 双流体喷雾抑尘技术是通过水气混合的形式即压缩空气和水按照水汽配比混合到水汽雾化喷头,由压缩空气冲开水汽雾化喷头的弹簧后进行加速并将水吸入水汽雾化喷头的加速震荡室进行破碎,并利用加速气体将破碎后的水雾颗粒从喷嘴喷出。 其特点如下: ★雾粒直径小,只有3—10微米大小的水雾颗粒,在捕捉大小约5微米以下的可吸入浮尘方面具有极佳的效果; ★喷出的水雾的方向准确性很强,雾索速度快,能迅速捕捉、屏蔽、切断粉尘扩散; ★出雾量大,雾索长度大。而且出雾量、雾索长度都可调。 4、微米级喷雾抑尘系统组成 微米级喷雾抑尘系统装置采用模块化设计技术。由微米级喷雾主机、自动化控制系统、电控系统、水过滤装置、空压机、储气罐、水气分配器、管路系统、电伴热系统、等组成。 1)微米级喷雾主机 微米级喷雾主机是将过滤后的气、水,以设定的气压、水压、气流量、水流量根据接收到的皮带开启/停止信号控制阀门打开或关闭,经管道输送到喷雾器总成中去,实现喷雾抑尘的总体控制。它由整体通讯控制系统、水压气压监测控制系统、水量气量监测控制系统、和可编辑人机界面控制系统组成。双流体干雾主机主要作用是提供满足喷雾组件需求的水源和气源,监测每个治理点的喷雾情况,控制每个治理点喷雾抑尘的启停。 2)电控系统 电控系统是干雾抑尘系统的控制中心,集合了可编程控制器、保护电路、继电器以及与它们相关的元器件。为用户提供自动和手动两种操作模式。在自动操作模式时,可自动接收远程触发信号启动或停止喷雾器喷雾。在手动模式,操作人员可以按压操作按钮启动或停止喷雾器喷雾。用户还可以通过PLC设置接口修改喷雾周期及管道吹扫时间等。

《生态系统的能量流动》教案

《生态系统的能量流动》教案 《生态系统的能量流动》教案 一、教材分析 1.本节内容的地位 本节在教材中属于人教07版高中生物必修3稳态与环境第5章第2节“生态系统的能量流动”,生态系统的主要功能是物质循环和能量流动,所以本节内容是本章的重点之一。由于“能量”的概念比较抽象,学生已经在物理、化学的学习中逐步建立了能量、能量传递、能量守恒等一些基本概念;在生物学中,学生已学习了“储存能量的物质”、“能量代谢”等内容,这些都是理解本节内容的基础,在教学中要紧紧依托这些知识。 2.教学重点和难点 生态系统的主要功能是物质循环和能量流动,本节的教学重点确定为:生态系统能量流动的过程和特点。由于“能量”的概念比较抽象,而生活中形成模糊混乱的前概念对本节内容的影响,生态系统能量流动的过程成为难点,尤其是能量流经第二营养级过程难以整理清楚。 3.教学目标 二、学情分析及教学策略 1.学情分析

高中学生认知特点鲜明,他们喜欢发现式学习,讨 论式学习,批判式学习,抽象逻辑思维能力和自主学习 能力都有了一定的发展,以“光合作用”和“呼吸作用”为基础,学生基本了解各营养级之间的能量变化关系。 2.教学策略 基于学情分析和创建活跃课堂思维的基本理念,确 定了以情境问题驱动的自主、合作式建构能量流动模型 的教学策略。按照“感知——理解——应用”的认知过程,力求把“讲堂”变为“学堂”,使学生在教师设计 的情景中,充分发挥其主观能动性,让他们去感知、体验、思考;教师在整个教学过程中是学生学习的组织者、设计者和引导者。 三、教学过程 1.引入 假设你像鲁滨逊那样,流落在一个荒岛上,那里除 了有能饮用的水以外,几乎没有任何事物。你随身尚存 的食物只有一只母鸡、15kg玉米。 你认为以下哪种方法能让你存活更长时间: 1.先吃鸡,再吃玉米。 2.先吃玉米,同时用一部分玉米喂鸡,吃鸡产下的蛋,最后吃鸡。 学生回答,不论哪种答案,都要陈述理由,锻炼了

双流体喷嘴雾化特性实验

双流体喷嘴雾化特性实验 摘要:双流体雾化降温冷却技术是将气体和液体在喷嘴内部直接混合,在高压射流作用下直接雾化,雾化的小液滴气化时带走热量,从而降低工作区域温度。喷雾冷却降温系统广泛应用于养殖、高精度建筑及机械切削加工中刀具的冷却等。影响喷雾降温冷却的关键因素是雾滴粒径和雾滴运动速度。雾滴粒径越小,其总表面积越大,易于蒸发、气化,从而产生良好的降温效果;而雾滴运动速度加快则可以进一步加快工作区域的换热过程。文章利用相位多普勒粒子动态分析仪(FDA)对4种不同喷孔直径的喷嘴进行了较为详细的实验研究,获得了影响雾滴粒径和雾滴运动速度的重要因素,得到了双流体雾化喷嘴工作的最佳压力与孔径组合,为喷雾冷却降温的研究奠定了琴础 在不同的工程应用领域,对雾滴的大小和速度有不同的要求,因此探索雾滴尺寸、滴速、压力、流量、喷嘴直径、流体的物性参数等的关系刁仁进而实现雾滴大小和速度的控制尤为重要。双流体式雾化喷嘴结构简单,对于高勃度和低勃度的液体都有良好的雾化性能,并且容易通过调节气液比来控制喷雾参数,能满足不同场合的使用要求,但同时也存在动力消耗大、效率低、雾谱宽、雾化机理复杂等因素。 喷雾冷却降温系统通过喷嘴将液体直接雾化,雾化的小水滴气化时会带走热量,从而降低工作区的温度。喷雾冷却降温广泛应用于养殖、高精度建筑及机械加工中各种刀具的冷却等。其中雾滴速度和雾化粒径直接影响雾滴的气化,从而影响降温效果 本文以双流体喷嘴为研究对象,采用相位多普勒粒子动态分析仪(FDA)对雾化冷却过程中双流体喷嘴雾化进行了实验研究,着重探讨了双流体雾化喷嘴喷孔直径、工作压力与滴速和粒径的关系,得出了影响双流体喷嘴雾化效果的主要因素。 1实验装置 实验采用的喷嘴为内混式双流体雾化喷嘴,喷头采用收缩式圆锥形雾化喷头,目的是通过对喷嘴在不同运行参数条件下进行雾化性能参数的测量,获得更好的雾化效果,以便实现对喷嘴的雾化性能参数进行有效控制。 实验装置由雾化装置、气路系统、水路系统和测量系统等构成。气路系统包括空气压缩机、稳压阀、流量计和压力表;水路系统包括空气压缩机、密封罐、稳压阀、流量计和压力表;测量系统主要包括FDA、三维位移机构和数据处理系统等。实验装置如图1所示。

生态系统的能量流动教学案例

教 学 案 例 年级:高三 科目:生物 姓名:吴晓庆

必修三第五章第二节生态系统的能量流动 一、教学前的准备 该课是人教版《稳态与环境》第五章《生态系统及其稳定性》中的重点内容。本节以“生态系统的结构”为基础,起着承上启下的作用,同时也可以与光合作用、呼吸作用、体温调节等知识建立联系,其又直接关系到物质循环和生态系统稳定性的学习。根据本节特点,准备用一课时,采用多媒体教学来讲授新课。预计课题导入5分钟左右,教师引导性学习10分钟左右,学生自主性学习25分钟左右。 二、教学目标的确定 1、知识性目标 ⑴、理解生态系统能量流动的概念。 ⑵、描述生态系统能量流动的过程和特点(重点)。 ⑶、说出研究生态系统能量流动的意义。 2、技能性目标 ⑴、引导学生用数据来分析能量流动的特点,让学生在归纳总结的基础上, 阐述出生态系统能量流动具有的两个特点。 ⑵、指导学生构建能量流动的概念模型、数学模型、物理模型。 ⑶、对生态系统中能量的流入和流出加以分析,培养知识迁移和运用能力。 3、情感性目标 ⑴、通过小组分工与自主性学习相结合,培训同学发现问题解决问题以及与 他人合作交流的能力。 ⑵、注重生态学观点的培养,同时关注农业的发展和生态农业的建设。 ⑶、培养实事求是的科学态度,树立科学服务于社会的观点。 三、教学思路 该课直接从教材中“问题探讨”提供的素材引入,让学生设计相关的食物链(网),激发学生学习的兴趣,建立能量在食物链中流动的感性认识。接下来从学生熟悉的生物在个体水平分析出能量流动的来源和去路。提出“能量流动的研究对象是什么?”。再从生态系统水平(个体->种群->营养级)总结能量流动过程的图解,并从中概括出能量流动的概念,同时构建新的能量流动的概念模型。然后利用多媒体展示林德曼的研究资料,引导学生利用表格进行分析,探讨能量流动过程的特点,并学会计算能量的传递效率。然后让学生根据能量流动的特点构建数学模型与物理模型(能量金字塔)。最后利用典型的习题来加强对知识的理解,并投影出整节课的知识要点体系,以便帮助形成系统的认识。 在教学过程中以问题讨论为主线,问题设计由浅入深,得出结论。引导学生利用已有知识,自主获取新知识,从而突破教学的难点。同时在教学中,重视“分析和处理数据”技能的训练,让学生体验整理数据、处理数据、分析数据,并最终用数据说明生物学现象和规律。

两相流、多相流

两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。固相通常以颗粒或团块的形式处于两相流中。 两相流的流动形态有多种。除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。 两相流研究的一个基本课题是判断流动形态及其相互转变。流动形态不同,则热量传递和质量传递的机理和影响因素也不同。例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。当分散相液滴或气泡时,有很多特点。例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面

上有波动,表面张力梯度会造成复杂的表面运动等。这些都会影响传质通量,进而影响设备的性能。两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。 两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。大量理论工作采用的是两类简化模型:①均相模型。将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。认为单相流的概念和方法可分别用于两相系统的各个相,同时考虑两相之间的相互作用。两种模型的应用都还存在不少困难,但在计算技术发展的推动下颇有进展。 气体和液体混合物的两相流动体系。通常分为单成分两相流和双成分两相流。前者是具有相同化学成分的同质异态两相流,如水和蒸汽两相流;后者是具有不同化学成分的异质异态两相流,如水和空气两相流。气-液流动包括掺有气泡的液体流动和带有液滴的气体流动,如掺气水流和含雾滴的大气流动等。气-液流动因管道压力、流量、热负荷、流向、工质物性等的不同,可形成各种不同流型。竖管中最常见的流型(见图)有:细小气泡散布于液相中的气泡状流型;管中心为气弹、壁附近为连续液膜的气弹状流型;管中心为夹带细小液滴的气核和壁附近为连续液膜的环状流型;气相中含细小液滴和壁附近无连续液膜的雾状

能量流动的模型构建

能量流动的模型构建 主备人:刘晓丽 模型构建 下面是关于生态系统能量流动的关键词,从中选出一些关键词,用这些关键词和箭头构建能量流经初级消费者的模型。(在方框中构建) 题型一 下图表示能量流经某生态系统Ⅱ营养级的变化示意图,若A 表示该营养级摄入的全部能 量,a ~g 表示能量值。请据图作答: ( 1) B 表示 , (2)F 最可能表示 。 (3)若生产者所固定的太阳能总量为y ,则营养 级Ⅰ、Ⅱ间的能量传递效率是 。(用图 中所给字母表示)。(可有多种表示形式) 模型构建 用下面的关键词在方框中构建生态系统能量流动模型 太阳能 生产者 初级消费者 次级消费者 三级消费者 呼吸作用 散失 分解者 题型2下图1表示某草原生态系统中能量流动图解,①~ ④表示相关过程能量流动量。下列有关叙述正确的是 A .①是输入兔的总能量 B .分解者分解动植物遗体释放出来的能量,可供绿色植物再利用 C. 图中②/①的比值代表“草→兔”的能量传递效率 D .③和④分别属于草和兔同化量的一部分 题型 3 下图是某鱼塘生态系统能量流动过程中部分环节涉及的能量值(单位为 103kJ/m2·y )。试回答下列有关问题: (1)该生态系统中肉食动物同化的总能量是 kJ/m2·y 该生态系统中植食动物同化的总能量是 kJ/m2·y 该生态系统中生产者固定的总能量是 kJ/m2·y (2) 能量从第二营养级到第三营养级传递的效率为 。 变式 改为人工鱼塘,人工投喂饲料 (1)该生态系统中肉食动物同化的总能量是 kJ/m2·y 该生态系统中植食动物同化的总能量是 kJ/m2·y 该生态系统中生产者固定的总能量是 kJ/m2·y (2)由植食动物输入给肉食动物的总能是 kJ/m2·y 由生产者输入给植食动物的总能量是 kJ/m2·y (3)第二营养级到第三营养级传递的效率为 。 巩固练习 下图为人工饲养的鱼塘中生态系统中能量流动图解部分示意图,图中数字号码各代表一定的能量值,下列各项中正确的是 A.图中的⑤肯定大于① B.④包含了次级消费者粪便中的能量 C.在食物链中各营养级获得能量的方 式及能量的用途完全相同 D.第二营养级流向第三营养级的能量 传递率为(②/①) 次级消 费者摄 入 初级消 费者摄 入 三级消 费者摄 入 生长 发育 繁殖 分解者 呼吸作用 粪便 散失 遗体残骸 光 能 图2 图1

液液两相流流体破碎模型

液液两相流流体破碎模型 液一液两相中的液滴变形和破碎现象不论在自然界还是在生产实践中都广泛存在,如石油行业中,会遇到油和水两相混合流动的现象。在油水两相流动过程中,常常会形成油。水分散体系,其中分散相粒径大小和分布对于油水混合物的输运、检测以及分离等过程都会产生重要的影响,而分散相的粒径大小和分布又与液滴变形破碎过程密切相关。此外,液滴的变形破碎过程也广泛存在于化工、环保等领域,如液液萃取、多相反应、悬浮聚合及乳状液的制备等化工过程,这些过程速率取决于二相间的相际面积,研究液滴变形破碎对于增加相际面积,加快反应速率提高效率等具有举足轻重的作用。由此可见,认识和掌握较大液滴的变形、破碎过程机理及其规律无疑是非常必要的。要准确预测系统中液滴群的运动和传质过程,最基本的出发点就是对单个液滴的流体力学行为的预测。同时,对单个液滴流体力学行为的准确把握为我们提供了一个理解更为复杂的实际多相流系统的基础。液滴运动规律的研究越来越受到国内外的关注,虽然理论方法和实验手段都取得了一定的进展,但仍有其本身的局限性。 随着CFD的发展,数值模拟成为探索液滴运动规律的重要手段。Rallison 和Acrivos[1]首先将边界积分方法应用于液滴变形数值模拟,该方法的主要优点是使用势函数将二维问题降为一维问题,精度比较高,但由于其数值稳定性较差,只能用来模拟变形不大的液滴运动。由Hirt和Nichols[2]提出的VOF方法被广泛用于两相流的数值模拟中,流体体积分数概念的引入大大简化了捕捉界面的计算,然而由VOF只能得到控制单元中的流体体积分数,要得到物质界面还需要进行界面重构,不同的重构方法会有不同的效果。Osher和Sethia[3]提出的水平集(Levelset)方法是目前处理、追踪物质界面效果较好的一种方法,通过引入水平集函数的概念自动捕捉界面的拓扑变化,在处理复杂结构变化方面优势明显。 尤学一,刘伟[4]采用VOF法追踪了重力流液液和气液相界面的迁移,发现VOF法可很好地追踪强非线性、大形变的相界面随时间的变化。重点讨论了不同相密度比、黏性比条件下,液液相界面和气液相界面的运动形式,验证了液液相界面主要受Kelvin-Helmholtz不稳定性控制。结果显示:液相密度比越大,液液相界面随时间变化越快,气液交界面不再保持水平位置,而以摆动的形式存在;在黏性比小于5时,黏性比不太影响液液相界面随时间变化。 熊燃华[5]在数值求解两相混合的质量和动量守恒方程基础上、运用VOF(volume of fluid )模型求解每个网格单元的体积分数离散方程、然后用界面重构技术追踪液滴与环境流体界面,从而模拟了液滴整个演变过程。数值计算结果虽然在后期破碎过程与实验结果有所区别,但也反映出这几种模式的演变特

Fluent多相流模型选择与设定

1.多相流动模式 我们可以根据下面的原则对多相流分成四类: ?气-液或者液-液两相流: o 气泡流动:连续流体中的气泡或者液泡。 o 液滴流动:连续气体中的离散流体液滴。 o 活塞流动: 在连续流体中的大的气泡 o 分层自由面流动:由明显的分界面隔开的非混合流体流动。 ?气-固两相流: o 充满粒子的流动:连续气体流动中有离散的固体粒子。 o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。 o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。从 床底不断充入的气体使得颗粒得以悬浮。改变气体的流量,就会有气泡不断 的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。 ?液-固两相流 o 泥浆流:流体中的颗粒输运。液-固两相流的基本特征不同于液体中固体颗 粒的流动。在泥浆流中,Stokes 数通常小于1。当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。 o 水力运输: 在连续流体中密布着固体颗粒 o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物 质。随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤 积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里 的粒子仍然在沉降。在澄清层和沉降层中间,是一个清晰可辨的交界面。 ?三相流(上面各种情况的组合) 各流动模式对应的例子如下: ?气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷 ?液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗?活塞流例子:管道或容器内有大尺度气泡的流动 ?分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝 ?粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动 ?风力输运例子:水泥、谷粒和金属粉末的输运

生态系统能量流动模型构建

生态系统能量流动模型构建 生态系统是一个开放的能量耗散系统,其能量流动的过程和特点是高中阶段学习的重点和难点。本文通过构建生态系统能量流动模型对系统内能量的单向流动和逐级递减特点的进行剖析,有利于学生逻辑思维能力的培养和辨证思维能力的提升。 一、能量流动模型的构建 1.定量不定时模型构建 2.定量定时模型构建 备注:与模型构建相关的公式①公式一:摄食量 = 同化量 + 尿粪量 ②公式二:同化量=净生产量+呼吸量③公式三:净生产量=被下一个营养级利用的 +未被下一个营养级利用的+遗体残骸被分解者利用的。

二、能量流动模型解读 本模型概述的是某营养级与下一营养级的能量流动关系,因“粪尿量”应属于上一营养级同化的能量,故不予考虑。 3.1定量不定时模型分析 流入某一营养级的一定量的能量在足够长的时间内去路可有三条:①流入下一营养级的;②被分解者利用的;③自身呼吸消耗的。当然,这一定量的能量无论如何传递,最终都以热能形式从生物群落中散失,所以生产者只有源源不断地固定太阳能,才能保证生态系统能量流动的正常进行。 3.2定量定时模型分析 流入某一营养级的一定量的能量在一定时间内的去路可有四条:①流入下一营养级的;②被分解者利用的; ③自身呼吸消耗的;④未被下一个营养级利用的,即“未利用”。如果是以年为单位研究,“未利用”的能量将保留到下一年。 说明:只有在定量定时分析时才有“未被利用的能量”一项,如果是定量不定时分析,就没有“未被利用的能量”一项,因为在某一段时间内“未被利用的能量”在以后的时间里终究是会被下一营养级和分解者利用的。 三、能量流动模型的应用 例1 试通过模型对教材赛达伯格湖的能量流动图解分析 解析:比较“赛达伯格湖的能量流动图解”和“生态系统的能量流动图解”可知,在“赛湖图解”中,美国生态学家林德曼对赛达伯格湖的能量流动进行了定量分析,得出的数据中有部分能量在食物链中是“未利用”的。本模型可以用定量定时模型作一分析:以绿色植物一年的生长为例,用于自身生长繁殖的

两相流中颗粒运动描述

多相流理论--------两相流中颗粒运动的描述方法 早在19世纪就有关于明渠水流中颗粒沉降和输运的两相流动研究,但是两相流的系统研究是从本世纪40年代才开始的。60年代以后,越来越多的学者开始对关于描述两相流动规律进行了探讨,出现了很多关于讨论其基本方程的文献及专著。 研究两相流有两类基本不同的观点:一类是把流体作为连续介质而把颗粒作为离散体系,探讨颗粒动力学、颗粒轨迹等,另一类是除把流体作为连续介质外,还把颗粒群作为拟流体或拟连续介质。依据这种观点分类,研究颗粒运动的模型一般有单颗粒动力学模型、颗粒轨迹模型(或Eulerian一Lagrangian混合模型)和颗粒拟流体模型(或称为多流体模型)。若按照系统坐标特性进行分类,则有Lagrangian描述方法,Eulerian一Lagrangian描述方法和Eulerian描述方法。 1 : Lagrangian描述方法; 当流场中任何一个颗粒不受相邻颗粒存在的影响以及流场扰动的影响,则可采用单颗粒动力学研究方法确定颗粒运动规律。具体来说,首先对流场中单颗粒进行受力分析,然后根据颗粒相力平衡方程建立颗粒Lagrangian模型,探讨颗粒动力学特性和颗粒轨迹等问题。这种Lagrangian描述方法的典型代表是单颗粒动力学模型。该模型的适用条件是稀疏两相流,颗粒相体积浓度小于0.1%,或颗粒平均间距大于5d (d为颗粒直径),在给定了流场中流体的流动参数后,使用Runge 一Kutta积分求解Lagrangian颗粒运动方程,得出颗粒的速度分布和运动轨迹。 2 : Eulerian一Lagrangian描述方法 这种描述方法的实质是在Lagrangian坐标系中利用Lagrangian颗粒运动方程处理颗粒问题,可以避免颗粒相出现伪扩散问题,而在Eulerian坐标系中处理流体相问题。但是,根据是否考虑颗粒的紊动扩散效应Eulerian-Lagrangian

化工装置中两相流模型的建立

化工装置中的两相流模型的建立 摘要:通过文献调研,本文重点分析了大涡模型在离心泵两相流中的应用。较为详细的概述了模型的建立以及边界条件的确定和求解方法。 关键词:文献调研、大涡模型、边界条件 前言 两相流动是流体力学中一门重要的分支学科,它在很多现代工程技术甚至医学中得到广泛的应用。可以认为,绝大多数的流动都是多相流动,纯粹的单相流动只是个别情况。降雾,下雨、下冰雹、云层流动、流沙、尘暴等是自然界中两相流动的一些例子。各种发动机和窖炉中的喷雾燃烧、核反应堆的冷却、宇航飞行器的两相绕流、含铝推进剂固体火箭发动机中的燃气流动、石油和天然气的开采和输运、热力设备与制冷系统的工作过程、化学工艺中的流态化、吸收、蒸发、凝结和化学反应过程、采矿和冶金过程中的旋流分离和输运、气力和液力输送、煤的气化和液化、煤粉和煤浆燃烧、空气和水的污染、环保、粉尘爆炸、血液的循环与凝固、水利工程中的泥沙运动和高速渗气流等工程实际问题无不与两相流动有关。离心泵是化工生产中最常见的装置之一,泵内流体的运动以及流体对泵的的磨蚀尤为突出,而两相流动的研究就是为设计泵以及如何防止这些机械磨蚀产生的基础和关键性的内容。近几年,两相流动己发展到与可压缩流体力学及边界层理论有同等重要的地位。因此固液两相流动及多相流动的研究不仅对流体力学的发展,而且对解决工程中的实际问题具有重大的理论价值和实际意义。 下面就离心泵叶轮内高浓度液-固两相湍流的大涡模拟为例阐述化工装置中两相流数学模型的建立、边界条件的确定以及求解方法的选择。 湍流大涡数值模拟(LES)是有别于直接数值模拟和雷诺平均模拟的一种数值模拟手段。利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。 1 大涡模拟 1.1 大涡模拟的基本思想 湍流运动是由许多尺度不同的旋涡组成的。那些大旋涡对于平均流动有比较明显的影响,而那些小旋涡通过非线性作用对大尺度运动产生影响。大量的质量、热量、动量、能量交换是通过大涡实现的,而小涡的作用表现为耗散。流场的形状,阻碍物的存在,对大旋涡有比较大的影响,使它具有更明显的各向异性。小旋涡则不然,它们有更多的共性,更接近各向同性,因而较易于建立有普遍意义的模型。基于上述物理基础,LES把包括脉动运动在内的湍流瞬时运动量通过滤

相关主题
文本预览
相关文档 最新文档