当前位置:文档之家› 污水污泥干化工艺安全性的理论和实践---1

污水污泥干化工艺安全性的理论和实践---1

污水污泥干化工艺安全性的理论和实践---1
污水污泥干化工艺安全性的理论和实践---1

时间:2008-04-18 11:07 排水委员会第四届第二次年会

王立彤1,陈君宏2,张春敏3

(1. 天津市政工程设计研究院,天津 300051;2. 意大利Vomm公司;3. 中国市政工程华

北设计研究院,天津 300074)

过去的20多年间,在污泥减量填埋、减量焚烧、无害化土地利用以及其它污泥资源化的实践和摸索中,污泥干化逐步成为能够大规模减量、无害化和资源化处置的有效工艺之一,也是某些污泥最终处置的预处理方法。

污泥干化最初是因其高效的减量、无害化效果而受到欢迎的。由于发达国家的填埋场地有限、土地昂贵,与填埋工艺相比,干化工艺因高效的减量化而具有非常高的竞争力,因此成本问题并没有成为人们关注的重心。

随着污泥干化厂数量的增加,欧洲和北美干化厂的事故也时有发生,从污泥的自燃,到设备的爆炸;从个别小型附属设备,到整个干燥生产线;无论有无制造或运行同类干化设备的经验,无论安全措施设计得多么复杂、完备,污泥干化厂事故始终没有断绝;许多知名设备企业主动退出了污泥干化领域,甚至一些污泥干化项目停止了运行。

众多事故使得一些国家委托了专门的研究机构,对污泥干化制定行业技术导引、规范、标准等。欧盟在1994年就制定了爆炸性气体设备和运行操作标准(ATEX),并于2003年的7月1日全面强制实施。所以安全性的确是污泥干化工艺非常值得关注的焦点。

本文就污泥干化工艺类型及其安全性与同行商榷。

1 污泥干化工艺类型

干燥工艺设备类型很多,但根据热能供给形式和换热形式分类,可以分为三个基本类型,即:直接+热对流、间接+热传导和间接+混合。由于能耗、安全性及投资等诸方面原因,到目前为至,真正实现大规模工业化应用的干化设备有以下几种:

转鼓式(rotary dryers)直接+热对流

转碟式(disc dryers)间接+热传导

圆盘式(paddle dryers)间接+热传导

流化床式(fluidized bed dryers)间接+热对流

涡轮薄层式(turbo thin film dryer)间接+热对流+热传导

可以说,上述形式代表了世界当前污泥干化工艺的主流。

2 污泥干化工艺安全性分析

2.1 粉尘浓度

由于污泥在全干状态下(含固率>80%)一般呈微细颗粒状,粒径较小,因此,物料之间、物料和干燥器之间、物料和介质之间的摩擦、碰撞使得干化环境中可能产生大量粒径低于1 50 μm的超细颗粒—粉尘。这种高有机质含量的粉尘,在一定的氧气、温度和点燃能量条件下可能发生燃烧和爆炸,即所谓“粉尘爆炸”。为什么粉尘不燃烧而发生爆炸?原因在于一定氧气含量和点燃能量条件下,在局部空间、均匀混合和处于悬浮态的粉尘必须达到一定的浓度才可能引发燃烧,这个能够导致燃烧的最低浓度值,就是该条件下的“粉尘爆炸下限”。一般认为有机质粉尘的爆炸浓度下限为20 ~ 60 g/m3,市政污泥的取值大约在40 ~ 60 g/ m3之间。污泥干化涉及一系列设备,系统的输送、提升、混合、筛分、粉碎、储存、过滤等操作,由这些操作形成的每一个界面都是粉尘危险区。

2.2 氧气含量

粉尘燃烧另一个基本条件是具有一定的氧气含量。在一定粉尘浓度和点燃能量下,能够引起燃烧的最低氧气含量称为“最低含氧量(LOC)”。根据研究,保护性气体类型(按顺序氮气、二氧化碳、蒸汽)的不同,分别在5%、6%、10%左右。

2.3 点燃能量

污泥粉尘必须具备一定的点燃能量。根据研究,市政污泥的点燃能量要求小至几个到十几个毫焦。通常的一个参考量是温度,温度在20℃时,污泥的点燃能量也不会超过10毫焦。

而由于一般的干化系统均必须具备一定的温度,典型值在85 ~ 125℃之间,此时的点燃能量低至10 ~ 100毫焦,由此可以认为,干化系统事实上无法在运行和维护过程中彻底避免点燃源的存在。由于污泥的点燃能量很低,而干化工艺本身就是凭借温度进行的,加上污泥干化所涉及的一系列设备以及污泥在干燥器内本身的流动,即使在静电、金属碰撞等条件都得到控制的情况下,污泥燃烧所需要的点火能量基本上是一个难以避免的问题。

2.4 含湿量

气体的含湿量虽然归根结底仍然是氧气问题,但由于蒸发所产生的湿度是最有效的惰性气体,对于提高干化系统的安全性有着重要意义,一个干燥系统的湿度就成为降低粉尘浓度、提高点燃能量、降低氧气含量,从而提高整体系统安全性的重要手段。

3 影响污泥干化安全的主要因素

3.1 干燥工艺的自身缺陷

① 设备先天性缺陷

从七十年代以来,世界各国开发和试验过污泥的干化技术,研制了污泥干化设备和装置,这些试验和研制几乎全部借鉴于农产品、化工、医药、食品等领域的干燥工艺过程和干燥设备。其方法均是在上述领域原有的干燥器基础上进行污泥的干化试验,其中有成功的,但是更多的是失败的。其原因在于并非所有干燥工艺均适合于污泥这种物料的干化。

② 配套设施的可靠性

干燥设备只是干化系统的一部分,还涉及大量附属设备,其中包括分离、过滤、筛分、粉碎、混合、输送、提升、储存、供热等。根据工艺不同,辅助配套数量有很大变化。总体来说,设备数量和关键点越多,对系统的稳定性影响越大。绝大部分事故不是源于干燥器本身,而是由辅助配套设施引起的。

③ 操作复杂性和人员素质

干燥器的原理决定了工艺的区别。而不同的工艺,所具有的工艺变量的数量是不同的,工艺变量越多,系统越复杂,操作难度也越高。污泥干化属于废物垃圾处理范畴,其操作人

员的素质难以要求很高。对一个污泥干化厂来说,即使计算机监控和处理系统非常全面和敏捷,其出错的几率始终存在,特别是当这些互相牵制、互相影响的参数被错误调整时,极有可能形成误操作。

④ 排除险情手段的有效性

对于污泥干化工艺来说,在报警和紧急情况下进行排除险情的操作手段种类非常有限,而手段的有效性也存在很大差别。当一个系统的工艺安全性窗口过窄时,干预甚至难以奏效。一些大型事故的发生就在于系统对出现小事故后根本无法在短时间内彻底排除险情而导致的。鉴于污泥干化系统的投资规模,还必须考虑出现极端性事件(如整厂停电、自动安全系统失灵等)时的安全应变能力。

3.2 干燥工艺操作问题

① 干泥返混

进料泥饼的含固率变化范围较大,一般均在20% ~ 25%之间。这给大多数污泥干化设备带来了难题,这些系统无法直接处理含固率低于60%的污泥。解决办法就是采用干返混,将大量已经干燥到90%以上的细颗粒返回到系统中进行混合。污泥返混的结果,带来了粉尘量增加等一系列负面影响。而粉尘量增加和粉尘环境惰性化及其控制,对系统管理的复杂性提高。大多数干化工厂的事故均与这些设备相关,如过滤器的堵塞,筛分、仓储、提升和混合系统故障导致的焖燃等。

② 逆流工艺

逆流作用可以获得更高的处理效率,但由于污泥的粉尘爆炸性质,使得这一工艺仅在极为严格的惰性环境中才能存在。在一个干化系统中,某些干污泥颗粒由于不规则气流、挡板、通道折弯等的作用,可能形成逆流或紊流运动,这时与高热表面或气流相遇,就可能产生颗粒的过热,从而使粉尘增加。

③ 多变量工艺参数

对于污泥干化系统来说,变量越多,系统越复杂,可靠性越差,效率可能越低。这些变量包括:工艺气体的含氧量;工艺气体的速度、温度、压力;导热油温度、流量;湿泥进泥量、干泥进泥量、混合比例;含氧量等。

4 提高污泥干化安全性的主要措施

4.1 降低返混量

降低污泥返混量的方法,从能量和成本上考虑优势最明显。

4.2 降低含固率

降低最终污泥产品含固率(所谓半干化)是提高安全性的最有效方法之一。在一些工艺中已经得到运用。正是由于污泥处置的多途径特点,许多污泥最终处置恰恰要求低含固率产品,如填埋和焚烧。填埋的湿度应在含固率50% ~ 60%之间,过高则可能导致自燃,且难于使用现有机械摊铺;焚烧则要求50% ~ 65%之间,过高容易引起炉温飙升,形成半熔融和熔融物,在焚烧炉通道中堆积。

还有一些处置工艺要求湿度低于全干化。比如污泥裂解油化,由俄罗斯研究机构研制的一种催化装置可以实现有机物的裂解,其中污泥必须干燥到含固率70%,形成粒径低于2 50微米的超细粉末,在大量蒸汽存在下成为裂化的原料气。这一工艺是已知污泥能源化利用的少数高技术方案之一,对于贫油且污泥产量巨大的国家来说不失为一种良好的前景。

4.3 降低氧含量

干化系统必须实施闭环,同时,所有的干化都必须抽取一定量的气体排出闭环,从而避免干化系统中产生的不可凝气体(一类可燃气体)在回路中饱和,采用抽取的方式,使回路处于微负压状态,避免气体从别的出口、缝隙外溢。负压的形成,可能导致空气进入循环。在紧急停机-重新开机-关机-开机等操作过程中建立适当含氧量平衡前,必须使用惰性气体来控制回路,以避免加温和降温过程中,因含湿量的变化导致氧含量超标。

不同类型设备降低氧含量的方法:

① 直接加热的转鼓式干燥器

输入能源为高温燃烧烟气,烟气中的二氧化碳和氮气为主要成份,氧含量可能低于5%。保持这样的回路,即可实现低氧特征。但是由于烟气本身含有氧气,燃烧状况与氧气过剩量密切相关,燃料、燃烧条件的变化、波动、大量气体的排放和处理均会影响工艺过程。由于变量多,这一惰性环境的平衡相对说来较脆弱,必须依靠复杂的监控系统保持。正常运行条件下最低氧含量应少于6%。

② 间接工艺的转碟和圆盘式干燥器

依靠热传导进行干燥,理论上无需空气介质作为热和湿分携带的载体。然而,由于热传导本身的限制,对于高含固率的污泥,其传热效率较低,必须抽取微负压,形成一定量的气流,及时将湿分排出干燥器。由于其结构性的原因,内部热量分配不可能是均匀的,温度的分布也是不均衡,甚至不确定的。低速搅拌可能带来部分过热,特别是部分存在的逆流工艺(高热量与高含固率产品同侧,与高含湿量产品和湿气体出口逆向),可能导致小环境中的粉尘积聚、过热。此时,如果回路的微负压导致外部气体进入,将是非常危险的。其开机、停机等一切非常操作也都必须在严格的惰性环境下进行。蒸汽出口端的氧含量可能低于1%,而产品排出端的气体氧含量根据工艺稳定性变化。

③ 间接加热的流化床工艺

是所有工艺中气量最大的,原因在于物料的停留、翻动、搅拌均靠空气的动能实现。大气量、高气速均可能导致更多的粉尘,因此其氧含量要求更严格,正常运行条件下最低氧含量要求少于2%。

④ 涡轮薄层干化工艺

属于间接加热工艺,而在传热方式上属于两种热交换形式的混合型,因此其气量小于一般的热对流,约为直接对流工艺的二分之一,间接对流工艺的五分之一以下。回路在开机和关机时仍然要求惰性化,但基于其它有利条件(干物质总浓度可能低于所谓的爆炸下限,出口处气体含湿量高),正常运行状态下的最低氧含量允许10%。

4.4 污泥干燥安全参数的选定

由于污泥干化工艺与污泥的性质有着密不可分的关系,因此,判断一个系统是否适合该污泥的干化,以及采用什么样的运行参数,必须通过严格的试验才能获得。由于试验很难实现这些测试,所以普遍的做法是根据以往的经验,选择一个较高的安全值。

4.5 安全系统的构成与效能

污泥干化工艺的安全性是由工艺本身决定的。所有其它安全性措施均是对该工艺的补充。这些措施分别具有预防、干预和补救功能。典型的有:喷水系统;废热烟气/二氧化碳注射系统;氮气发生、贮藏、注射系统;湿度、压力、温度在线监测系统;在线氧气测量和反馈系统;泄压阀或爆破隔膜;制冷撤热系统;灭火装备和设施;隔离墙或屏障等。

具有预防性功能的如湿度、压力、温度测量属于必备设备,对于某些工艺来说氧气测量系统也是必备的。在正常开机、停机操作中使用的喷水系统、废热烟气/二氧化碳注射系统、氮气发生、贮藏、注射系统均属于具有一定预防性功能的设备。预防性干预在于及时、迅速地建立严格的惰性环境。蒸汽、二氧化碳、氮气的惰性化能力是不同的,使用喷水方式进行干预,有可能在几十秒钟内使环境迅速惰性化,且成本低廉;使用二氧化碳或氮气,要建立严格的惰性环境,所需时间较长,根据工艺的具体情况,有时甚至可能来不及形成惰性化,系统已经产生更大的破坏,此外维持在线的惰性气体发生系统涉及较高的成本支出。

当出现紧急状况时,系统一般均首先切断热源供应、湿泥进料,启动紧急干预措施,包括喷水、氮气、二氧化碳等以形成惰性化环境;启动制冷撤热设备,将热源撤出等。

当出现较大险情时,则有必要动用灭火装备进行扑救,疏散人员至隔离墙之外等。

另一个不容忽视的是极端情况下的系统安全性。一些国际大城市曾经发生瞬息之间全城断电的突发事件,对于一个干化厂来说,几率是始终存在的。因此,考察一个干化系统安全性的极端方法还可以比较在突然断电情况下如何保障系统的安全。逐项、逐段考察出现这一情况时,系统各个部位的状态,分别按照停机0.5、12、24、48小时的条件来判定其重新开启时的条件以及可能出现的安全问题,这些条件对于发现多数安全隐患和工艺问题是具有代表性的。

4.6 安全性操作维护条件

由于人员操作、维护不当导致事故发生是可能的。因此,简化操作,特别是创造一个宽松的操作、维护环境,使操作人员在保证健康的前提下,精力集中,特别是充满责任心地工作,是保持干化系统长期安全运行的必要条件。必要条件包括:开机参数少、操作运行相对简单、稳定性高;工艺窗口宽、允许的氧含量、温度变化幅度大、报警少;维护量少,无大量机械件、滤网、结垢物料频繁更换;紧急情况下处理方式简捷,且不造成系统必须冷机干预;维护的友好性是人员无需爬高,或钻入不卫生环境进行手工清理;操作环境周围无造成人身意外伤害的危险等。

5 结论

污泥干化是目前实现大规模污泥减量和污泥处置的重要措施。而安全性则是研究污泥干化的首要课题。由于污泥的性质的差异和干化工艺的复杂性,涉及安全性的某些要素难以确切认知和把握,使得污泥干化的安全性更为人们关注。

二十多年来的实践表明,干化工艺的安全生产是可以实现的,关键是消除隐患,选择、优化合理的工艺,保证安全生产。

新型污泥干化技术在印染污泥处理上的应用分析

新型污泥干化技术在印染污泥处理上的应用分析 发表时间:2020-04-03T09:45:19.553Z 来源:《城镇建设》2020年3期作者:衣启坤[导读] 印染污泥是指污水处理厂在污水处理过程中产生的污泥摘要:印染污泥是指污水处理厂在污水处理过程中产生的污泥。近年来,印染污水处理的发展增加了污水污泥的数量,因此,污泥的安全处理处置问题日益突出。 关键词:新型污泥干化;印染污泥处理;应用前言 国内固废处理尚在发展阶段,干化焚烧联运工艺较为复杂,建设难度较高,近年来国内成功的案例不多,且含有多种重金属以及硫化物、苯系物、酚类等,散发恶臭气味,含有易燃易爆物质,在选择处理工艺时需考虑防爆问题。 1工艺流程污水处理场产生的有机泥经污泥浓缩罐重力浓缩脱水后送至离心脱水机,脱水后的湿污泥含水率约为80% ~85% ,经过干化处理后含水率降至30%。污泥的干化是基于薄层涡轮干化技术,利用1.0 MPa 蒸汽作为热源,从干化机出来的干泥和工艺气体一起进入旋风分离器,分离后的干泥通过冷却输送机送往焚烧炉,工艺气体进入文丘里洗涤塔除尘后,由离心风机抽取并循环到闭环干化回路中。为了保持闭环 干化回路微负压,与湿污泥水分蒸发量相等的一股工艺气体从闭环干化回路中抽出,经过冷凝后的臭气被送往污水处理场臭气处理系统进行处理。干化后的污泥进入回转窑中进行焚烧,回转窑的转速在0.2~1.5 r/min 间可调,污泥在850 ℃的环境下停留1.5~2.0 h,焚烧后的炉渣经水降温后外运,焚烧产生的烟气,由窑体尾部进入二燃室,烟气在1 100 ℃以上的高温条件,停留时间不小于2 s,避免二噁英产生。从二燃室出来的高温烟气进入余热锅炉,利用烟气中的余热加热除氧水生产1.0 MPa 的饱和蒸汽,换热后烟气进入经由急冷塔-布袋除尘器-湿式洗涤塔-烟气再热器等烟气处理后高空排放。 2材料和方法 2.1 实验材料和设备 铁粉取自某机械加工产生的废铁屑,经脱油处理后采用氮气保护的球磨机粉碎至100 目;污泥碳粉来自以热解法处理印染污泥制备的污泥碳粉;砂质页岩取自浙江湖州太湖周边的砂质页岩。污泥碳粉和砂质页岩分别放于105 ℃电热恒温鼓风干燥箱内干燥至恒重并粉碎至100目。污泥碳灰分(600 ℃,有氧煅烧)及砂质页岩的化学成分组成采用X 射线荧光光谱仪(XPS,S8TIGER,德国Bruker)进行测试;污泥碳和砂质页岩的总无机碳(TIC)测试采用日本岛津TOC-5000A 总有机碳分析仪进行测定.印染废水取自浙江省湖州市诚泽水务印染废水处理厂的气浮出水。实验使用的药剂均为AR 级,药剂配制使用的水为经RO 膜反渗透处理后的水.主要试剂有:硫酸(H2SO4,ρ=1.84 g/mL;重铬酸钾(K2Cr2O7)溶液,C=0.250 mol/L;硫酸汞(HgSO4)溶液,ρ=100 g/L;酒石酸钾钠(KNaC4H6O6·4H2O),ρ=500 g/L;实验设备有DHG-9246A 电热恒温鼓风干燥箱(上海精宏实验设备有限公司);BY-600 荸荠式包衣机(长沙旭朗机械科技有限公司);YQD-06 全自动制丸机(广州市杨鹰医疗器械有限公司);RTL1500×3 三段式转动管式炉(南京博蕴通仪器科技有限公司);5B-3B(V8)多参数水质测定仪(北京连华永兴科技发展有限公司)。 2.2自制微电解反应装置 自制微电解反应装置,反应装置截面积为50 cm2,高度500 mm,5 个单独的微电解反应装置均由聚丙烯材料制成.距反应器底部10 cm 设有滤板将反应器划分为进水区与反应区,进水区设置曝气头和进水口并分别与风机和蠕动泵相连,反应区填充400 mm 高度的污泥碳微电解材料(体积为2L),每隔10 cm 设置4 个取样管,在反应区顶端设置出水口。 2.3水质及为电解材料的测试方法 CODCr 依据重铬酸盐法测试方法(GB 11914-89),采用5B-3B(V8)多参数水质测定仪(北京连华永兴科技有限公司)测定,具体测试方法为:取水样2.5 mL 于消解管中,依次加入重铬酸钾(K2Cr2O7)溶液0.7 mL,H2SO4-Ag2SO4 溶液4.8 mL,摇匀后放入消解槽内于165℃消解10 min,水浴冷却至室温后放入仪器进行测试。氨氮采用5B-3B(V8)多参数水质测定仪(北京连华永兴科技有限公司),按照GB 7479-87 纳氏试剂比色法进行测定,具体测试方法为:取水样10 mL 于试管中,依次加入酒石酸钾钠(KNaC4H6O6·4H2O)溶液1 mL,纳氏试剂1.5 mL,混匀放置10 min 后放入仪器进行测试。为了测试的准确性,每个样本至少重复测试三次并取平均值。 3结果与讨论 3.1 污泥碳粉和砂质页岩化学组成分析 污泥碳粉和砂质页岩的TIC 测试结果分别为化学组成XPS 测试结果和TIC 测试结果表明,砂质页岩中的SiO2(62.47%)含量远超过污泥碳粉SiO2(15.29%)含量,但其Al2O3(25.37%)的含量远低于污泥碳分中Al2O3(46.07%)含量。污泥碳中高比例Al2O3 主要来源于污水处理过程中大量使用的聚合氯化铝絮凝剂(PAC)导致的,Si 和Al 元素是陶粒骨架成分的主要组成部分。而污泥碳粉中的气态组分(主要是Fe2O3)含量接近砂质页岩所含气态组分的两倍,因此推断污泥碳粉为陶粒的成孔性能具有极大的作用并且可以起到降低陶粒堆积密度的作用。需要尤其注意的是:污泥碳粉中重金属含量高,这与印染或者染料制造过程中的催化剂、金属类染料等有直接关系。最后,污泥碳粉中无机含碳量高,这主要与诚泽水务的印染废水主要是纤维类工艺品有关.因此,相比市政污泥碳,印染和染料污泥制备的污泥碳具有碳含量高和重金属含量高的特点。 3.2 污泥碳内电解材料性能影响参数分析 采用Minitab17 软件,进行三因素五水平L25(53)的设计(见表2)以考察各因素对污泥碳微电解材料性能的影响.以印染气浮池出水CODCr 和氨氮去除率作为相应值。烧结温度为800、900、1000 ℃,反应180 min 后,污泥碳材料对印染气浮池出水CODCr 去除率分别为42.85%、50.94%、44.55%,对氨氮的去除率分别为28.05%、41.38%、30.12%。在烧结温度低于900 ℃时,污泥碳材料对印染废水CODCr 和氨氮的去除率随着温度的升高在逐渐升高,当高于900 ℃时,随着温度的升高对废水CODCr 和氨氮的去除率在逐渐降低,这可能是由于烧结温度在800 ℃时,温度偏低,材料处理过程中容易松散脱落,脱落过程导致出水色度增大,同时材料稳定性差,都会降低处理效果。在1000 ℃时温度过高,材料内部已达到熔融状态,砂质页岩和污泥碳粉中的玻璃相组分会熔化,使铁屑和污泥碳粉表面活性降低,会阻碍铁碳原电池与氨氮和有机物的接触,从而影响CODCr 和氨氮处理效果。 4 结论

污泥石灰稳定干化工艺

污泥石灰稳定干化工艺 2011-9-14 11:36:09 北京梅凯尼克环保科技有限公司 字号:【字号大中小】点击:504 打印转发 【导读】污泥石灰稳定干化工艺是现今国内新开发出的一种运用添加剂对城市污水处理厂污泥进行干燥、稳定化和资源化处理的方法。该技术具有无二次污染、安全性高、投资少、污泥干化后产品可资源化利用的优点。 工艺概述: 污泥石灰稳定干化工艺是现今国内新开发出的一种运用添加剂对城市污水处理厂污泥进行干燥、稳定化和资源化处理的方法。采用生石灰发热剂,通过污泥高效干燥系统对有机酸腐污泥进行干燥、脱水、改性后,向稳定化无机材料转化。干化后的污泥渣可以替代水泥原料中的石灰石,实现污泥的资源化,并解决污泥处理过程中的二次污染问题。另外,根据氢氧化钙脱水变成氧化钙这一原理,处理物经高温煅烧后,添加剂可回收反复使用,实现了原材料的循环使用。该技术具有无二次污染、安全性高、投资少、污泥干化后产品可资源化利用的优点。 工艺原理: 化合反应:污水厂脱水污泥与固化材料混合搅拌后,污泥中的水分与固化材料中的生石灰反应后生成消石灰并释放大量热,掌握适当的添加量,在处理过程中可以使污泥迅速升温至100度以上,短时间内大量水蒸汽被蒸发,达到干燥、脱水及杀菌的目的。 工艺流程: 含水率80%的污泥由螺旋输送机送至料仓暂存,通过计量输送装置使污泥和生石灰按质量比4:1的配比分别送入物料反应系统。在物料反应系统内,污泥和生石灰发生化合反应,使系统内的温度迅速升高到100度,污泥中的水份被大量蒸发,完成污泥的干燥、脱水过程。干化后的污泥通过双螺旋混合器输送至室

外堆置棚进行堆置贮存。为防止污泥干化工程中产生二次污染,可以通过添加除尘、除臭设备实现对排放出的石灰粉尘和恶臭气体的处理。 工艺特点: 1、成本低,占地面积小 2、自动化设备,操作管理简单; 3、提高污泥含固率,使操作、运输更方便; 4、可以有效除臭除味,减少带菌物; 5、可以有效消灭细菌原体,且无细菌原体再生的风险; 6、干化产物富含含大量氢氧化钙、氧化硅、碳酸钙等物质,可以作为建筑材料的基材、道路基础辅 7、料、垃圾填埋场的垫层土、道路施工用的回填土等使用。 处理效果: 污泥经生石灰稳定干化处理后,含水率可迅速降低至40%左右,堆置8天后,含水率可降至5%,有机物含量可由45%降至8%,TN含量降至1%,大肠杆菌及粪大肠杆菌可完全消除。 主要工艺设备: 混合进料系统: 混合进料系统的主要设备为定量输送装置。污泥螺旋输送机及固化材料输送机分别将脱水后的污泥及固化材料输送至物料反应系统料仓,料仓内设双螺旋搅拌器,污泥和固化材料在双螺旋反向旋转推动的作用下混合均匀并进入物料反应系统。 物料反应系统: 物料反应系统的主要设备为物料反应器。在反应器内,污泥及固化材料随螺旋一起旋转,充分混合并发生化合反应,释放大量热能,使污泥中的水份被大量蒸发,达到干化的目的。反应器封闭式设计,使干化过程中产生的废气及粉尘便于收集处理,无二次污染的问题。污泥输送系统:污泥输送系统的主要设备为无轴螺旋输送机。干化后的污泥由螺旋输送机送至室外堆置。整个输送过程中无掉渣掉料现象,保持环境清洁。 废气、粉尘收集处理系统: 该系统主要设备为湿式除尘装置。污泥在干化过程中逸出的大量臭气和粉尘通过管道收集进入除尘装置,可以有效去除异味、降低粉尘浓度,其中粉尘的去除率可以达到80%以上。

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,

通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为 4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。

污泥干化工艺比较

污泥干化工艺比较 This model paper was revised by the Standardization Office on December 10, 2020

污泥干化工艺比较 污泥干化(sludge drying),通过渗滤或蒸发等作用,从污泥中去除大部分含水量的过程,一般指采用污泥干化场(床)等自蒸发设施。 污泥的处理和处置已经成为一个敏感的全球环境问题,污泥干化焚烧可以使污泥的体积减少到最小化(减量90%以上);可以回收能量,用于污泥自身的干化或发电供热;能够使有机物全部碳化,杀死病原体,使污泥彻底无害化。但污水处理厂产生的污泥因含水率高,不能简单作为发电燃料应用,污泥要作为发电燃料,必须进行干化处理。 干化了的污泥的处理方法相较于湿污泥也灵活多样,它可以作为辅助燃料与煤混合燃烧,提供热能,做到循环利用,也可作为堆肥的辅料等。 1 污泥干化所需能源比较 干化的主要成本在于热能,降低成本的关键在于是否能够选择和利用恰当的热源。 干化工艺根据加热方式的不同,其可利用的能源来源有一定区别,一般来说间接加热方式可以使用所有的能源,其利用的差别仅在温度、压力和效率。直接加热方式则因能源种类不同,受到一定限制,其中燃煤炉、焚烧炉的烟气因量大和腐蚀性污染物存在而难以使用,蒸汽因其特性无法利用。 按照能源的成本,从低到高,分列如下: 烟气:来自大型工业、环保基础设施(垃圾焚烧炉、电站、窑炉、化工设施)的废热烟气是零成本能源,如果能够加以利用,是热干化的最佳能源。温度必须高,地点必须近,否则难以利用。

燃煤:非常廉价的能源,以烟气加热导热油或蒸汽,可以获得较高的经济可行性。尾气处理方案是可行的。 热干气:来自化工企业的废能。 沼气:可以直接燃烧供热,价格低廉,也较清洁,但供应不稳定。 蒸汽:清洁,较经济,可以直接全部利用,但是将降低系统效率,提高折旧比例。可以考虑部分利用的方案。 燃油:较为经济,以烟气加热导热油或蒸汽,或直接加热利用。 天然气:清洁能源,但是价格最高,以烟气加热导热油或蒸汽,或直接加热利用。 2 污泥干化工艺介绍 目前污泥干化的工艺比较多,有带式干化、薄层干化、流化床干化、桨叶式干化等。 下面主要介绍一下带式干化、薄层干化技术。所需能源为蒸汽。 低温带式干化工艺 带式干化为中低温干化(≦150℃或≦100℃),其余为高温干化(≧200℃)。 工艺优点 A、节能:采用热电工段多余的低温蒸汽作为热源,节省大量的热能。 B、安全:污泥本身在蒸发时温度不超过 80℃,因此不存在燃烧、爆炸等危险,因此系统是很安全的。无需对氧浓度进行控制,也无需导入惰性气体。

污泥干化焚烧处理技术.

污泥干化焚烧处理技术 公司简介: 华西能源工业股份有限公司(原东方锅炉工业集团有限公司)位于四川省自贡市,是我国大型电站锅炉、大型电站辅机、特种锅炉研发制造商和出口基地之一。华西能源一直专注于各类大中型电站锅炉以及世界先进动力技术的研发、设计和制造,开发了具有国内领先水平的以煤粉、煤矸石、水煤浆、油页岩、石油焦、油气、高炉煤气及工业废弃物与生活废弃物等为燃料的高新锅炉技术,并发展成为我国专业从事电站锅炉、碱回收锅炉、生物质燃料锅炉、垃圾焚烧锅炉、油泥砂锅炉、高炉煤气锅炉、工业锅炉以及其它各类特种锅炉研发、设计、制造的大型骨干企业。 污泥干化焚烧技术来源 华西能源和韩国HANSOL EME等国外知名公司合作,可以提供湿污泥直接焚烧系统、污泥干化焚烧系统、污泥全干化系统及污泥半干化系统的设计、供货、建设、运营、维护的全方位服务,也可提供技术咨询、工艺设计、核心及配套设备集成供货等多种形式服务。

污泥热处理的优势 焚烧 (最大程度的 细菌和微生

污泥处理技术 干化: 间接水平转碟式干化机 焚烧: 具有高效能量回收的流化床炉 污泥含水率和有机物含量对燃烧的影响 我国污水处理厂机械脱水污泥含水率多在80~83%(含固率在17~20%),有机物含量大多数在60%以下。从污泥的含固率和有机物含量对燃烧的影响曲线可以看到,污泥直接焚烧不能依靠自身的热量维持燃烧温度,要自持燃烧,污泥的含水率要小于70%。

污泥含固率和有机物含量对燃烧的影响曲线 “全干化”和“半干化”的选择 ?“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。 ?将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。但全干化对干化系统的安全监测和措施要求更高,同样处理能力的干化机换热面积更大。这是因为污泥在不同的干燥条件下失去水分的速率是不一样的,当含湿量高时失水速率高,相反则降低。 ?含固率的选择要根据最终处置目的。对于干化焚烧,根据能量平衡和燃烧温度计算,一般采用半干化较为经济。 污泥干化焚烧 污泥干化焚烧系统组成

污泥干化处理新技术

污泥干化处理新技术(伯特利污泥干化法) 伯特利是一家美国公司,专注于洁净技术,主要是矿业、化工、市政以及电力行业的涉及脱水、干化等方面的工艺处理。伯特利在天津设有工厂,在北方设有代表处。伯特利的产品线,包括干化系统,其一是低温射流干化,其二是微波干化。除此之外,还有干法分选设备、筛分设备、离心脱水设备,它们更多的是应用于矿业领域。伯特利之所以敢于突破自我、以后来者的身份强力进入污泥干化领域,其核心竞争力在于一套“污泥低温射流干化系统”。而该系统,则是完全不同于传统的热干化工艺的全新工艺系统。 干化过程耗时仅为3秒 该系统采取全新的机械干化方法,它能够在常温不借助外界热源的情况下,将物料中的水分分离,达到干化的目的。这是一种高效的非热传递原理的干燥方法。樊京念称,该工艺利用音障原理,热水解的过程全部在管道中完成,80%湿污泥从进入管道,到干化出来,全部过程只需3秒钟。“其原理与大家常见的‘爆米花’类似,在从加压到释放压力的过程中,水分瞬间消失”,樊京念补充到。7大特点造就便捷、高效 据介绍,伯特利的理念是致力于提供更经济、高效的污泥干化与资源化利用技术,为客户寻求经济效益与社会效益的最佳平衡点。而“污泥低温射流干化系统”具有的7大特点为行业便捷与高效地处置污泥提供了一种可能。 特点一:非蒸发工艺。整个干化过程温度控制在60℃以内,干化过程中不需要外接加热设备,完全是非蒸发工艺。 特点二:安全可靠。处理过程在常温常压之下,因此安全性方面没有任何隐患,可以做到安全可靠。 特点三:不需要添加任何的调理剂。包括石灰、三氯化铁等。 特点四:低温工艺。可以有效降低恶臭气体的排放。 特点五:有杀菌的作用。在热水解的过程中突然释放压力,压差的变化会让细胞壁破裂,经第三方机构检测,热水解过程对于大肠杆菌的灭活率可以达到95%以上。 特点六:有机质损失率低。由于只是低温加热,其中的有机质挥发损失极小,经

全封闭污泥干化技术与设备

全封闭污泥干化技术与设备 一、污泥干燥焚烧 污泥焚烧工艺依照焚烧方式又分为直截了当焚烧和干燥焚烧两种。 污泥的直截了当焚烧是将高湿污泥在辅助燃料作为热源的情形下直截了当在焚烧炉内焚烧。由于污泥的含水量大、热值低,只有加入辅助燃料(煤、重油、柴油等)的情形下,污泥才能燃烧,耗费大量能源。由于污泥含水量大,焚烧后的尾气量也比较大,后续尾气处理需要庞大的设备,操作操纵难度大,相应造成后续喷淋塔、除雾塔等设备处理量大大增加,同时使设备投资和系统运行费用大大提高。 为了降低污泥处理运行费用和提高污泥焚烧效率,将污泥的直截了当焚烧改造为污泥经干燥后焚烧,因此需要配套污泥干燥设备系统。 污泥的干燥焚烧目的是高效、安全的实现污泥的完全矿化。在焚烧工艺前面采纳污泥干燥工艺的目的是实现污泥的减量化,节约后续焚烧处置的费用。污泥中大量的水分在干燥时期被除去,后续的焚烧炉将比直截了当燃烧时的体积减小,尾气处理系统在设备体积减小的同时,由于水蒸气含量的减少,处理难度会降低而效率会增加。 污泥干燥焚烧把污泥中的水分进行干燥处理后,配以适当比例的煤灰,焚烧产生热能发电。尽管一次性投资稍高,但由于它具有其它工艺不可代替的优点,专门在污泥量的消减上,卫生化,最终出路上,处置占地面积上,都有其他工艺无法比拟的优势,是一种污泥最终出路的解决方法,在污泥的最终处置方面将有着广泛的前景。 污泥的干燥最早是在二十世纪四十年代开发的,通过几十年的进展,污泥干燥的优点正逐步显现出来:干燥后的污泥与湿污泥相比,能够大幅度减小体积,从而减小了储存空间,以含水的湿污泥为例,干燥至含水30%时,体积能够减小;形成颗粒或粉状的稳固产品,使污泥形状大大改善;最终产品无臭且无病原体,减轻了污泥的有关负面效应,使处理的污泥更容易被同意;干化后的高热值污泥也能够替代能源,实现变废为宝。 1、污泥干燥的机理 干燥是为了去除水分,水分的去除要经历两个要紧过程: (1)蒸发过程:物料表面的水分汽化,由于物料表面的水蒸气压低于介质(气体)中的水蒸气分压,水分从物料表面移入介质。 (2)扩散过程:是与汽化紧密相关的传质过程。当物料表面水分被蒸发掉,形成物料表面的湿度低于物料内部湿度,现在,需要热量的推动力将水分从内部转移到表面。 上述两个过程的连续、交替进行,差不多上反映了干燥的机理。

欧洲污泥干化焚烧处理技术的应用与发展趋势

欧洲污泥干化焚烧处理技术的应用与发展趋势 黄凌军 杜 红 鲁承虎 黄国民 提要 介绍了德国、意大利、奥地利、比利时及荷兰欧洲五国共八个代表性的污泥处理处置厂的工艺要点及运行状况,分析论述了欧洲污泥处理处置方式的发展趋势。结合我国国情特点及个人工程经验,对污泥干化焚烧技术在我国的应用从技术路线发展、工艺选择、规划、建设等方面进行了具体的探讨。 关键词 污泥处理 干化焚烧 应用 欧洲 污泥干化焚烧技术在欧洲应用已有20多年。该技术是多学科与技术应用领域的交叉融合,主要利用热力学与流体力学的原理,结合机械与材料技术,进行污泥处置,可以很好地达到“减量化、无害化、资源化”的污泥处理处置目标。本文针对德国、意大利、奥地利、比利时及荷兰欧洲五国的八个污泥处理处置厂的情况,介绍污泥干化焚烧技术在欧洲的应用及欧洲污泥处理处置方式的发展前景,对该技术在我国的应用进行了探讨。1 污泥处理处置厂介绍 目前污泥干化焚烧的主要工艺有:对流方式传热的流化床(WABA G)、转鼓干燥器(Andritz),传导加热方式的立式转盘(SEGHERS)、卧式转盘(Atlas2 stord),对流与传导加热相结合的涡轮薄膜干化(VOMM)及INNO二级干化(Schwing)。用于污泥处理的焚烧炉主要是流化床焚烧炉。以下介绍采用上述工艺在欧洲污泥处理处置厂的应用与运行状况。 八个厂的基本情况见表1。 表1 污 泥 处 理 处 置 厂 概 况 序号名 称国家处理能力主要设备投产时间设备制造商最终处置 1CONSORZIO CUOIO DEPUR S1P1A1 意大利100tDS/d涡轮薄膜干燥器 一期1996 二期2001 意大利VOMM公司填埋 2Graz2G ossendorf Sewage Sludge Drying Plant 奥地利约33tDS/d转鼓干燥器1997奥地利Andritz焚烧 3PVS Wien奥地利115tDS/d 薄膜蒸发器+带 式干燥器 2001美国Schwing焚烧 4Aquafin N.V. Dijkstraat8-B-2630 Aartselaar 比利时10000tDS/a流化床2001德国WABA G焚烧 5WWWTP Stuttgart德国84tDS/d 转盘式干燥机, 流化床焚烧炉 Ⅰ线1984 Ⅱ线1992 德国BAMA G公司总包, 干化设备分别由Atlas2 stord与WUL FF提供。 灰分填埋 6Aquafin N1V1 Waterzuiveruing W1Z1K1 比利时20000tDS/a 硬颗粒造粒机, 流化床焚烧炉 造粒机2001 焚烧炉1985 比利时SEGHERS表面覆土 7Aquafin N1V1 RWZI Deurne Antwerpen 比利时10000tDS/a硬颗粒造粒机1998比利时SEGHERS焚烧 8SNB N.V.Slibverwerking Noord Brabant 荷兰365tDS/d 转盘式干燥机, 流化床焚烧炉 1997 德国BAMA G总包 焚烧炉THYSSEN 干燥器Atlas2stord 建筑材料 给水排水 V ol129 N o111 200319

污泥干化的安全意识及危险防范

污泥干化的安全意识及危险防范 1 安全意识的重要性 污泥是所有垃圾中最难处理的一种,其本身的特性决定了我们从一开始就应该抱着极为慎重的态度来对待。 1.1 安全问题涉及干化的全过程 干燥器内以及后续处理工艺的粉尘量取决于不同的干燥工艺。所有干燥工艺中,有部分工艺会产生粉尘。污水污泥产生的粉尘是St1级的爆炸粉尘,其粉尘爆炸常数范围为0~200 bar.m.sec-1。根据干化厂的设计,主干燥器中、粉尘收集和处理装置、造粒和最终处理装置均有潜在的粉尘爆炸的危险。干燥后,干燥设施内的干燥产品也可因自热导致燃烧或因另有空气加入导致燃烧的加剧。储料仓的干燥产品也可能自燃。在欧美已经发生了很多起干燥器爆炸/着火和附属设施着火的事件。 1.2 安全隐患的不可预见性 干化的难点一般被认为是开机、停机、紧急停机、尤其是短暂停机后重新启动时。 开机时,原有设备中会有一定的干泥留存,此时,温度升高后,干燥器内的氧气水平接近外部环境,极少量的干泥遇到大量的热,将

会迅速蒸发掉表面水分,干泥表面形成过热,此时形成的粉尘团就变得极为危险; 同样,关机时,由于上料器不再喂料,此时,热量仍然大量存在,干燥器内的总蒸汽浓度下降,热量的撤除需要一定时间,大量的余热可能对残留的物料形成焖燃,此时也将形成危险的环境; 然而,危险并不限于此,往往在人们自以为最安全的时候,一些特殊因素的变化常常是意想不到的: (1)因为操作失误如絮凝剂增加,或脱水机器运行异常,导致污泥含水率突然下降; (2)因为天气、停机等原因,一些在空气中部分干化、含水率低的污泥混入; (3)污水进水导致污泥的物理/化学特性发生较大变化。工业废物,如造纸纤维、食物废渣、脂肪、油脂和清洁剂,意外事件的污染物如汽油泄漏等; (4)不同来源的污泥混入,如污水处理工艺添加三氯化铁等; (5)由于储存、搬运等条件的异常,金属或碎石混入污泥。 以上诸多原因,都可能严重影响干化工艺的安全性。 1.3 干化系统的安全余量非常有限

吨污泥干化方案

15吨污水厂污泥处置方案 一、我们推荐的污泥处理工艺技术路线 1、我们的工艺路线: 我们认为《国家城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行) 》中提出“最佳”与“可行技术”是符合目前中国污泥处置工业国情的,中国在一定时期内的技术、经济发展水平和环境管理要相适应。在经济和技术许可的条件下要因地制宜,在考虑成本和综合效益的前提下,综合整体地考虑污泥处置方案。通过技术和管理措施使污染污泥处理能够实现达标排放,同时达到高水平的整体的环境保护效果。 2、我们建议的污泥处置出处: 污泥中含有具有潜在利用价值的有机质,氮、磷、钾和各种微量元素,寄生虫卵、病原微生物等致病物质,铜、锌、铬等重金属,以及多氯联苯、二噁英等难降解有毒有害物质,如不妥善处理,易造成二次污染.我们认为处理后的污泥或污泥产品在环境中或利用过程中达到长期稳定,并对人体健康和生态环境不产生有害影响才是最终消纳方法。 对于一些污水厂所在地区的工业经济比较发达而且没有空余土地消纳污泥的可以采取对污泥进行适当处理后作为生产水泥的辅助燃料或电厂补充燃料。 3、我们推荐电渗透污泥干化方法的理由。 污水厂污泥是市政污泥,市政污泥的细胞水含量多且具有发热量,低位发热量约为2000-3400大卡/吨干污泥。如卖给发电厂做燃料每吨干泥可以产生2000-3300大卡的热量,现在5500大卡的热量的燃煤在中国买到800元/吨左右,而且用量每天很大,火电厂都有烟气和粉尘处理设施,如把干燥后的污泥(90%含固率)作为燃料送到发电厂,不仅可以产生效益,而且合理利用电厂环保设施

资源,避免投资浪费(污水厂减少处理污泥的环保投入),高效环保的最终处置了污泥,而且污泥作为燃料发挥了自身最大化的利用率,真正做到了再生能源。 并且我们认为电能是今后发展的主要能源,而且风力发电、太阳能发电、潮汐发电、水力发电等不消耗矿产资源的绿色发电方法越来越多,2020年绿色电能将占我国总发电量的40%这样许多工业企业都将利用电能这种低成本绿色可持续能源作为主要生产能源,随着电力工业发展逐渐走向一条清洁高效环保之路,电费也随之降低。所以利用电能这种经济清洁能源作为污泥转化生产能源的这条路发展方向是正确的。 4、污泥低温燃料化 解决能源危机的途径 ⑴节能 《中华人民共和国节约能源法》1997通过,2007修订,2008年4月1日实施。2007年12月《中华人民共和国能源法》征求意见稿出台。 ⑵能源综合利用 上述2个方法无法避免世界一次能源必将枯竭的局面,未来能源的出路在哪里,资源要综合、循环利用才是出路。2005通过《中华人民共和国可再生能源法》

城市污泥干化处理课程设计

城市污泥干化处理课程设计 一、课程设计基础资料 广州污水处理厂污泥干化工程即将大规模启动,广州市水务局计划推动西朗污水厂、沥滘污水厂、京溪地下净水厂、大坦沙污水厂和猎德污水厂等污泥干化减量工程。按照计划,将要求相关污水处理厂建设污泥干化减量设施,再将干化污泥运输至水泥厂、电厂和垃圾焚烧厂直接焚烧。从而实现所有污泥都可以在广州本地处理,不再产生臭气扰民的同时还能够实现资源化利用。 某污水处理厂按照污水厂规模10万立方米/日(20万立方米/日、50万立方米/日),配套建设污泥处理系统,折合干基污泥约15吨/日(30吨/日、75吨/日)。将在厂内新建污泥脱水干化车间,配套物料分选系统、板框压滤系统、热干化系统、热源供给和回收系统、废气净化除湿系统,生物除臭系统,以及浓缩、调理、出料等相关辅助设备。污泥在厂内进行处理后,含水率从原来的80%以上,降低到30%~40%。 本课程设计的目的和要求:能够将数学、自然科学、工程基础和专业知识用于解决固体废物处理与资源化方面的复杂工程问题。运用深入的工程原理通过系统分析解决复杂工程问题,重点如下:1、设计多种技术、工程和其他因素,分析其中存在的冲突,做到扬长避短,尽量做到互相借鉴;2、通过建立合适的抽象模型解决工程问题,建模过程中需要体现出创造性(建立模型可理解为利用有关工程原理进行合理的情景分析和预测,提出解决思路);3、以常用的技术方法为基础,从多学科交叉和方法移用方面体现出创新性,以推动问题的解决;4、分析有关专业标准和规范中所涉及的因素是否全面,找出或发掘解决复杂问题的关键因素,并对标准和规范进行拓展;5、技术方法的确定方面,既要考虑处理效率和环保政策要求,又要考虑经济成本的可接受性,还需考虑短期和长远的发展预期;6、提出解决方案需要综合考虑经济、环境和社会效益,也需要采用综合性的解决思路和多学科工程技术的集成,还需考虑固体废物、废水、废气的全面有效处理,也需考虑技术的可行性、选用设备的处理能力和组合方式、工程应用的安全性等,即从多角度、多层次、多阶段、整体性等方面综合性解决。

天通三菱污泥干化处置技术 Microsoft Word 文档

利用水泥窑协同处置污泥技术介绍 时间:2011-07-14 10:14来源:中国水网作者: 利用水泥窑来处置危险废物是近年来国际、国内流行的一项新技术,污泥可以作为水泥生产的燃料,焚烧后的产物可以作为水泥生产的添加材料;之前有企业直接将潮湿的污泥泵送入窑尾烟室中,没有进行预烘干处理,这样虽然节省出烘干处理的费用;但是由于潮湿污泥直接进入工作温度在1000多度的烟室后,会造成烟室内温度出现较大的波动,生成的碱性物质相对复杂,受热不均导致耐火材料表面易出现结皮现象,直接焚烧对水泥生产线的稳定运行造成很大的问题,甚至水泥品质受到了极大影响。国内也有少量水泥厂是干化后焚烧的,包括进口国外昂贵的干化核心设备,和采用烟气干化后焚烧,但是这些技术工艺目前都不够理想,集中表现在设备长期运行的磨耗累积严重,大量的废烟气难以处置,以及系统配置以及稳定可靠运行程度不高,也是目前国内污泥处置的难点所在。 天通三菱污泥干化处置技术适应中国国情,在国内发达城市污泥处置领域受到主流用户的青睐。 天通控股股份有限公司(TDG)位于浙江省海宁市,始建于1984年。TDG与日本三菱、日立等公司有十多年的合作关系,近年来从三菱公司全套引进适合中国国情的污泥“干化+焚烧”处置工艺。成为三菱公司在中国大陆唯一授权的圆盘干燥机制造商。天通污泥干化设备生产制作获得日方认可。 圆盘式干燥机,与以往的单轴式或多轴式相比具有:传热面积大,坚固耐用,产生磨耗的倾向小,更能促进水份的蒸发和去除等诸多优点。 TDG污泥干化工艺利用水泥窑处置污水厂污泥的工艺情况如下图所示。 来自厂外的湿污泥经汽运并计量后,进入湿污泥料仓储存,污泥料仓中的污泥再被送入干燥机内干化。水泥窑的余热锅炉产生的蒸汽经圆盘干化机把热量传递给湿污泥,在干燥机内污泥被加热干燥,水分从80%降低到30%或10%。干燥后的颗粒经冷却螺旋冷却后污泥颗粒送入水泥窑中焚烧。干燥分离的尾气经过离心机抽取,尾气进入冷凝器冷凝成液体,干燥回路在微负压下进行,并将干燥所蒸发出的冷凝液排出,冷却过程产生的少量废水可送

污泥干化详细方案

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处理流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,中国南方大多数具有多雨潮湿季节的地区难以适用。另外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),能够采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。

1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,一般人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,经过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处理适用性好和灵活性高等优点。 污泥热力干化工艺一般有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后经过高强度机械压滤析出达到高干的目的。一般污泥

污水厂污泥干化技术的运用研究

污水厂污泥干化技术的运用研究 发表时间:2019-02-26T14:40:26.007Z 来源:《防护工程》2018年第33期作者:程善平[导读] 污泥是城市污水处理后的一种衍生物,其中含有大量的水、重金属、病原体、有机物质等。安徽省城建设计研究总院股份有限公司安徽合肥 230041 摘要:污泥是城市污水处理后的一种衍生物,其中含有大量的水、重金属、病原体、有机物质等。污泥处理的方法很多,但是不论哪种处理方法,都要经过干化,这是污泥减量化的重要途径。本文将对污泥干化技术及主要设备进行综述探讨。 关键词:污水厂;污泥干化;技术运用 导言 污泥是城市污水处理后的一种衍生物,其中含有大量的水、重金属、病原体、有机物质等。如果污泥处理不当,不仅会增加污泥运输和后续处理的难度,还会污染水体、土壤等,对周围环境和居民身体健康造成极大的威胁。我国常用的污泥处理方法有填埋、堆肥、焚烧及土地利用等,但污水厂污泥含水率高,无法直接处理和利用,因此,首先需要先对污水厂污泥进行干化处理以后才能进行后续处理、处置和综合利用。 1污泥干化机理 污泥干化的主要目的是去除或减少污泥中的水分。干化过程中,污泥的形态主要分为三个阶段:第一阶段,湿区阶段,污泥含水率较高,大于60%,具有很好的自由流动性,易于流入干化装置;第二阶段,黏滞区阶段,污泥含水率略有降低,在40%~60%的范围内,具有一定的黏性,不易自由流动,该区域是污泥干化处理过程中需要避免的区域;第三阶段,粒状区阶段,污泥含水率降至40%以下,污泥呈现颗粒状,极易与湿污泥或其它物质混合。 污泥水分的脱除过程主要分为两个阶段:污泥表面水分的汽化蒸发过程和污泥内部水分的扩散过程:(1)蒸发过程:它主要指的是污泥在干化的过程中,寄存在物料表面上的水分发生汽化。而介质中的水蒸气分压远远高于物料表面的水蒸气压。因此,在气压的差异作用下,水分从物料表面移入介质。(2)扩散过程:这个过程与汽化的关系非常密切,属于一种传质过程。当物料表面经历蒸发过程后,其表面上的水分会被蒸发掉,物料表面和内部发热湿度产生差异,这时就需要热量的推动力将水分从内部转移到表面。在污泥的干化处理中,蒸发过程和扩散过程的持续、交替就是污泥干化的机理。 2城市污水处理厂不同污泥干化工艺 2.1调理--压榨干化工艺 调理--压榨干化工艺的流程为:将污水处理厂浓缩池污泥泵送至综合调理池,投加专用调理剂和石灰后进行混合搅拌,使其充分混合,再经污泥泵送至板框压滤机进行压榨脱水,压榨干化后的污泥外运进行后续处置,污泥脱水滤液排入污水处理厂水处理单元。 调理--压榨干化工艺的特点及优势为:调理剂配方多样(包括化学类调理剂、生物类调理剂等),调理剂选择时可根据当地实际条件,选择价格合理、用量少、材料易得、调理效果好,也可根据后续污泥资源化利用方式不同来灵活调整调理剂配方;根据污泥特性,选择适宜的板框压滤机滤布,在保证处理效果的前提下有效延长滤布使用寿命;调理、进料、压榨均采用在线监测、自动控制全流程系统可实现智能控制。 2.2加钙稳定干化工艺 将机械脱水后污泥(含水率80%左右)与生石灰(CaO)等添加剂充分混合,生石灰与水发生反应,产生大量热量来蒸发污泥中的水分,降低污泥含水率。经加钙干化工艺处理后,污泥固化率提高且pH值发生变化,在碱性环境及放热反应下杀灭大量细菌、病毒,同时钝化重金属、分解污泥中的有机物,消除了污泥恶臭气味,污泥得到有效稳定。对脱水后污泥采用加钙稳定干化工艺进行处理,不必新增工程占地面积,污泥干化工艺系统设备可设置于污水处理厂污泥储运间内运行,对污水处理厂原污泥处理区平面布置、工艺流程设计基本未产生影响,在保证出料含水率≤60%的前提下,能够与原设计最佳适应与结合。 加钙稳定干化工艺也可以通过调整系统配置,灵活的与其它多种工艺进行衔接,满足污泥不同的处置要求。处理后的污泥泥质(pH、重金属、有机污染物含量、细菌和病毒等指标)满足与城市垃圾混合填埋或进行制砖、水泥填料及路基填料等资源化利用要求。 2.3生物沥浸干化工艺 生物沥浸干化工艺是一种新型的污泥深度脱水生物技术,城市污水处理厂污泥处理中,用具有特殊能力的微生物菌群(例如嗜酸性硫杆菌)接种浓缩污泥,同时供应少量的专用营养剂,对污泥进行改性处理。经改性处理后,污泥恶臭明显消除,大量致病菌被杀灭,污泥沉降性能增强,脱水性提高,重金属去除。 将生物沥浸干化工艺与污水处理厂处理工艺结合时,可设置在原污泥浓缩池后,污泥浓缩池排放直接通过污泥泵提升进入生物沥浸反应池,采用该技术可以处理含水率96%~98%左右的浓缩污泥;经生物改性后的污泥沉降性大大提高,经污泥沉淀池后可直接进入板框脱水机压滤脱水,脱水过程无需再添加传统絮凝剂,出料为含水率55%~60%左右的高干度泥饼。 3新型污泥干化技术 3.1水热干化技术 该方法通过水热反应对污泥改性,破坏污泥细胞结构和胶体结构,提高其脱水性能,该技术已趋成熟,污泥水热处理相变热和能耗较低,但也存在一些局限性。 3.2油炸干化技术 该工艺常用各种回收废弃油为热介质,将污泥浸于热油中煎炸,通过控制操作条件提高传热效率,实现污泥快速脱水干化。目前该技术尚处于起步阶段,其实际应用过程中的经济性和环境安全性尚有待探讨。 4污泥干化设备 4.1直接干化 4.1.1带有内破碎装置的回转圆筒干燥机

污泥干化系统方案市政污泥造粒循环冷却

污泥干化系统方案市政污 泥造粒循环冷却 The following text is amended on 12 November 2020.

北控环保工程技术有限公司污泥干化项目 初步技术方案 Turbo Thin Film Technology For Waste Treatment 世界领先的涡轮薄层干燥技术应用于环境废弃物处置

目录 1.项目概况.............................................. 错误!未定义书签。设计目的....................................................... 错误!未定义书签。 主要设计条件................................................... 错误!未定义书签。 2.设计数据................................................ 错误!未定义书签。供应方工作范围................................................. 错误!未定义书签。 工艺设计数据................................................... 错误!未定义书签。 辅助设施可用性................................................. 错误!未定义书签。 预期消耗....................................................... 错误!未定义书签。 排放........................................................... 错误!未定义书签。 3.方案工艺描述............................................ 错误!未定义书签。污泥处置系统工艺选择........................................... 错误!未定义书签。 工艺介绍和描述................................................ 错误!未定义书签。 工艺系统的特点................................................ 错误!未定义书签。 4 方案系统设计............................................ 错误!未定义书签。主要工艺设备清单............................................... 错误!未定义书签。 电气和自动化系统............................................... 错误!未定义书签。 仪器仪表....................................................... 错误!未定义书签。 管线系统....................................................... 错误!未定义书签。 系统平面布置................................................... 错误!未定义书签。 5.系统设备投资估算和活性污泥减量处置经济测算.............. 错误!未定义书签。 6.供应商简介.............................................. 错误!未定义书签。 7. 全球部分环保污泥处置业绩表............................. 错误!未定义书签。 8. 国内部分项目应用情况简介............................... 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档