当前位置:文档之家› 微分电路的设计

微分电路的设计

微分电路的设计
微分电路的设计

微分方程在电气中的应用

电气工程案例在大学数学教学中的应用研究 2018年7月-8月 一、一阶微分方程 当电路中的储能元件(电容C和电感L)的数目仅有一个,而电阻R的数目可以不论,由于描述这种电路性状的是一阶微分方程,故称为一阶电路,一阶电路可分为RC(电阻电容)电路和RL(电阻电感)电路。 从产生电路响应的原因来讲,响应可以是由独立电源的激励,即输入引起的;或者是由储能元件的初始状态引起的;也可以是由独立电源和储能元件的初始状态共同作用下产生的。 因此,按激励和响应的因果关系可划分为如下3种类型的响应。 (1)零输入响应——电路中没有电源的激励,即输入为0,响应是由初始时刻储能元件的中储存的电磁能量所产生的。 (2)零状态响应——储能元件的初始状态为0,仅由电源激励所引起的响应。 (3)全响应——由电源的输入激励与储能元件的初始能量共同作用下所产生的响应。 接下来,我们分别考虑RC电路的零输入响应和零状态响应两个案例在一阶微分方程教学中的应用。 1、一阶可分离变量微分方程(一阶齐次线性微分方程) RC电路的零输入响应(RC zero-input response) 如上图(a)所示的电路中,换路前的电路是由电压源和电容C连接而成,电容电压()=,其中表示换路前的瞬间;在时,将开关从位置1改接到位置2,于是电容C将通过电阻R放电,如图(c)所示,电容C的电压由它的初始值开始,随着时间的增长而逐渐减少,最后趋近于零。在该放电过程中电容C初始储存的电场能量,通过电阻R全总转换为热能发散出去。此时电路中的响应仅由电容C的初始状态引起,故为零输入响应。 为定量分析电容电压和电流的变化规律需要确立微分方程。根据上图(b)中的电流和电压的参考方向,应用基尔霍夫定律列出电压方程 ; ; ,; 在和两个电路变量中,选取作为求解对象,应用上述一组关系,建立关于

积分电路和微分电路

积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图。 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达: i = (V/R)e-(t/CR) ?i--充电电流(A); ?V--输入信号电压(V); ?C--电阻值(欧姆); ?e--自然对数常数(2.71828);

?t--信号电压作用时间(秒); ?CR--R、C常数(R*C) 由此我们可以找输出部分即电容上的电压为V-i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): Vc = V[1-e-(t/CR)]

微分电路 微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。图1给出了一个标准的微分电路形式。为表达方便,这里我们使输入为频率为50Hz的方波,经过微分电路后,输出为变化很陡峭的曲线。图2是用示波器显示的输入和输出的波形。 当第一个方波电压加在微分电路的两端(输入端)时,电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的上升而下降。电流经过微分电路(R、C)的规律可用下面的公式来表达(可参考右图): i = (V/R)e-(t/CR)

?i-充电电流(A); ?v-输入信号电压(V); ?R-电路电阻值(欧姆); ?C-电路电容值(F); ?e-自然对数常数(2.71828); ?t-信号电压作用时间(秒); ?CR-R、C常数(R*C) 由此我们可以看出输出部分即电阻上的电压为i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): iR = V[e-(t/CR)]

电路微分方程解法

第七章 二阶电路 用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。 ◆ 重点: 1. 电路微分方程的建立 2. 特征根的重要意义 3. 微分方程解的物理意义 ◆ 难点: 1. 电路微分的解及其物理意义 2. 不同特征根的讨论计算 7.0 知识复习 一、二阶齐次微分方程的通解形式 0'''=++cy by ay ,其特征方程为:02 =++c bp ap ,特征根:a ac b a b p 44222 ,1-±-=。 当特征方程有不同的实根1p 、2p 时,t p t p e A e A y 2121+= 当特征方程有相同的实根p 时,pt e t A A y )(21+= 当特征方程有共轭的复根ω±δ-=j p 2,1时,)sin cos (21)(t A t A e e y t t j ω+ω==δ-ω+δ- 二、欧拉公式 β+β=β sin cos j e j 2 )sin() ()(j e e t t j t j β+ω-β+ω-=β+ω β-β=β -sin cos j e j 2 )cos() ()(β+ω-β+ω+= β+ωt j t j e e t 7.1 二阶电路的零输入响应 7.1.1 二阶电路中的能量振荡 在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。

+ U 0 C L _ - _ C L + (d) 图8-1 LC 电路中的能量振荡 设电容的初始电压为0U ,电感的初始电流为零。在初始时刻,能量全部存储于电容中,电感中没有 储能。此时电流为零,电流的变化率不为零(0≠==dt di L u u L C Θ,0≠∴dt di ) ,这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。当电容电压下降到零时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I 0,此时电场能全部转化为电磁能,存储在电感中。 电容电压虽然为零,但其变化率不为零(00≠===dt du C I i i C L C Θ,0≠∴dt du C ),电路中的电流 从I 0逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只是极性与开始相反。 之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再次从电场能转化为电磁能,直到电容电压的大小与极性与初始情况一致,电路回到初始情况。 上述过程将不断重复,电路中的电压与电流也就形成周而复始的等幅振荡。 可以想象,当存在耗能元件时的情况。一种可能是电阻较小,电路仍然可以形成振荡,但由于能量在电场能与电磁能之间转化时,不断地被电阻元件消耗掉,所以形成的振荡为减幅振荡,即幅度随着时间衰减到零;另一种可能是电阻较大,电容存储的能量在第一次转移时就有大部分被电阻消耗掉,电路中的能量已经不可能在电场能与电磁能之间往返转移,电压、电流将直接衰减到零。 7.1.2 二阶电路的微分方程 二阶电路如下,其中电容电压的初始值为0)0()0(U u u C C ==-+,电感电流的初始值为 0)0()0(==-+L L i i 。 图8-2 R 、L 、C 串联的二阶电路 根据该电路列写电路方程为0=++-L R C u u u 其电路电流为:dt du C i C -= 因此:dt du RC Ri u C R -==,2 2dt u d LC dt di L u C R -==

电路微分方程解法,DOC

第七章二阶电路 用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。 ◆ 重点: 1. 电路微分方程的建立 ''+ay 7.1.1在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。 设电容的初始电压为0U ,电感的初始电流为零。在初始时刻,能量全部存储于电容中,电感中没有储 能。此时电流为零,电流的变化率不为零(0≠==dt di L u u L C ,0≠∴dt di ) ,这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。当电容电压下降到零时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I 0,此时电场能全部转化为电磁能,存储在电感中。 电容电压虽然为零,但其变化率不为零(00≠===dt du C I i i C L C ,0≠∴dt du C ),电路中的电流从I 0

逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只是极性与开始相反。 之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再次从电场能转化为电磁能,直到电容电压的大小与极性与初始情况一致,电路回到初始情况。 上述过程将不断重复,电路中的电压与电流也就形成周而复始的等幅振荡。 可以想象,当存在耗能元件时的情况。一种可能是电阻较小,电路仍然可以形成振荡,但由于能量在电场能与电磁能之间转化时,不断地被电阻元件消耗掉,所以形成的振荡为减幅振荡,即幅度随着时间衰减到零;另一种可能是电阻较大,电容存储的能量在第一次转移时就有大部分被电阻消耗掉,电路 7.1.2值为 0(+L i 7.1.37.1.41.过阻尼的条件 当LC L R 122 > ?? ? ??,即C L R 2>(C L R 42>)时,特征根1p 、2p 为不相等的负实数。 此时固有频率为不相等的负实数, 2.过阻尼时的响应 当特征根为不相等的实数时,方程的解的形式为 其中:

仿真实验一-RC微分积分电路

一、RC 一阶微积分电路仿真实验 一、电路课程设计目的 1、测定RC 一阶电路的积分、微分电路; 2、掌握有关微分电路和积分电路的概念。 二、仿真电路设计原理 1.RC 电路的矩形脉冲响应 若将矩形脉冲序列信号加在电 压初值为零的RC 串联电路上, 电路的瞬变过程就周期性地发 生了。显然,RC 电路的脉冲响 应就是连续的电容充放电过程。 如图所示。 若矩形脉冲的幅度为U ,脉宽为 tp 。电容上的电压可表示为: 电阻上的电压可表示为: 21010 0)(0)1()(t t t e U t u t t e U t u t t ≤≤?=≤≤-=-- ττ 即当 0到t1时,电容被充电;当t1到t2 时,电容器经电阻R 放电。 2110 )(0)(t t t e U t u t t e U t u t R t R ≤≤?-=≤≤?=-- ττ (也可以这样解释:电容两端电压不能突变,电流可以,所以反映在图中就是电阻两端的电压发生了突变。) 2.RC 微分电路 取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

上式说明,输出电压uo(t)近似地与输入电压ui(t)成微分关系,所以这种电路称微分电路。 3.RC 积分电路 如果将RC 电路的电容两端作为输出端,电路参数满足τ>>tp 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为: ????≈?=?==dt t u RC dt R t u C dt t i C t u t u R R C C )(1)(1)(1)()(0 上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系。 4.时间常数 RC 电路中,时间常数τ=R*C ; RL 电路中,时间常数τ=L/R 。 三、仿真实验电路搭建与测试 1、一阶RC 微分电路: 1u c u

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

电路微分与积分电路

微分电路与积分电路分析 积分与微分电路 (ZT) 转贴电子资料2010-11-23 10:51:25 阅读166 评论1字号:大中小订阅 积分与微分电路 积分电路与微分电路是噪讯对策上的基本,同时也是具备对照特性的模拟电路。事实上积分电路与微分电路还细分成数种电路,分别是执行真积分/微分的完全积分/微分电路,以及具有与积分/微分不同特性的不完全积分/微分电路。除此之外积分/微分电路又分成主动与被动电路,被动型电路无法实现完全积分/微分,因此被动型电路全部都是不完全电路。 积分/微分电路必需发挥频率特性,为了使电路具备频率特性使用具备频率特性的电子组件,例如电容器与电感器等等。 被动电路 不完全积分/微分电路 图1是被动型不完全积分电路,如图所示组合具备相同特性的电路与,就可以制作上述两种电 路。 图1与图2分别是使用电容器与电感器的电路,使用电容器的电路制作成本比较低,外形尺寸比较低小,容易取得接近理想性的组件,若无特殊理由建议读者使用电容器的构成的电路。此外本文所有内容原则上全部以电容器的构成的电路为范例作说明。

图1与图2的两电路只要更换串联与并联的组件,同时取代电容器与电感器,就可以制作特性相同的电路。 不完全积分电路与微分电路一词,表示应该有所谓的完全积分电路与微分电路存在,然而完全积分电路与微分电路却无法以被动型电路制作,必需以主动型电路制作。 不完全积分电路与微分电路具有历史性的含义,主要原因是过去无法获得增幅器的时代,无法以主动型电路制作真的积分/微分电路,不得已使用不完全积分/微分电路。 由于不完全积分/微分电路本身具备与真的积分/微分电路相异特性,因此至今还具有应用价值而不是单纯的代用品。 不完全积分/微分电路又称为积分/微分电路,它的特性与真积分/微分电路相异,单纯的积分/微分电路极易与真积分/微分电路产生混淆,因此本讲座将它区分成: *完全积分电路/微分电路 *不完全积分电路/微分电路 不完全积分电路的应用 不完全积分电路属于低通滤波器的一种,它与1次滤波器都是同一类型的电路,不完全积分电路经常被当成噪讯滤波器使用,广泛应用在模拟电路、数字电路等领域。此处假设: T: 时定数 R: 阻抗 C: 电容 : 切除(cut-off)频率 如此一来: 图3是不完全积分电路的频率特性,虽然不完全积分电路属于模拟电路,不过在数字电路中它可以产生一定的延迟,因此不完全积分电路经常被当作延迟电路使用。不完全积分电路比纯数字电路更简易、低价、省空间(图4),然缺点是它的时间精度很低只能作概略性应用。图4的缓冲器为施密特触发器(schmitt trigger)。

二阶非齐次线性微分方程的解法.

目 录 待定系数法 常数变异法 幂级数法 特征根法 升阶法 降阶法 关键词:微分方程,特解,通解, 二阶齐次线性微分方程 常系数微分方程 待定系数法 解决常系数齐次线性微分方程[]21220, (1) d x dx L x a a x dt dt ≡++= 12,. a a 这里是常数 特征方程212()0F a a λλλ=++= (1.1) (1)特征根是单根的情形 设 12,,,n λλλ 是特征方程的 (1.1)的2个彼此不相等的根,则相应的方程 (1)有如 下2个解: 12,t t e e λλ (1.2) 如果(1,2)i i λ=均为实数,则 (1.2)是方程 (1)的2个线性无关的实值解,而方程 (1)的通解可表示为 1212t t x c e c e λλ=+ 如果方程有复根,则因方程的系数是实系数,复根将成对共轭出现。设 i λαβ=+是一特征根,则i λαβ=-也是特征根,因而与这对共轭复根对应,方程 (1)有两个复值解 (i)t (cos t sin ),t e e i t αβαββ+=+

(i)t (cos t sin ).t e e i t αβαββ-=- 它们的实部和虚部也是方程的解。这样一来,对应于特征方程的一对共轭复根 i λαβ=±,我们可求得方程 (1)的两个实值解 cos ,sin .t t e t e t ααββ (2)特征根有重跟的情形 若10λ=特征方程的 k 重零根,对应于方程 (1)的k 个线性无关的解21 1,t,t ,k t - 。 若这个 k 重零根10, λ≠设特征根为12,,,,m λλλ 其重数为 1212,,,k (k 2)m m k k k k ++= 。方程 (1)的解为 11112222111,t ,t ;,t ,t ;;,t ,t ;m m m m t t k t t t k t t t k t e e e e e e e e e λλλλλλλλλ--- 对于特征方程有复重根的情况,譬如假设i λαβ=+是k 重特征根,则i λαβ=- 也是k 重特征根,可以得到方程 (1)的2k 个实值解 2121cos ,cos ,cos ,,cos ,sin ,sin ,sin ,,sin .t t t k t t t t k t e t te t t e t t e t e t te t t e t t e t ααααααααββββββββ-- 例1 求方程 220d x x dt -=的通解。 解 特征方程 210λ-=的根为121,1λλ==-有两个实根,均是单根,故方程的通 解为 12,t t x c e c e -=+ 这里12,c c 是任意常数。 例2 求解方程 220d x x dt +=的通解。 解 特征方程 210λ+=的根为12,i i λλ==-有两个复根, 均是单根,故方程的通解 为 12sin cos ,x c t c t =+

微分和积分电路的异同

电子知识 微分电路(13)积分电路(20) 输出电压与输入电压成微分关系的电路为微分电路,通常由电容和电阻组成;输出电压与输入电压成积分关系的电路为积分电路,通常由电阻和电容组成。微分电路、积分电路可以分别产生尖脉冲和三角波形的响应。积分运算和微分运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,他们还广泛应用于波形的产生和变换以及仪器仪表之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 (一)积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 (二)他们被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。 (三)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接把方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当

uo1=-Uz时,uo将线性上升;从而产生三角波,这时你就会发现两种方法产生的三角波的效果还是第二种的好,因为第一种方法产生的三角波线性度太差,而且如果带负载后将会使电路的性能发生变化。你可以用我说的这两种方法分别试试就知道差别优势了。 积分电路和微分电路当然是对信号求积分与求微分的电路了,它最简单的构成是一个运算放大器,一个电阻R和一个电容C,运放的负极接地,正极接电容,输出端Uo再与正极接接一个电阻就是微分电路,设正极输入Ui,则Uo=-RC(dUi/dt)。 当电容位置和电阻互换一下就是积分电路,Uo=-1/RC*(Ui 对时间t的积分),这两种电路就是用来求积分与微分的。方波输入积分电路积分出来就是三角波,而输入微分电路出来就是尖脉冲。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

一阶常系数线性齐次微分方程组的求解

一阶常系数线性齐次微分方程组的求解 【模型准备】一只虫子在平面直角坐标系内爬行. 开始时位于点P 0(1, 0)处. 如果知道虫子在点P (x , y )处沿x 轴正向的速率为4x - 5y , 沿y 轴正向的速率为2x - 3y . 如何确定虫子爬行的轨迹的参数方程? 图31 虫子爬行的轨迹 【模型假设】设t 时刻虫子所处位置的坐标为(x (t ), y (t )). 【模型构成】由已知条件和上述假设可知 d 45,d d 23,d x x y t y x y t ?=-????=-??而且(x (0), y (0)) = (1, 0). 现要由此得出虫子爬行的轨迹的参数方程. 【模型求解】令A =4523-?? ?-?? , 则|λE -A | =4523λλ--+= (λ+1)(λ-2). 可见A 的特征值为λ1 = -1, λ2 = 2. (-E -A )x = 0的一个基础解系为: ξ1 = (1, 1)T ; (2E -A )x = 0的一个基础解系为: ξ2 = (5, 2)T . 令P = (ξ1, ξ2), 则P -1AP =1002-?? ??? . 记X =x y ?? ???, Y =u v ?? ??? , 并且作线性变换X = PY , 则Y = P -1X , d d t Y = P -1d d t X = P -1AX = P -1APY =1002-?? ??? Y , 即 d d d d u t v t ?? ???=1002-?? ???u v ?? ??? , 故u = c 1e -t , v = c 2e 2t , 即Y =122t t c e c e -?? ??? . 因而 12c c ?? ??? = Y |t =0 = P -1X |t =0 =2/35/31/31/3-?? ?-??10?? ???=2/31/3-?? ???. 于是 x y O 1 何去何从?

积分电路和微分电路

什么是积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 基本积分电路: 积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 原理:从图得,Uo=Uc=(1/C)/icdt,因Ui=UR+Uo当t=to 时,Uc=Oo随后C 充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c) / icdt=(1/RC) / Uidt 这就是输出Uo正比于输入Ui的积分(/ Uidt ) RC电路的积分条件:RO Tk 积分电路的作用: 积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。 微分电路 可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换

的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10 就可以了。 积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图 R=10K o輸出 匚=0-3 F=5OHZ o ---- 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达:

电路微分方程解法

电路微分方程解法 Revised final draft November 26, 2020

第七章 二阶电路 用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。 重点: 1. 电路微分方程的建立 2. 特征根的重要意义 3. 微分方程解的物理意义 难点: 1. 电路微分的解及其物理意义 2. 不同特征根的讨论计算 知识复习 一、二阶齐次微分方程的通解形式 0'''=++cy by ay ,其特征方程为:02 =++c bp ap ,特征根:a ac b a b p 44222 ,1-±-=。 当特征方程有不同的实根1p 、2p 时,t p t p e A e A y 2121+= 当特征方程有相同的实根p 时,pt e t A A y )(21+= 当特征方程有共轭的复根ω±δ-=j p 2,1时,)sin cos (21)(t A t A e e y t t j ω+ω==δ-ω+δ- 二、欧拉公式 二阶电路的零输入响应 二阶电路中的能量振荡 在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。 设电容的初始电压为0U ,电感的初始电流为零。在初始时刻,能量全部存储于电容中,电感中没有储能。此时电流为零,电流的变化率不为零(0≠==dt di L u u L C ,0≠∴dt di ),这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。当电容电压下降到零 时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I 0,此时电场能全部转化为电磁能,存储在电感中。 电容电压虽然为零,但其变化率不为零(00≠===dt du C I i i C L C ,0≠∴dt du C ),电路中的电流从I 0逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降 到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只是极性与开始相反。 之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再

一阶线性非齐次微分方程

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 []y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 【例1】求方程 dy dx y x x -+=+21 132() 的通解。 解:] 23)1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23)1([22)1(ln )1(ln dx e x c e x x +-+??++?= =+?++-?()[()]x c x dx 1121 2 =+?++()[()]x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

微分与积分电路分析

一、微分电路 输出信号与输入信号的微分成正比的电路,称为微分电路。 原理:从图一得:Uo=Ric=RC(duc/dt),因Ui=Uc+Uo,当,t=to时,Uc=0,所以Uo=Uio随后C充电,因RC≤Tk,充电很快,可以认为Uc≈Ui,则有: Uo=RC(duc/dt)=RC(dui/dt)---------------------式一 这就是输出Uo正比于输入Ui的微分(dui/dt) RC电路的微分条件:RC≤Tk 图一、微分电路 二、积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图2得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk, 充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c)∫icdt=(1/RC)∫icdt 这就是输出Uo正比于输入Ui的积分(∫icdt) RC电路的积分条件:RC≥Tk 图2、积分电路 微分电路电路结构如图W-1,微分电路可 把矩形波转换为尖脉冲波,此电路的输出波 形只反映输入波形的突变部分,即只有输入 波形发生突变的瞬间才有输出。而对恒定部 分则没有输出。输出的尖脉冲波形的宽度与 R*C有关(即电路的时间常数),R*C越小, 尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路 电路结构如图J-1,积分电路可将矩形 脉冲波转换为锯齿波或三角波,还可将锯 齿波转换为抛物波。电路原理很简单,都 是基于电容的冲放电原理,这里就不详细 说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于

积分电路与微分电路

积分电路与微分电路 积分电路和微分电路实验的目的和要求 1: (1)进一步掌握微分电路和积分电路的相关知识(2)学会使用运算放大器形成积分微分电路 (3)设计了一个RC差分电路,将方波转换成锐脉冲波(4)设计了一个RC积分电路,将方波转换成三角波(5)进一步学习和熟悉Multisim软件的使用(6)得出分析结论,写出模拟经验 工作原理: 积分电路: 积分是一种常见的数学运算,同时积分电路是一种常见的波形转换电路,它是一种将矩形脉冲(或方波)转换成三角波的电路最简单的集成电路(一阶RC电路)在 实验中,增加了一个运算放大器。原理图如下: 使用虚拟接地和虚拟断路的概念:n?0,i1?i2?I,电流为i1的电容器c?充电V1/电阻假设电容器c的初始电压为vc(o)?0,输出电压为 1 V0=?钢筋混凝土?vdt 1的上述公式表明,输出电压V0是输入电压Vi随时间的积分,负号表示它们相位相反。

当输入信号Vi为阶跃电压(方波)时,电容将在其作用下以近似恒定的电流模式充电,输出电压V0与时间t近似线性,因此 viviv??t。?到 RC?其中τ=R C是 中的时间常数由此可以推断,运算放大器的输出电压的最大V om受到DC调节电源的限制,这导致运算放大器进入饱和状态,V o保持不变,并且积分停止 差分电路: 替换积分电路中的电阻和电容元件,并选择较小的时间常数RC,以获得如图4所示的差分电路该电路还具有虚拟接地和虚拟断路 图4差分电路与运算放大器 设置t=0,电容的初始电压Vc(0)=0,当信号卡电压Vi连接时,dvii??c有1个dtdv??RC odt 的公式显示,输出电压V o与输入电压Vi相对于时间的微分成比例,负号表示它们的相位相反。当输入信号是方波时,电路可以将方波转换成尖峰脉冲波。 实验内容 我们先画出差分和积分电路图,然后进行实验,观察输出波形 差分电路图:

试求图示电路的微分方程和传递函数

2-1 习 题 2-1 试求图示电路的微分方程和传递函数。 2-2 ur 为输入量,电动机的转速ω为输 出量,试绘制系统的方框图,并求系统的传递函数) () ( ,)( )(s M s s U s L r ΩΩ。(ML 为负载转矩,J 为电动机的转动惯量,f 为粘性摩擦系数,Ra 和La 分别为电枢回路的总电阻和总电感,Kf 为测速发动机的反馈系数)。 2-3 图示电路,二极管是一个非线性元件,其电流d i 和电压d u 之间的关系为)1(10026.0/6-=-d u d e i ,假设系统 工作在u 0=2.39V ,i 0=2.19×10-3A 平衡点,试求在工作点 (u 0,i 0)附近d i =f (d u )的线性化方程。 2-4 试求图示网络的传递函数,并讨论负载效应问题。

2-2 2-5 求图示运算放大器构成的网络的传递函数。 2-6 已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 2-7 分别求图示系统的传递函数)()(11s R s C 、)()(12s R s C 、)()(21s R s C 、)()(22s R s C 2-8 绘出图示系统的信号流图,并求传递函数)(/)()(s R s C s G

2-3 2-9 试绘出图示系统的信号流图,求系统输出C (s )。 2-10 求图示系统的传递函数C (s )/R (s )。 2-11 已知单位负反馈系统的开环传递函数 ] 4)4)[(1(234)(2223++++++=s s s s s s s G 1. 试用MA TLAB 求取系统的闭环模型; 2. 试用MA TLAB 求取系统的开环模和闭环零极点。 2-12 如图所示系统 1. 试用MA TLAB 化简结构图,并计算系统的闭环传递函数;

微分积分电路

一、矩形脉冲信号 在数字电路中,经常会碰到如图4-16所示的波形,此波形称为矩形脉冲信号。其中为脉冲幅度,为脉冲宽度,为脉冲周期。 当矩形脉冲作为RC串联电路的激励源时,选取不同的时间常数及输出端,就可得到我们所希望的某种输出波形,以及激励与响应的特定关系。 图4-16 脉冲信号 二、微分电路 在图4-17所示电路中,激励源为一矩形脉冲信号,响应是从电阻两端取出的电压,即,电路时间常数小于脉冲信号的脉宽,通常取。 图4-17 微分电路图 我的定性分析(非定量):视Ui在从变高电平瞬间为一个恒压源,由于RC的值设定得很小,所以充电很快完成,在这个很短的充电期间内,C的右边需要“搬运大量”正离子到C的左边,期间经过R的电压Uo可视为正向地突变为Ui,充电完成之后,电路里面不再有电流,Uo变为0。直到等到Ui变为0(非断路,相当于短接,恒压源的内阻可视为0)时候,C的“搬运正离子”又经过了一个相对于充电的逆过程来放电,同样的,放电也很快,期间经过R的电压Uo可视为逆向地突变为-Ui,这样就得到了跳变脉冲。 定量分析:因为t<0时,,而在t = 0 时,突变到,且在0< t < t1期间有:,相当于在RC串联电路上接了一个恒压源,这实际上就是RC串联电路的

零状态响应:。由于,则由图4-17电路可知。所以,即:输出电压产生了突变,从0 V突跳到。 因为,所以电容充电极快。当时,有,则。故在 期间内,电阻两端就输出一个正的尖脉冲信号,如图4-18所示。 在时刻,又突变到0 V,且在期间有:= 0 V,相当于将RC串联电路短接,这实际上就是RC串联电路的零输入响应状态:。 由于时,,故。 因为,所以电容的放电过程极快。当时,有,使,故在期间,电阻两端就输出一个负的尖脉冲信号,如图4-18所示。 图4-18 微分电路的ui与uO波形 由于为一周期性的矩形脉冲波信号,则也就为同一周期正负尖脉冲波信号,如图4-18所示。 尖脉冲信号的用途十分广泛,在数字电路中常用作触发器的触发信号;在变流技术中常用作可控硅的触发信号。 这种输出的尖脉冲波反映了输入矩形脉冲微分的结果,故称这种电路为微分电路。 微分电路应满足三个条件:①激励必须为一周期性的矩形脉冲;②响应必须是从电阻两端取出的电压;③电路时间常数远小于脉冲宽度,即。

积分电路和微分电路 实验报告书

积分电路和微分电路实验报告书学号:姓名:学习中心:

(1)按如图连接电路 (2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图 (3)激活仿真电路 双击示波器图标弹出示波器面板,观察并分析示波器波形

(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7 2.微分电路实验 (1)按图连接电路 (2)设置R和C (3)激活电路仿真运行, (4)双击示波器的面板,给出输入/输出信号的波形图 (5)说明R和C的取值对输出信号的影响

表2 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7

三、实验过程原始数据(数据、图表、计算等) 1.积分电路实验 R=100KO,C=1uF R=100 KO C=2UF R=100KO C=4.7uF 2.微分电路实验 R=100KO,C=1uF

R=100 KO C=2UF R=100KO C=4.7uF 四、实验结果及分析 积分电路实验 由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<

微分电路积分电路分析

微分电路积分电路分析 姓名:王雨辰班级:072143 学号:20141000502 一、实验目的 1、测定RC一阶电路的积分、微分电路 2、掌握有关微分电路和积分电路的概念 二、实验器材 示波器、信号发生器、电阻箱 三、实验原理 1、微分电路 图1 RC微分电路图2 微分电路的Ui与U0波形 在图1所示电路中,激励源U1为一矩形脉冲信号,响应是从电阻两端取出的电压,即U0=Ut,电路时间常数小于脉冲信号的脉宽,通常取τ=t0/10。 因为t<0时,Uc(0_)=0v,而在t = 0 时,U1突变到Us,且在0< t < t1 期间有:U1=Us ,相当于在RC串联电路上接了一个恒压源。由于U(c0+)=0v ,则由图1电路可知U1=Uc+U0。所以U(0+)=Us ,即:输出电压产生了突变,从0 V突跳到Us。因为τ=t0/10,所以电容充电极快。 当t=3τ时,有Uc(3τ)=Us ,则U0(3τ)=0v。故在0

相关主题
文本预览
相关文档 最新文档