当前位置:文档之家› 集值统计迭代法在指标赋权中的应用

集值统计迭代法在指标赋权中的应用

集值统计迭代法在指标赋权中的应用
集值统计迭代法在指标赋权中的应用

集值统计迭代法在指标赋权中的应用

一、基本原理

用ω代表指标权重。

如果将指标体系中处于同一层次的指标作为一个模糊集合,那么确定指标的权,就成了确定各指标对于模糊集的隶属度的问题。

设U={u 1,u 2, ……,u k }为有限论域,A ∈F(U)为待确定的模糊集,P={p 1, ……,p n }为参与确定者集合,欲求ωA (u i ),i =1,2,3, ……,k.

集值统计迭代法介绍如下:

首先选一个初始值q:1≤q

值统计):

2) 在U 中选取他认为优先属于A~的r 2=2q 个元素,得U 的子集

选中的元素第二次也一定要选中。换言之,第二次选的元素是在第一次选出的基础上,在U-U 1(j )中再选q 个元素,合起来便是2q 个元素;余类推;……

3) 在U 中选取他认为优先属于A~的r s =sq 个元素,得子集

若自然数t 满足k=tq+υ,1≤υ≤q,则迭代过程终止于t+1步:

其中C 为特征函数,规一化,便有

因为r s =sq ,即每次迭代递增q 个元素,故上述方法称为“匀速迭代法”。这是集值统计迭代法中最简单的一种,我们通过它来说明集值统计迭代法的基本原

;

},,,{)()()()(121U u u u U j i j i j i j q ?= )

(1)()()()()()

(2},,,,,,{2121j j i j i j i j i j i j U u u u u u U q q q ?=+ 的元素,第二次便认为是因为第一次认为优先

之所以(,)

1)(2j j U U ?

;

},,,{)

(1)()()()(21j s j i j i j i j s U u u u U q s -?=;

,,1,)1)(1k i u U U t i j t ==++的覆盖频率,然后计算取(∑∑+==+?111)

1()

()1(1)()(t s n j i U i u C t n u m j s

)

2()

(/)()(1

∑==k

i i i i A u m u m u ω

理。更精确的方法是“变速迭代法”。

所谓变速迭代法,就是每次迭代不是递增定数q 个元素,而是专家根据自己的判定来决定每次递增多少个元素,每次递增数也许一定,也许不一定,这样迭代的结果更符合实际情况,也能更好地表达专家意见。

为了更精确,请每位专家无记忆地进行迭代m 次。迭代过程终止后,同样计

算u i 的覆盖频率,i =1,2,…,k;

其中:t j 为第j 个评价者的迭代过程终止步数,规一化,便有

把m 次结果求算术平均值即得到最后结果:

二、举例说明

本例用以说明上述方法的具体操作。为使问题简化,建立虚拟指标体系如下所示:

Z J A R W S

)

3()

()(1

11

)

(∑∑∑===?

=n

j j

n

j t s i U i t

u C

u m j

j s

4

()

(/)()(1

∑==k

i i i i A u m u m u ω∑==m l i l A i A u m u 1

)

()

5()

(1)(ωω

图1:虚拟指标体系

下面确定指标Z、J、R、W、S的权重。请五位专家分别对上述五个指标运用集值统计迭代法排序。结果如下:

第一位专家(p1)

r1=1 J

r2=2 J W

r3=3 J W Z

r4=4 J W Z S

r5=5 J W Z S R

这个表格可以改写为更简单的形式:

J W Z S R

5 4 3 2 1

第二位专家(p2)

r1=1 J

r2=2 J W

r3=3 J W S

r4=4 J W S Z

r5=5 J W S Z R

简化为:

J W S Z R

5 4 3 2 1

同理可得到:

第三位专家(p3):

J Z W R S

5 4 3 2 1

第四位专家(p4):

J W Z R S

5 4 3 2 1

第五位专家(p 5):

J Z S W R 5 4 3 2 1 计算覆盖频率:

规一化便有:

ω(Z)1=m(Z)/[m(Z)+m(J)+m(R)+m(W)+m(S)]=16/75=0.213 ω(J)1=0.334 ω(R)1=0.093 ω(W)1=0.227 ω(S)1=0.133

以上是第一次迭代的结果。我们再请这5位专家无记忆地迭代2次,结果如下:

ω(Z)2=0.187 ω(Z) 3=0.223 ω(J)2=0.334 ω(J)3=0.330 ω(R)2=0.093 ω(R)3=0.092 ω(W)2=0.253 ω(W)3=0.237 ω(S)2=0.133 ω(S)3=0.118

把3次结果求算术平均值得到最后结果:

2516

5555543423)(1=

++++++++=

Z m 1

2525

5555555555)(1==++++++++=

J m 257

5555512211)(1=

++++++++=

R m 25

17

5555524344)(1=

++++++++=

W m 25

10

5555531132)(1=

++++++++=

S m

ω(Z)=1/3×(0.213+0.187+0.223)=0.208

ω(J)=0.333

ω(R)=0.092

ω(W)=0.239

ω(S)=0.128

主要参考文献:李洪兴等著,《工程模糊数学方法及应用》,天津科学技术出版社,1997年

以层次分析法确定各级因素的权重调查

以层次分析法确定各级因素的权重调查 此问卷调查的目的在于确定中华优秀传统文化融入校园文化建设的路径各影响因素之间相对权重。 下面通过4个方面评估. 1、评估“中华优秀传统文化融入校园文化建设”的相对重要性(1~3); 2、评估“中华优秀传统文化融入校园文化建设必要性”的相对重要性(4~6); 3、评估“中华优秀传统文化融入校园文化建设紧迫性”的相对重要性(7~9); 4、评估“中华优秀传统文化融入校园文化建设影响力”的相对重要性(10~11)。 1相对于“中华优秀传统文化融入校园文化建设的必要性”,“紧迫性”显得 非常不重要 很不重要

稍不重要 一般重要 稍重要 重要 很重要 非常重要 2相对于“中华优秀传统文化融入校园文化建设的必要性”,“影响力”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 3相对于“中华优秀传统文化融入校园文化建设的紧迫性”,“影响力”显得 非常不重要 很不重要 不重要 稍不重要 一般重要

重要 很重要 非常重要 4相对于“学校管理者对优秀传统文化融入校园文化建设的必要性”,“教师对其的必要性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 5相对于“学校管理者对优秀传统文化融入校园文化建设的必要性”,“学生对其的必要性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要

6相对于“教师对优秀传统文化融入校园文化建设的必要性”,“学生对其的必要性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 7相对于“学校管理者对优秀传统文化融入校园文化建设的紧迫性”,“教师对其的紧迫性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 8相对于“学校管理者对优秀传统文化融入校园文化建设的紧迫性”,“学生对其的紧迫性”显得

数值计算迭代法

习题二 3、证明:当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实根x *,并分别用上述迭代法求满足于精度要求︱X k+1-X k ︱≤10-5的近似根。 解:证明:{先用迭代法求f(x)=x 3+4x 2-10=0的根。 (a )对x 3+4x 2-10=0变形有:4x 2=10-x 3 所以:X=21310X - 则相应的迭代公式为:X k+1=21k X 310- 取:X 0=1.5,根据计算可以看出看,我们认为得到的迭代序列是 收敛的。}(此行可忽略) { 由 f(x)=x 3+4x 2-10=0得迭代方程:X=21310X -=g (x ) 先证明在区间【1,2】上x=g (x )有实根。由于[1,2]上g ‘(x )存在,所以g (x )连续。作Q (x )=x-g(x),则Q(x)在[1,2]上也连续。由定理1条件2有:Q (1)=1-g (1)≤0,Q (,2)=1-g (2)≥0 故存在x *∈[1,2]使Q *(x )=0,即x *= Q *(x ) 又因为,x *是方程f(x)=x 3+4x 2-10=0在区间[1,2]内的唯一实根,(由定理一条件 2)对任意的x 0∈[1,2]时,X k ∈[1,2](k=0,1,2,3…) 因为:x *- X k+1=g (x *)-g (X k )=g ‘(h k )(x *- X k )故由条件1知: ︱X *-X k+1︱≤L ︱X *-X k ︱(k=0,1,2,3…)于是有:0≤︱X *-X k ︱≤L k ︱X *-X 0︱,0<L <1,立即可知:lim (k 趋于无穷)︱X *-X k ︱=0,从而lim (k 趋于无穷)X k= X *。所以当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都是由迭代法X k+1=g (X k )产生的迭代序列{ X k }收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实 根x *。 正解如下: (1) (牛顿迭代法): 证明:对方程f(x)=x 3+4x 2-10=0在区间[1,2]内, (a ) f ‘(x)=3x 2+8x ,f ’‘(x)=6x+8,f ’‘(x)在区间[1,2]内连续; (b ) f (1)=-5,f (2)=14,f (1)f (2)<0; (c ) 对于任意的x ∈[1,2],都有f ‘(x)=/(不等于)0; (d ) f ’‘(x)在[1,2]上保号; 综上所述,当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实根x *。 (2)用牛顿迭代法求近似根。 方程f(x)=x 3+4x 2-10=0有唯一实根x *∈[1,2],容易验证,f(x)=x 3+4x 2-10在[1,2]

层次分析法矩阵权重和,根,特征值法,c语言计算

// ???óè¨??2010.cpp : ?¨ò?????ì¨ó|ó?3ìDòμ?è??úμ??£ #include "stdafx.h" //vs2010ò?é?°?±?óD′??? #include"stdio.h" #include"math.h" void sum(int N,double a[13][13]) { double sum[13]={0},pro[13]={0}; int i,j,k; for(i=0;i

} for(k=0;k

常用医学统计学方法汇总

选择合适的统计学方法 1连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t 检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。**绝不能对其中的两

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

层次分析法确定绩效考核指标权重

表4-2 某厂运行部年度部门级绩效考核指标 (1)由1-9比例标度法分别对每一层次的评价指标的相对重要性进行定性描述,确定两两比较判断矩阵。 一级考核指标相对于总的考核指标所得两两比较判断矩阵如下: ????? ???? ???=13/17/1315/1751321321V V V V V V V A 二级考核指标相对于其所属一级考核指标所得的两两判断矩阵分别如下所示: ????? ???? ???=13/15/1313/153113121113121111v v v v v v V B

?? ? ?? ?? ?????????=12/14/15/1213/14/14313/15431242322212423222122v v v v v v v v V B 33132331321 31/31V v v B v v ????=?????? (2)运用和积法(方根法)求解各判断矩阵,得出单一准则下各级考核指标的相对权重。 1)一级指标两两判断矩阵A 的求解 一级指标的权重向量: w =(1w ,2w ,3w )T =(0.637,0.258,0.103)T 最大特征根:3 max 1()3i i i Aw w λ==∑ =3.037 一致性检验: 3.0373 0.018531 CI -= =-,0.58RI = 则0.0320.1CR =<,说明判断矩阵A 具有满意的一致性。 2)二级评价指标的两两判断矩阵的求解: ①判断矩阵1B 求解结果如下: 1B 下二级指标的权重向量: 1w =(11w ,21w ,31w )T =(0.6548,0.2499,0.0953)T 最大特征根:3 1max 1()3i i i B w w λ==∑ =3.0182 一致性检验: 3.01823 0.009131 CI -= =-,0.58RI = 则0.0160.1CR =<,这表明判断矩阵具有非常令人满意的一致性。 ②判断矩阵B 2求解结果如下: 权重向量: 2w =(21w ,22w ,32w ,24w )T =(0.5318,0.2701,0.1221,0.0760)T 最大特征根:4 2max 1()4i i i B w w λ==∑ =4.0753 一致性检验: 4.07534 0.025141 CI -= =-,0.9RI = 则0.0280.1C R =< ,这说明判断矩阵B 2具有令人满意的一致性。 ③判断矩阵B 3求解结果如下: 权重向量:

MATLAB计算方法迭代法牛顿法二分法实验报告

姓名 实验报告成绩 评语: 指导教师(签名) 年 月 日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点 2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。否则,继续判断是否0)()(

+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(') (00x f x f 。取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。迭代公式为:=+1 k x -0x )(')(k k x f x f 。 三、 实验设备:MATLAB 软件 四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超 过3105.0-?。 (2)、取初值00=x ,用迭代公式=+1 k x -0x )(') (k k x f x f ,求方程0210=-+x e x 的近似根。要求误差不超过3105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误差 不超过3105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 软件,建立一个实现二分法的MATLAB 函数文件如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

Excel函数计算公式大全(完整)

Excel函数计算公式大全(完整) Excel函数计算公式大全(完整) 篇一 一、数字处理 1、取绝对值=ABS(数字) 2、取整=INT(数字) 3、四舍五入=ROUND(数字,小数位数) 二、判断公式 1、把公式产生的错误值显示为空 公式:C2=IFERROR(A2/B2,"") 说明:如果是错误值则显示为空,否则正常显示。 2、IF多条件判断返回值 公式:C2=IF(AND(A2 说明:两个条件同时成立用AND,任一个成立用OR函数。 三、统计公式 1、统计两个表格重复的内容 公式:B2=COUNTIF(Sheet15!A:A,A2) 说明:如果返回值大于0说明在另一个表中存在,0则不存在。 2、统计不重复的总人数 公式:C2=SUMPRODUCT(1/COUNTIF(A2:A8,A2:A8)) 说明:用COUNTIF统计出每人的出现次数,用1除的方式把出现

次数变成分母,然后相加。 四、求和公式 1、隔列求和 公式:H3=SUMIF($A$2:$G$2,H$2,A3:G3) 或=SUMPRODUCT((MOD(COLUMN(B3:G3),2)=0)*B3:G3) 说明:如果标题行没有规则用第2个公式 2、单条件求和 公式:F2=SUMIF(A:A,E2,C:C) 说明:SUMIF函数的基本用法 3、单条件模糊求和 公式:详见下图 说明:如果需要进行模糊求和,就需要掌握通配符的使用,其中星号是表示任意多个字符,如"*A*"就表示a前和后有任意多个字符,即包含A。 4、多条件模糊求和 公式:C11=SUMIFS(C2:C7,A2:A7,A11&"*",B2:B7,B11) 说明:在sumifs中可以使用通配符* 5、多表相同位置求和 公式:b2=SUM(Sheet1:Sheet19!B2) 说明:在表中间删除或添加表后,公式结果会自动更新。 6、按日期和产品求和 公式:

层次分析法计算权重在matlab中的实现

信息系统分析与设计作业 层次分析法确定绩效评价权重在matlab中的实现 小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述 编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。 具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。 通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。 2 程序在matlab中实现的具体步骤 function [w,lam,CR] = ccfx(A) %A为成对比较矩阵,返回值w为近似特征向量 % lam为近似最大特征值λmax,CR为一致性比率 n=length(A(:,1)); a=sum(A); B=A %用B代替A做计算 for j=1:n %将A的列向量归一化 B(:,j)=B(:,j)./a(j); end s=B(:,1); for j=2:n s=s+B(:,j); end c=sum(s);%计算近似最大特征值λmax w=s./c; d=A*w lam=1/n*sum((d./w)); CI=(lam-n)/(n-1);%一致性指标 RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致

性指标 CR=CI/RI(n);%求一致性比率 if CR>0.1 disp('没有通过一致性检验'); else disp('通过一致性检验'); end end 3 案例应用 我们拟构建公司员工绩效评价分析权重,完整操作步骤如下: 3.1构建的评价指标体系 我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。 3.2专家打分,构建两两比较矩阵 A = 1.0000 0.5000 3.0000 4.0000 2.0000 1.0000 5.0000 3.0000 0.3333 0.2000 1.0000 2.0000 0.2500 0.3333 0.5000 1.0000 3.3在MATLAB中运用编写好的程序实现 直接在MATLAB命令窗口中输入 [w,lam,CR]=ccfx(A) 继而直接得出 d = 1.3035 2.0000 0.5145 0.3926 w = 0.3102 0.4691 0.1242 0.0966 lam =4.1687

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

巧用宏在Excel中实现叠代计算

巧用宏在Excel中实现叠代计算 [摘要]基于Excel强大的数据自动处理和计算能力,以及直观的表达能力,在工程计算中常用来替代程序计算。但由于Excel的局限,在用叠代计算解方程时遇到难题。可以以输电线路设计中求解状态方程为例,巧妙利用宏录制解决了这个难题。 [关键词]Excel软件宏叠代解方程 Excel是Microsoft公司推出的一套很著名的电子表格软件,是用来管理和处理各种数据的,其强大的功能体现在对数据的自动处理和计算方面。Excel作为目前最常用的电子表格软件,其主要特色就是能够按预先编制的公式进行计算。Excel函数作为Excel处理数据的一个最重要手段,功能是十分强大的。Excel 提供了多方面的函数,又能提供良好的文字编排功能,便于编制需保留的计算过程,因而它在工作实践中有诸多应用,甚至替代了早期的许多工程的计算程序。但作为解方程的数学方法之一的“叠代计算”在Excel中运用就遇到麻烦,叠代计算是要将上一次的计算结果作为下一次输入,在程序中用存贮器保存上一次计算结果,但在Excel中引用上次计算结果就会出现“循环引用”错误,使我们的公式输入无法进行下去。好在Excel引入“宏”方式,它可以把一些手动计算方式用记录下来,然后实现自动计算,从而在Excel中解决了“循环引用”问题。下面以架空输电线路设计中求解不定方程为例,谈一下如何在Excel中用“宏”实现迭代计算。 一、问题提出 在架空输电线路设计中,为了求导线在某一运行状态下的应力σ需要解方程: 这是一个三次不定方程,无法用一般方程求解方法去解。早期主要采用计算尺用逼近法求解。后来有计算机以后采用叠代法在计算机中求解,但要涉及专们编程,且使用不方便。由于Excel功能强大,函数丰富,计算表现直观,很适合一般人员建模板进行工程计算,我决定用它来建立我的状态方程式求解模板,这样求解出来的数组很方便地引用到AutoCAD中绘制应力曲线。 二、数学模型 在工程计算方法中有一个例题: 三、建立Excel模板 这里我们利用已建成输电线路特性曲线计算模板中求解σ值的建模过程来说明叠代计算的建模方法,其余的模板建立都采用的常规方法建模,其它资料有介绍,这里就不赘述。见图一也象前面这样输入。

统计学分析方法

统计分析方法总结 分享 胡斌 00:06分享,并说:统计 1.连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni 法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。**绝不能对其中的两组直接采用t检验,这样即使得出结果也未必正确** (3)关于常用的设计方法:多组资料尽管最终分析都是采用方差分析,但不同设计会有差别。常用的设计如完全随即设计,随机区组设计,析因设计,裂区设计,嵌套设计等。 2.分类资料

浅析运用层次分析法确定指标权重

浅析运用层次分析法确定指标权重 我们有很多事情要做,但我们只有那么点资源,我该怎么办?我们先来看两个例子:问题一:某企业准备推出一种新产品,而目前市场上已有几个类似的产品在销售。对该企业来说,要想在已有的市场上赢得一席之地就必须提供更具市场竞争力的新产品,可是究竟什么样的产品才是消费者青睐的呢?产品设计及研发部门比较苦恼: (1)对于这类产品,消费者更注重的是价格?包装?功能?品牌?还是…… (2)如果包装更加重要,他们更加关注的是外包装形状?颜色?大小?还是内部材质?如果功能更加重要,那是防水性?延伸性?自动化程度?还是准确性? 问题二:售后服务的好坏已经逐渐成为车主选车、购车时考虑的一大关键要素,而对于汽车制造商来说,提供良好的汽车保养维修售后服务便成为了当前厂商间竞争的另一焦点。而作为汽车售后服务体现的关键部门——4S店的服务流程与质量的好坏,将直接影响到消费者对该厂商的评价。那么,在售后服务的整个流程当中,哪些服务内容是车主更加关注呢?在有限的资源内,重点加强哪方面的服务会更容易赢得车主们的信赖呢? 实际上,一个企业经常会遇到以上说到的关于产品及服务提供优先顺序考虑的问题,这些问题看起来确实很烦琐,一堆需要考虑的因素放在那里,千头万绪,有时候甚至让人摸不着头脑,不知道该从何下手。而事实上,运用市场研究的方法,这些问题解决起来似乎就不像想象中那么棘手了,问题的关键就在于从消费者需求出发合理地判断出用来表征产品及服务各项属性的重要性。而重要性的判断,从市场研究的角度上分析,就是对各属性(即指标)在整个体系中进行权重的判定。 就一个产品或一项服务来说,我们可以用很多不同的指标从不同方面去评价,那么,在众多的评价指标当中,哪些方面在消费者看来更加重要,需要我们重点关注和提高?哪些不太重要,可以在对重要指标进行重点提升以后再逐步改进?哪些根本不重要,甚至可以忽略不计?这些都是企业在产品及服务提供过程中需要特别关注或了解的问题,只要清楚地界定了这些问题,就能有的放矢地进行针对性改进或提升,从而更好地服务于客户,同时最大程度地节省企业资源及投入。从市场研究统计分析方法的角度来看,有多种方法可以用来确定指标的权重,如直接评价法、相关分析法、回归分析法、专家测评法以及层次分析法等。而在众多的方法当中,层次分析法(AHP法)是目前市场调查中运用较多的、对于结果分析更为有效的一种方法。本文以帮助企业解决上述“问题二”为例,对此方法进行初步的介绍。 层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T.L.Saaty教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 运用层次分析法建模,大体上可按下面四个步骤进行: (1)建立递阶层次结构模型; (2)构造出各层次中的所有判断矩阵; (3)层次单排序及一致性检验; (4)层次总排序及一致性检验。 例如,针对“问题二”运用层次分析法必须先建立一个层次结构模型。假设4S店提供的服务包括预约、接待、保养维修、汽车交付、回访五大环节,每个环节当中各项具体的服务细项内容。根据此服务体系,所建立的层次结构模型如下所示:

参数统计与非参数统计、

样本统计方法一般分为两个大的分支—参数统计和非参数统计。非参数统计方法主要有:一是卡方拟合度检验(大众媒介研究者经常比较某一现象所观察到的发生频次和其期望值或假设的发生频次,卡方(X的平方)是一个表示期望值和观察值之间关系的值)。其局限性在于变量必须是定类或者定序测量的。二是交叉表分析,可以同时检验两个或者更多的变量。参数统计常用于定距或定比数据。一是t检验,二是方差分析;三是相关性统计分析。 T分布在抽样分布和样本分布之间架起了一座桥梁,是借助于颐和总显著性检验来实现的,成为“t检验”。t检验又称“均值检验”,用以计算样本均值是否不同于总体均值、零或另一样本均值。可分为三种类型:一是检验样本均值是否不同于其总体均值。二是检验一个样本均值是否与另一个样本均值不同(独立样本t检验)。三是重复测量的t检验—当相比较的两组样本以某种相联系的方式重复(相同的被试在不同时间段的结果检验)。 方差分析(ANOV A)——当实验涉及机组的比较时适用的统计方法。它是均值检验的一种自然延伸,更强调样本组内与组间的变化而不是样本组均值。ANOV A将发生在因变量上的变化分为由自变量作用的方差(称为被假设方差)和不被解释的方差(称为误差或剩余方差)。“被解释”方差成为“主效应”。ANOV A应用F分布而非t分布。多因子方差分析——任何有两个或更多个自变量的ANOV A可以是多因子ANOV A,测量其“交互效应”。 相关检验——不同于t检验的均值检验,相关是一种“关联性”测量。相关测量一个变量值的改变与另一个变量值改变的关联程度。相关的显著性是指,系统性变化是否又非偶然因素引起的;换言之,相关系数是否显著大于零。最常见的相关检验是皮尔逊积矩相关系数。 例3:在某次的新闻节目收视情况调查中,总体为某市12岁以上的居民。有效样本男性为240人,平均每天收视时间31.5分钟,标准差12分钟;样本中女性180人,平均每天收视时间26.3分钟,标准差19分钟,请问总体中男女居民的新闻节目收视时间有无差异?原假设H0:总体中没有差异:H0:u1=u2;H1:u1>u2, u1

相关主题
文本预览
相关文档 最新文档