当前位置:文档之家› 模拟集成电路直流参数测试

模拟集成电路直流参数测试

模拟集成电路直流参数测试
模拟集成电路直流参数测试

集成电路的检测方法

集成电路的检测方法 现在的电子产品往往由于一块集成电路损坏,导致一部分或几个部分不能常工作,影响设备的正常使用。那么如何检测集成电路的好坏呢?通常一台设备里面有许多个集成电路,当拿到一部有故障的集成电路的设备时,首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。 要找到故障所在必须通过检测,通常修理人员都采用测引脚电压方法来判断,但这只能判断出故障的大致部位,而且有的引脚反应不灵敏,甚至有的没有什么反应。就是在电压偏离的情况下,也包含外围元件损坏的因素,还必须将集成块内部故障与外围故障严格区别开来,因此单靠某一种方法对集成电路是很难检测的,必须依赖综合的检测手段。现以万用表检测为例,介绍其具体方法。 我们知道,集成块使用时,总有一个引脚与印制电路板上的“地”线是焊通的,在电路中称之为接地脚。由于集成电路内部都采用直接耦合,因此,集成块的其它引脚与接地脚之间都存在着确定的直流电阻,这种确定的直流电阻称为该脚内部等效直流电阻,简称R内。当我们拿到一块新的集成块时,可通过用万用表测量各引脚的内部等效直流电阻来判断其好坏,若各引脚的内部等效电阻R内与标准值相符,说明这块集成块是好的,反之若与标准值相差过大,说明集成块内部损坏。测量时有一点必须注意,由于集成块内部有大量的三极管,二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测一次,获得正反向两个阻值。只有当R内正反向阻值都符合标准,才能断定该集成块完好。 在实际修理中,通常采用在路测量。先测量其引脚电压,如果电压异常,可断开引脚连线测接线端电压,以判断电压变化是外围元件引起,还是集成块内部引起。也可以采用测外部电路到地之间的直流等效电阻(称R外)来判断,通常在电路中测得的集成块某引脚与接地脚之间的直流电阻(在路电阻),实际是R内与R外并联的总直流等效电阻。在修理中常将在路电压与在路电阻的测量方法结合使用。有时在路电压和在路电阻偏离标准值,并不一定是集成块损坏,而是有关外围元件损坏,使R外不正常,从而造成在路电压和在路电阻的异常。这时便只能测量集成块内部直流等效电阻,才能判定集成块是否损坏。根据实际检修经验,在路检测集成电路内部直流等效电阻时可不必把集成块从电路上焊下来,只需将电压或在路电阻异常的脚与电路断开,同时将接地脚也与电路板断开,其它脚维持原状,测量出测试脚与接地脚之间的R内正反向电阻值便可判断其好坏。 例如,电视机内集成块TA7609P瑢脚在路电压或电阻异常,可切断瑢脚和⑤脚(接地脚)然后用万用表内电阻挡测瑢脚与⑤脚之间电阻,测得一个数值后,互换表笔再测一次。若集成块正常应测得红表笔接地时为8.2kΩ,黑表笔接地时为272kΩ的R内直流等效电阻,否则集成块已损坏。在测量中多数引脚,万用表用R×1k挡,当个别引脚R内很大时,换用R ×10k挡,这是因为R×1k挡其表内电池电压只有1.5V,当集成块内部晶体管串联较多时,电表内电压太低,不能供集成块内晶体管进入正常工作状态,数值无法显现或不准确。 总之,在检测时要认真分析,灵活运用各种方法,摸索规律,做到快速、准确找出故障 摘要:判断常用集成电路的质量及好坏 一看: 封装考究,型号标记清晰,字迹,商标及出厂编号,产地俱全且印刷质量较好,(有的 为烤漆,激光蚀刻等) 这样的厂家在生产加工过程中,质量控制的比较严格。 二检: 引脚光滑亮泽,无腐蚀插拔痕迹, 生产日期较短,正规商店经营。 三测: 对常用数字集成电路, 为保护输入端及工厂生产需要,每一个输入端分别对VDD

集成电路测试员实习报告

集成电路测试员实习报告 篇一:测控技术与仪器专业生产实习报告 测控技术与仪器专业 《生产实习报告》 一、实习概况 实习时间:XX.7.28-XX.8.8 实习地点:无锡市公共实训基地 实习要求:掌握如下的专业知识和技能并通过考核。 1.集成电路及测试常识 2.模拟集成电路测试原理、方法及设备详细构成; 3.集成电路主要参数及测试设备框架构成; 4.评估集成电路的具体技术指标; 5.集成电路测试实际操作。 二、实习企业介绍 北京信诺达泰思特科技股份有限公司成立于XX年11月,注册资本为632万人民币,主要从事集成电路测试系统的研发。在集成电路测试领域具有深厚的技术实力与市场储备,同时承接集成电路测试服务、电路板测试维修业务。公司是集研制、开发、销售、服务于一体的高新技术企业。由研发人员发明了“一种快速获取DSP测试向量的方法及装置”并取得国防专利证书。公司核心研发团队多年来一直从事半导体测试系统的研发工作,参与并完成的项目包括国家六.五

重点科技攻关项目“大规模/超大规模存储器集成电路测试系统研制”;国家“七五”、“八五”重点科技攻关项目“测试程序库的开发与实 用化”;北京市科学院“100M超大规模数字电路测试系统研制”项目等,以上项目均顺利通过验收。公司所研发的产品涵盖数字集成电路测试、模拟集成电路测试、数模混合集成电路测试、存储器测试、继电器测试、电源模块测试等,曾为多家封装测试企业、军工企业及科研院所提供产品及服务,广泛应用于航空、航天、铁路、船舶、兵器、电子、核工业等领域。还可以针对用户实际需求,量身为客户提供最优的测试解决方案。公司秉承“敬业、奉献、协同、创新”的精神,为客户提供高质高效的测试展品和服务。 三、实习内容 第一周: 7月28日上午我们来到无锡公共实训基地学习集成电路测试的相关知识。下午基地领导带我们参观了公司、介绍了相关产品。 产品描述: ST5000是一款高精度的半导体分立器件测试系统,该系统采用了标准的PXI总线,能够兼容CPCI和PXI设备。它是一款浮动资源的测试工作站,这种特殊的架构方式使得用户可以最有效的利用系统资源,配置出最经济、高效的测试

FLUKE测试报告参数详解

Fluke DTX系列六类双绞线测试参数说明: 1、插入损耗:是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰减。插入损耗以接收信号电平的对应分贝(db)来表示。对于光纤来说插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的比率的分贝数。 2、NEXT(近端串扰):是指在与发送端处于同一边的接收端处所感应到的从发送线对感应过来的串扰信号。在串扰信号过大时,接收器将无法判别信号是远端传送来的微弱信号还是串扰杂讯。 3、PSNEXT(综合近端串扰):实际上是一个计算值,而不是直接的测量结果。PSNEXT 是在每对线受到的单独来自其他三对线的NEXT 影响的基础上通过公式计算出来的。PSNEXT 和FEXT(随后介绍)是非常重要的参数,用于确保布线系统的性能能够支持象千兆以太网那样四对线同时传输的应用。 4、ACR(衰减串扰比):表示的是链路中有效信号与噪声的比值。简单地将ACR 就是衰减与NEXT 的比值,测量的是来自远端经过衰减的信号与串扰噪声间的比值。例如有一位讲师在教师的前面讲课。讲师的目标是要学员能够听清楚他的发言。讲师的音量是一个重要的因素,但是更重要的是讲师的音量和背景噪声间的差别。如果讲师实在安静的图书馆中发言,即使是低声细语也能听到。想象一下,如果同一个讲师以同样的音量在热闹的足球场内发言会是怎样的情况。讲师

将不得不提高他的音量,这样他的声音(所需信号)与人群的欢呼声(背景噪声)的差别才能大到被听见。这就是ACR。ACR=衰减的信号-近端串扰的噪音 5、PSACR(综合衰减串扰比):反映了三对线同时进行信号传输时对另一对线所造成的综合影响。它只要用于保证布线系统的高速数据传输,即多线对传输协议。 6、ELFEXT(等效远端串扰):是远端串扰损耗与线路传输衰减的差值,以db 为单位。是信噪比的另一种方式,即两个以上的信号朝同一方向传输时的情况。 7、PSELFEXT(综合平衡等级远端串扰):表明三对线缆处于通信状态时,对另一对线缆在远端所造成的干扰。 8、RL(回波损耗):电信号在遇到端接点阻抗不匹配时,部分能量会反射回传送端。回波损耗表征了因阻抗不匹配反射回来的能量的大小,回波损耗对于全双工传输的应用非常重要。

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

MOSFET参数及其测试方法

参数类别(物理特征): 1、漏源电压系列 1.1、V(BR)DSS:漏源击穿电压 1.2、dV(BR)DSS/dTJ:漏源击穿电压的温度系数1.3、VSD:二极管正向(源漏)电压 1.4、dV/dt:二极管恢复电压上升速率 2、栅源电压系列 2.1、VGS(TH):开启电压 2.2、dVGS(TH)/dTJ:开启电压的温度系数 2.3、V(BR)GSS:漏源短路时栅源击穿电压 2.4、VGSR:反向栅源电压 3、其它电压系列 3.1、Vn:噪声电压 3.2、VGD:栅漏电压 3.3、Vsu:源衬底电压 3.4、Vdu:漏衬底电压 3.5、Vgu:栅衬底电压 二、电流类参数 1、漏源电流系列 1.1、ID:最大DS电流 1.2、IDM:最大单脉冲DS电流 1.3、IAR:最大雪崩电流 1.4、IS:最大连续续流电流 1.5、ISM:最大单脉冲续流电流 1.6、IDSS:漏源漏电流 2、栅极电流系列 2.1、IGSS:栅极驱动(漏)电流 2.2、IGM:栅极脉冲电流 2.3、IGP:栅极峰值电流

三、电荷类参数 1、Qg:栅极总充电电量 2、Qgs:栅源充电电量 3、Qgd:栅漏充电电量 4、Qrr:反向恢复充电电量 5、Ciss:输入电容=Cgs+Cgd 6、Coss:输出电容=Cds+Cgd 7、Crss:反向传输电容=Cgd 四、时间类参数 1、tr:漏源电流上升时间 2、tf:漏源电流下降时间 3、td-on:漏源导通延时时间 4、td-off:漏源关断延时时间 5、trr:反向恢复时间 五、能量类参数 1、PD:最大耗散功率 2、dPD/dTJ:最大耗散功率温度系数 3、EAR:重复雪崩能量 4、EAS:单脉冲雪崩能量 六、温度类参数 1、RJC:结到封装的热阻 2、RCS:封装到散热片的热阻 3、RJA:结到环境的热阻 4、dV(BR)DSS/dTJ:漏源击穿电压的温度系数 5、dVGS(TH)/dTJ:开启电压的温度系数 七、等效参数 1、RDSON:导通电阻 2、Gfs:跨导=dID/dVGS 3、LD:漏极引线电感 4、LS:源极引线电感

集成电路测试原理及方法

H a r b i n I n s t i t u t e o f T e c h n o l o g y 集成电路测试原理及方法简介 院系:电气工程及自动化学院 姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX

摘要 随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。 本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。 关键词:集成电路;研究现状;测试原理;测试方法

目录 一、引言 (4) 二、集成电路测试重要性 (4) 三、集成电路测试分类 (5) 四、集成电路测试原理和方法 (6) 4.1.数字器件的逻辑功能测试 (6) 4.1.1测试周期及输入数据 (8) 4.1.2输出数据 (10) 4.2 集成电路生产测试的流程 (12) 五、集成电路自动测试面临的挑战 (13) 参考文献 (14)

一、引言 随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。因此,世界集成电路产业正在处于高速发展的阶段。 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 二、集成电路测试重要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

专用集成电路

实验一 EDA软件实验 一、实验目的: 1、掌握Xilinx ISE 9.2的VHDL输入方法、原理图文件输入和元件库的调用方法。 2、掌握Xilinx ISE 9.2软件元件的生成方法和调用方法、编译、功能仿真和时序仿真。 3、掌握Xilinx ISE 9.2原理图设计、管脚分配、综合与实现、数据流下载方法。 二、实验器材: 计算机、Quartus II软件或xilinx ISE 三、实验内容: 1、本实验以三线八线译码器(LS74138)为例,在Xilinx ISE 9.2软件平台上完成设计电 路的VHDL文本输入、语法检查、编译、仿真、管脚分配和编程下载等操作。下载芯片选择Xilinx公司的CoolRunner II系列XC2C256-7PQ208作为目标仿真芯片。 2、用1中所设计的的三线八线译码器(LS74138)生成一个LS74138元件,在Xilinx ISE 9.2软件原理图设计平台上完成LS74138元件的调用,用原理图的方法设计三线八线译 码器(LS74138),实现编译,仿真,管脚分配和编程下载等操作。 四、实验步骤: 1、三线八线译码器(LS 74138)VHDL电路设计 (1)三线八线译码器(LS74138)的VHDL源程序的输入 打开Xilinx ISE 6.2编程环境软件Project Navigator,执行“file”菜单中的【New Project】命令,为三线八线译码器(LS74138)建立设计项目。项目名称【Project Name】为“Shiyan”,工程建立路径为“C:\Xilinx\bin\Shiyan1”,其中“顶层模块类型(Top-Level Module Type)”为硬件描述语言(HDL),如图1所示。 图1 点击【下一步】,弹出【Select the Device and Design Flow for the Project】对话框,在该对话框内进行硬件芯片选择与工程设计工具配置过程。

数字集成电路测试系统BJ3125A使用说明书【模板】

数字集成电路测试系统 BJ3125A 使用说明书 北京无线电仪器厂 ********

1.概述 1.1BJ3125A 型数字IC测试系统是BJ3125数字IC测试系统的改型产品,继 承了原有系统的优点。 1.2 该系统数字IC测试按存储响应法进行设计,这种方法理论上成熟,方法上统一,应用最广泛,国内外科技人员熟悉。此外,由于利用这种原理测试方法上差异小,所以易于和国内、外其他测试系统的测试数据,测试结果数据进行比较,有较好的兼容性。 1.3 本系统的设计思想 采用通用微机控制,为以后多快好省地开发各系列智能仪器打下基础。采用通用微机对于软件开发及系统调试都带来许多方便。 采用总线支持模块化结构,便于扩展成其他测试系统。 将研制中大规模数字集成电路测试系统中积累的知识、经验充分赋予该系统,软件能继承的就继承,如页表式编程测试包、系统的诊断校准程序、程序库…… 在功能测试上不追求速度而只追求功能齐全,如:能测试各种工艺系列的IC,能测开路门,可进行三态测试等。着重在直流参数上下功夫。如:小电流测试及保证较好的测试精度。 在电路设计上力求电路简捷,尽量采用先进的、性价比高的器件,如选用AD7237双D/A、AD526增益可软件编程放大器、AD620仪用放大器等,可降低成本,缩短研制周期,较容易保证较好的性能指标,便于生产。 1.4 本系统的主要特点

——采用通用微机控制 ——完善的诊断校准程序 ——商业化齐套实用的程序库 ——具有测试存储器的软件图形发生器 ——具有电平精度高、输出阻抗低、电平范围宽的三态驱动器。——可对开路门进行测试 ——具有三态测试能力 ——采用地缓冲放大器,以利用提高直流参数测试精度 ——功能测试采用双阈值比较 ——恒流源、恒压源、电压表是独立的、便于测试模拟电路时使用——易于扩展成其它IC测试系统。 1.5 本测试系统,可测试中小规模数字IC 1.6 测试用途 整机厂、研究单位的器件验收测试及其他各种应用测试。 2.系统构成及主要功能(参看图1)

竞赛作品_集成数字集成电路参数测试

1.系统设计 1.1 设计要求 (1) 任务: 设计制作一个74系列中小规模数字集成电路参数测试仪。 (2)要求 1、基本要求: (1)能对74系列中小规模数字集成电路的V IH(min)、V IL(max)、V OH、V OL、I IL、I OL等参数指标进行单项自动测试。 (2)测量参数项目及指标要求(V CC=5V): A、V IH(min)、V OH 测量范围为0~5V,误差<1%读数±1个字; B、V IL(max)、V OL测量范围为0~1V,误差<1%读数±1个字; C、I IL(短路电流),I OL(R L=300Ω)测量范围为0~20mA,误差<1%读数±1个字; (3)测试项目有对应的指示。 2、发挥部分: (1)能连续自动循环测量,并显示; (2)能有选择地调阅最后一次测量的任一项参数; (3)能设置集成电路参数标准值,并判断所测参数是否达标; (4)采用示波器作为显示器,测试数字集成电路的电压传输特性,能显示完整的传输特性曲线;从屏幕上读出的指标(如输出高、低电平和开、关门电平)要求精度优于20%; (5)其他。 1.2 总体设计方案 1.2.1. 设计思路 题目要求设计一个74LS04集成电路参数测试仪。设计中产生一个三角波信号,周期改变输入电压。再经过AD采样输出电压,当Vo=2.7时确定Vil(max),当Vo=0.5时确定Vih(min)的值。继电器切换电路,通过输出端接入一个

-0.4mA 恒流源。继电器切换电路,输入Vi=0.8V时测量Voh的值。继电器切换电路,输出端一个8mA的恒流源。继电器切换电路,输入电压Vi=2.0V时测量Vol的值。继电器切换电路,在输入电压Vi=0.4V时输出悬空测量Iil的值。继电器切换电路,输入悬空,输出接Vo=0.5V的恒压源,测量输出电流Iol的值。电流值的测量可通过在电路中串接一个电阻通过测其两端的电压值,再经计算算出电流大小。最后将测得的结果发送到PC机上显示出来。 1.根据测试参数设计对应测试电路,用继电器切换相应电路,数码管显示测试 参数序号。 2.对74LS04的6个非门进行循环测试。 3.将测得的参数发送到电脑上显示,对比参数标出不合格的非门。 4.分别做出主测试电路模块、控制模块(信号产生、信号采集、继电器控制、键 盘控制、数据处理、测试参数显示)、继电器切换模块。 1.2.2方案比较设计论证 1. 控制电路模块 方案一:采用AT89C51单片机进行控制。本设计需要使用的软件资源比较简单,只需要完成数控部分、键盘输入以及显示输出功能。采用AT89C51进行控制比较简单,但是51单片机资源有限,控制输入输出,需要外接8279之类的芯片进行I/O扩展。 方案二:采用凌阳SPCE061A单片机进行控制。SPCE061A凌阳单片机具有强大功能的16位微控制器,它内部集成7路10位ADC和2通道10位DAC,

专用集成电路AD的设计

A/D转换器的设计 一.实验目的: (1)设计一个简单的LDO稳压电路 (2)掌握Cadence ic平台下进行ASIC设计的步骤; (3)了解专用集成电路及其发展,掌握其设计流程; 二.A/D转换器的原理: A/D转换器是用来通过一定的电路将模拟量转变为数字量。 模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。符号框图如下: 数字输出量 常用的几种A/D器为; (1):逐次比较型 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 (2): 积分型 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 (3):并行比较型/串并行比较型

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级型AD,而从转换时序角度又可称为流水线型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 一.A/D转换器的技术指标: (1)分辨率,指数字量的变化,一个最小量时模拟信号的变化量,定义为满刻度与2^n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率,是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级,属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位ksps 和Msps,表示每秒采样千/百万次。 (3)量化误差,由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。(4)偏移误差,输入信号为零时输出信号不为零的值,可外接电位器调至最小。(5)满刻度误差,满度输出时对应的输入信号与理想输入信号值之差。 (6)线性度,实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 三、实验步骤 此次实验的A/D转换器用的为逐次比较型,原理图如下:

《模拟集成电路设计原理》期末考试

1 《模拟集成电路设计原理》期末考试 一.填空题(每空1分,共14分) 1、与其它类型的晶体管相比,MOS器件的尺寸很容易按____比例____缩小,CMOS电路被证明具有_较低__的制造成本。 2、放大应用时,通常使MOS管工作在_ 饱和_区,电流受栅源过驱动电压控制,我们定义_跨导_来表示电压转换电流的能力。 3、λ为沟长调制效应系数,对于较长的沟道,λ值____较小___(较大、较小)。 4、源跟随器主要应用是起到___电压缓冲器___的作用。 5、共源共栅放大器结构的一个重要特性就是_输出阻抗_很高,因此可以做成___恒定电流源_。 6、 6、由于_尾电流源输出阻抗为有限值_或_电路不完全对称_等因素,共模输入电平的变化会引起差动输出的改变。 7、理想情况下,_电流镜_结构可以精确地复制电流而不受工艺和温度的影响,实际应用中,为了抑制沟长调制效应带来的误差,可以进一步将其改进为__共源共栅电流镜__结构。 8、为方便求解,在一定条件下可用___极点—结点关联_法估算系统的极点频率。 9、与差动对结合使用的有源电流镜结构如下图所示,电路的输入电容Cin为__ CF(1-A) __。 10、λ为沟长调制效应系数,λ值与沟道长度成___反比__(正比、反比)。 二.名词解释(每题3分,共15分) 11、1、阱 解:在CMOS工艺中,PMOS管与NMOS管必须做在同一衬底上,其中某一类器件要做在一个“局部衬底”上,这块与衬底掺杂类型相反的“局部衬底”叫做阱。 2、亚阈值导电效应 解:实际上,VGS=VTH时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当VGS

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

集成电路测试系统技术应用

集成电路测试技术应用 集成电路测试系统是一类用于测试集成电路直流参数、交流参数和功能指标的测试设备。根据测试对象的不同,其主要分类为数字集成电路测试系统、模拟集成电路测试系统、数模混合信号集成电路测试系统。集成电路测试系统的主要技术指标有测试通道宽度、测试数据深度、通道测试数据位数、测试速率、选通和触发沿、每引脚定时调整、时钟周期准确度、测试周期时间分辨率、测试应用范围等。 集成电路作为电子信息产业的基础元器件广泛应用于国民经济的各个领域,集成电路测试系统作为集成电路的检测设备在相关产业也必然有着广泛应用。在集成电路制造领域,用于生产过程中晶圆级的中间测试,这时需要自动探针台辅助;用于封装后的成品测试,这时需要自动分选机的配合。在集成电路设计领域,可用于集成电路的设计验证。在集成电路使用领域(民用、军用),大量用于集成电路的入厂检测测试、特性分析测试、器件筛选测试、质量控制测试、可靠性测试等。随着集成电路技术的快速发展,集成电路测试系统的发展趋势是测试速率不断提高;以参数测试为主逐步向以功能测试为主转移;设计更高级别的并行处理功能;采用分布式结构,通过网络实现测试资源共享,增强测试和数据处理能力。 集成电路测试系统的构成主要包括,通道板、管脚电路、波形产生器、波形分析器、定时器、精密测量单元、程控电源、程控负载、测试程序库等。其主要功能就是对各类微处理器(CPU、MCU)、动态存储器、E2PROM、EPROM、PROM、数字接口、数字信号处理器(DSP)、SOC、FPGA、CPLD、A/D、D/A、IC卡、无线通信类、数字多媒体类、汽车电子类等集成电路产品提供直流参数、交流参数和功能指标的测试。 (提供测试系统单位:北京自动测试技术研究所、中国电子科技集团41所)

参数测试

1)采用非电量的电测法有以下优点:1、可以将各种不同的被测参数转换成相同的电量。 便于使用相同的测量和记录仪表。2、各种参数转换成电量后,可以进行远距离传送,便于远距离操、控制和显示。也便于同自动化仪表连用,组成调节控制系统。3、采用这种方法可以对参数进行动态测量,并记录其瞬时值和变化过程,便于进行动态分析研究。4、易于同许多后续的通用数据处理仪器连用,便于对测量结果进行运算处理。2)非电量电测测试系统应由几部分组成?被测参数、敏感元件、信号变换器、信号传输、 信号测量、测试结果的显示、自动记录运算分析、生产过程控制系统。 3)灵敏度是变换器每单位输入量的输出量,用s表示s=y/x。 4)电阻式变换器——划线电阻式变换器三种用法:串联可变电阻式、电位计式、电桥式。 5)电阻变化量: 6)电感式变换器按照作用原理可分为:自感式、互感式、和压磁式。 7)电感变换器差动形式: 8)电容式变换器分类:改换极板有效面积、改换极板间距离、改变介电常数。 9)压电效应:某些晶体,在一定方向上受到外力作用而产生应变时,在它的表面上将产生 电荷(或电压)。逆压电效应:这些晶体在电场作用下将产生机械变形。 10)压电晶体的接法及特点:并联接发:电荷量为单片的两倍,电容量也为两倍,输出电压 与单片相同,并联接法由于电容量大,时间常数也大,所以适合慢信号的测量。并联接法电荷转换灵敏度高,故一般采用电荷输出方式。串联接法:输出电荷与单片相同,而总电容为单片的二分之一。则输出电压为单片的两倍。特点是电容小。电压转换灵敏度高。适用于变化较快信号的测量,并宜采用电压输出的形式。 11)磁电式变换器类型有:可动线圈磁电式变换器、改变磁阻的磁电式变换器。 12)霍尔效应原理:在霍尔元件平面的垂直方向加一磁场,其磁感应强度为B,在1、2平 面通以电流I。由于在洛伦磁力的作用下,电荷将向一侧偏移,并在该侧形成电荷积累,这样就在霍尔元件平面内垂直于电流方向形成一个电场,当通过的电荷所受电场作用力与洛伦磁力相等时,该侧面电荷的积累不再增加,于是在3、4平面间形成一个稳定电势U,称为霍尔电势,这种现象称为霍尔效应。 13)电桥输出形式:平衡输出电桥和不平衡输出电桥。 14)等臂电桥 15)交流电桥的特殊作用:调幅作用,公式。若应变为正时,输出电压与载波电压同相位, 当应变为负时,输出电压与载波电压相位相差180. 16)电桥的加减特性:电桥相邻桥臂有异号,或相对桥臂有同号的电桥变化时,电桥能相加; 而相邻桥臂有同号或相对桥臂有异号的电阻变化时,电桥能相减。 17)布片和组桥。方法:单臂、半桥、全桥。目的:1、除去其他因素的影响和干扰,测出 需要的信号。2、提高电桥对被测量信号的转换灵敏度。3、减小电桥测量的非线性误差。 18)布片和组桥的几点规律:1、为了减小非线性误差和实现温度补偿,通常采用相邻臂工 作或全桥工作的布片组桥方式,即半桥接法和全桥接法。2、在电桥相邻臂工作时,布片要使被测信号在两应变片中有相反的符号改变。电桥四臂工作时,布片须使被测信号在相邻臂有同号、相对臂有异号变化。3、各种干扰信号在布片时,必须使它们与被测信号有相反的符号改变。即在相邻桥臂有同号、相对臂有异号变化,这样才能在组桥中被抵消。4、可以利用串联应变片构成的不等臂对称电桥,在一个桥臂中利用加减特性,来消除干扰因素。 19)静态应变测量电桥:工作程序:首先将读书桥各可变电阻器调至零位,使电桥平衡。如 果不平衡,调节测量电桥的平衡调节装置,使放大器输出指标表回到零。这时测量桥与读书桥出于平衡状态,此时进行应变测量,如R1和R2有静态应变时,表示电表偏移。

常用集成电路及主要参数

1 附录四、常用集成电路及主要参数 4.1 常用集成电路的引线端子识别及使用注意事项 4.1.1 集成电路引出端的识别 使用集成电路前,必须认真查对和识别集成电路的引线端,确认电源、地、输入、输出及控制端的引线号,以免因错接损坏元器件。 贴片封装(A、B)型,如附图4.1-1所示,识别时,将文字符 号正放,定位销向左,然后,从左下角起,按逆时针方向依次 为1、2、3……。 扁形和双列直插型集成电路:如附图 4.1-2(b)所示,识别 时,将文字符号标记正放,由顶部俯视,其面上有一个缺口或 小圆点,附图4.1-1贴片型,有时两者都有,这是“1”号引线 端的标记,如将该标记置于左边,然后,从左下角起,按逆时 针方向依次为1、2、3……。 一般圆型和集成电路:如附图4.1-2(a)所示,识别时,面向引出端,从定位销顺时针依次为1、2、3……。圆形多用于模拟集成电路。 (a) 园形外型(b)扁平双列直插型 附图4.1-2 集成电路外引线的识别 4.1.2 数字集成电路的使用 数字集成电路按内部组成的元器件的不同又分为:TTL电路和CMOS电路。不论哪一种集成电路,使用时,首先应查阅手册,识别集成电路的外引线端排列图,然后按照功能表使用芯片,尤其是牛规模的集成电路,应注意使能端的使用,时序电路还应注意“同步”和“异步”功能等。 使用集成路时应注意以下方面的问题。 1、TTL电路 (1)电源 ①只允许工作在5V±10%的范围内。若电源电压超过5.5V或低于4.5V,将使器件损坏或导致器件工作的逻辑功能不正常。 ②为防止动态尖峰电流造成的干扰,常在电源和地之间接人滤波电容。消除高频干扰的滤波电容取0.01~0.1PF,消除低频干扰取10—50/uF ③不要将“电源”和“地”颠倒,例如将741S00插反,缺口或小圆点置于右面,则电源的引线端与“地”引线端恰好颠倒,若不注意,这种情况极易发生,将造成元器件的损坏。 ④TTL电路的工作电流较大,例如中规模集成TTL电路需要几十毫安的工作电流,因此使用干电池长期工作,既不经济,也不可靠。 (2)输出端 ①不允许直接接地或接电源,否则将使器件损坏。 ②图腾柱输出的TTL门电路的输出端不能“线与”使用,OC门的输出端可以

专用集成电路设计

专用集成电路课程设计 简易电子琴 通信工程学院 011051班 侯珂

01105023 目录 1 引言 (1) 1.1设计的目的 (1) 1.2设计的基本内容 (2) 2 EDA、VHDL简介 (2) 2.1EDA技术 (2) 2.2硬件描述语言——VHDL (3) 2.2.1 VHDL的简介 (3) 2.2.2 VHDL语言的特点 (3) 2.2.3 VHDL的设计流程 (4) 3 简易电子琴设计过程 (5) 3.1简易电子琴的工作原理 (5) 3.2简易电子琴的工作流程图 (5) 3.3简易电子琴中各模块的设计 (6) 3.3.1 乐曲自动演奏模块 (7) 3.3.2 音调发生模块 (8) 3.3.3 数控分频模块 (9)

3.3.4 顶层设计 (10) 4 系统仿真 (12) 5 结束语 (14) 收获和体会.................................................................................................. 错误!未定义书签。参考文献 .. (15) 附录 (16)

1 引言 我们生活在一个信息时代,各种电子产品层出不穷,作为一个计算机专业的学生,了解这些电子产品的基本组成和设计原理是十分必要的,我们学习的是计算机组成的理论知识,而课程设计正是对我们学习的理论的实践与巩固。本设计主要介绍的是一个用超高速硬件描述语言VHDL设计的一个具有若干功能的简易电子琴,其理论基础来源于计算机组成原理的时钟分频器。 摘要本系统是采用EDA技术设计的一个简易的八音符电子琴,该系统基于计算机中时钟分频器的原理,采用自顶向下的设计方法来实现,它可以通过按键输入来控制音响。系统由乐曲自动演奏模块、音调发生模块和数控分频模块三个部分组成。系统实现是用硬件描述语言VHDL按模块化方式进行设计,然后进行编程、时序仿真、整合。本系统功能比较齐全,有一定的使用价值。 关键字电子琴、EDA、VHDL、音调发生 1.1 设计的目的 本次设计的目的就是在掌握计算机组成原理理论的基础上,了解EDA技术,掌握VHDL硬件描述语言的设计方法和思想,通过学习的VHDL语言结合电子电路的设计知识理论联系实际,掌握所学的课程知识,例如本课程设计就是基于所学的计算机原理中的时钟分频器和定时器的基础之上的,通过本课程设计,达到巩固和综合运用计算机原理中的知识,理论联系实际,巩固所学理论知识,并且提高自己通过所学理论分析、解决计算机实际问题的能力。

相关主题
文本预览
相关文档 最新文档