当前位置:文档之家› 建模概述

建模概述

建模概述
建模概述

院系:数学与统计学院学号:09081052

姓名:徐小玉

摘要

一、数学建模基本概念

二、数学建模相关资料

三、自己总结

一、数学建模基本概念

数学建模一般是通过问题的实际背景,给出一些已知信息,这些信息可以是一组实测数据或模拟数据,也可以是若干参数、图形,或者仅给出一些定性描述,依据这些信息.建布数学模型的方法有很多,但从基本解法上可以分为五大类:

(1)机理分析方法;主要是根据实际中的客观事实迸行推理分析.用已知数据确定模型的参数,或直接用已知参数进行计算。

(2)构造分析方法:首先建立一个合理的模刑结构,再利用已知信息确定模型的参数,或对模型进行模拟计算.

(3)直观分析方法:通过对直现图形、数据进行分析。对参数进行估计、计算,并对结果进行模拟。

(4)数值分析方法;对已知数据进行数值拟合,可选用插值方法、差分方法.样条函数方法、回归分析方法等.

(5)数学分析方法:用“现成”的数学方法建立模型,如图论、微分方程、规划论,概率统计方法等。

在实际建模的过性中,根据问题的实际背景和已知信息选择适当方法,尽量使用“现成”的数学方法.如果已知信息不明确,或不完整时,可以进行适当补充或舍弃,甚至可以修改题目的条件、参数和数据.也可以先做最简单的模塑.然后再逐步地完善改进.

数学建模或参加建模竞赛一般应具备的方法和知识:一是要掌握常用的建模方法,如机理分析法、层次分析法、差分法、图论法、插

值与拟合法、统计分析法、优化方法等:二是要有广泛的知识,特别是必备的数学知识,如微分方法,概率统计、规划论,图与网络、数值计算、排队论、对策论、决策论等.另外,还应了解一些现代应用数学的知识,模糊数学、灰色理论、时间序列、神经网络等。这此

都是数学建模教学的内容,数学建模所需要的知识首先是“广”,其次才是“精”.

二、数学建模的步骤:

数学建模是一种创造的过程,它需要相当高的观察力、想象力和灵感.数学建模的过程是有一定的阶段性的.要解决的问题都是来自现实世界之中。数学建模的过程就是对问题进行分析.提炼,用数学语言做出描述.用数学方法分析、研究、解决,最后回归到实际中去,应用于解决和解释实际问题,乃至更进一步地作为一般模型来解决更广泛的问题.数学建模的流程为

实际问题→抽象、简化问题、明确变量和参数→跟据某中定建立变量和参

数间数学关系(数学模型)→解析地或近似地求解该数学模型→解释、验证求解

结果→应用于实际.

对我们来说,这一过程为

问题分析→模型假设→模型建立→模型求解→解的分析与检验→论文写作→应用实际.

(1)问题的分析

数学建模的问题,通常都是来自于实际中的各个领域的实际问题、没有固定的方法和标准的答案,因而既下可能明确给出该用什么方法,也不会给出恰好处的条件,有些对候所给的条件本身就是含糊不清的。因此,数学建模的第一步就应该是对问题所给条行和数据进行分折.明确要解决的问题。通过对问题的分析,明确为题中所给的信息,要完成的任务和多要做的工作、可能用到的知识和方法、问题的特点和限制条件、重点和难点、开展工作的程序和步骤等,同时还要明确题目所给条件和数据在解决问题中的意义和作用、本质的和非本质的、必要的和非必要的等等.从而,可以在建模的过程中,是适当地补充一些必要的条件和数据

(2)模型的假设

实际中,跟据问题的实际意义,在明确建模目的的基础上,对所研究的问题进行必要、合理的简化.用准确简练的语言给出表述,即模型的假设,这是数学建模的重要一步,合理假设在数学建模中除了起着简化问题的作用外,还对模型

的求解方法和使用范围起着限定作用.模型假设的合理性问题是评价一个模型优劣的重要条件之一,也是模型的建立成败的关键所在,假设做的过于简单,或过于详细,都会可能使得模型建立的不成功,为此.实际中要做出合适的假设,需要一定的经验和探索,有时候需要在建模的过程对已做的假设进行不断地补充和修改.

(3)模型的建立

在建立模型之前,首先要明确建模的目的,因为对于同一个实际问题,出于不同的目的所建立的数学模型可能会有所不同.在通常情况下,建模目的可以是描述或解释现实世界的现象;也可以是为了报一个事件是否会发生,或未来的发展趋势;也可以是为了优化管理、决策或控制等.如果是为了描述或解释现实世界,则一般可采用机理分析的方法去研究事物的内在规律;如果是为了J预报,则常常可以采用概率统计、优化理论或模拟计算等有关的建模方法:如果是为了优化管理、决策或控制等目的,则除了有效地利用上述方法之外,还需要合理地引入一些量化的评价指标及评价方法、对干实际中的一个复杂的问题,往往任是要综合运用多种不同方法和不同学科的知识来建立数学模型,才能很好地解决这一个问题.在明确建模目的的基础上,在合理的假设之下,就可以完成建立模型的任务,这是我们数学建模工作中最重要的一个环节。根据所给的条件和数据建立起问题中相关变量或因素之间的数学规律,可以是数学表达式、图形和表格。或者是一个算法等,都是数学模型的表示形式,这些形式有时都是对。

(4)模型的求解

不同的数学模型的求解方法一般是不同的,通常涉及不同数学分支的专门知识有方法,这就要求我们除了熟练地掌握一些数学知识和方法外,还应具备在必要时针对实际问题学习新知识的能力.同时,还应具备熟练的计算机操作能力、熟练掌握一门编程言和一两个数学工具软件包的使用。在不同的数学模型求解的难易程度是不同的。一般情况下,对较简单的问题,应力求普遍性而较复杂的问题,可从特

殊到一般的求解思路来完成.

(5)解的分析与检验

对于所求出的解。必须要对解的实际意义进行分析,即模型的解在实际问题中说明了什么,效果怎样,模型的适用范围如何等等。同时,还要进行必要的误差分析和灵敏度分析等工作.由于数学模型在一定的假设下建立.而且利用计算求的近似求解,其结果产生一定的误差是必然的,通常意义下的误差主要来自于由模型的假设引起的误差、近似求解方法产生的误差、计算机产生的舍人误差和问题的数据本身误差。实际中,对这些误差很难准确地给出定量估计、往往是针对某些主要的参数做相应的灵敏度分析,即当一个参数有很小的扰动时,对结果的影响是否也很小、由此可以确定相应变量和参数的误差允许范围。

〔7〕应用实际

所谓的初等分析方法主要是指所用的数学知识和方法都是初等的,不是高等的。在解决实际问题的过程中,住往主要是看解决问题的效果和应用的结果如何,而不在于用了初等的方法还是高等的方法.对于数学建模也是这样;判断一个数学模型的优劣完全在于模型的正确性和应用效果,而不在于采用多少高深的数学知识.然而,在同样的应用效果之下,用初等方法建立的数学模型可能更优于用高等方法建立的数学模型。通常我们所说的初等分析建模方法有很多、常用的?像类比分析方法、几何分析力法、逻辑分析方法、量纲分析方法、集合分析方法等。这些方法主要是根据对现实对象特性的认识,分析其因

果关系,找出反映内部机理的规律,所建立的数学模型一般有明确的物理意义或现实意义,对现实对象的认识主要来源于两个力面:一是与问题相关的物理、化学、经济等自然学科方面的知识;二是通过对数据和现象的分析对事物的内存规律做出合理假设。因此,这些简单的建模方法包都属于机理分析方法的范畴。

二、数学建模相关资料

一、常用书籍与网站

(一)、常用书籍: 1,姜启源,数学模型(第三版),北京:高等教育出版社, 2,谢金星,薛毅编著,优化建模与 LINDO/LINGO 软件,北京:清华大学出版社 3,《运筹学》教材编写组,运筹学(修订版),北京:清华大学出版社 4,韩中庚,数学建模方法及其应用,北京:高等教育出版社

(二)、常用网站 1,https://www.doczj.com/doc/d717726834.html, 高教杯数学建模竞赛官网2,https://www.doczj.com/doc/d717726834.html, 国防科大3,https://www.doczj.com/doc/d717726834.html, 数学中国论坛4,chxue https://www.doczj.com/doc/d717726834.html, 《长虹雪苑》之数学建模天地 5,百度:西南交大数学建模精品课程(我校四川省数学建模精品课程网站)二、常用模型

(一)、评价模型: AHP(层次分析法)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法等

(二)、预测模型:指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程

(三)、统计模型:方差分析、均值比较的假设检验

(四)、方程模型:常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)

(五)运筹优化类:线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法

(六)其他模型:随机模拟模型、等

三、十大算法

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)

2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用 Matlab 作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用 Lindo、Lingo 软件实现)

4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)

7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)

9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)

10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用 Matlab 进行处理)

拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。

在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、

fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon 实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。

回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。

逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。

聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。

系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。

系统聚类方法步骤:

1.计算n个样本两两之间的距离

2.构成n个类,每类只包含一个样品

3.合并距离最近的两类为一个新类

4.计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值),若类的个数等于1,转5,否则转3

5.画聚类图

6.决定类的个数和类。

判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。

距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离)Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别

Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体

模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没

有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比较的性质具有边界不分明的模糊性;模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系;模糊层次分析法—两两比较指标的确定;模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果。

时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列—通过对预测目标自身时间序列的处理,来研究其变化趋势(长期趋势变动、季节变动、循环变动、不规则变动)

自回归模型:一般自回归模型AR(n)—系统在时刻t的响应X(t)仅与其以前时刻的响应X(t-1),…, X(t-n)有关,而与其以前时刻进入系统的扰动无关;移动平均模型MA(m)—系统在时刻t的响应X(t) ,与其以前任何时刻的响应无关,而与其以前时刻进入系统的扰动a(t-1),…,a(t-m)存在着一定的相关关系;自回归移动平均模型ARMA(n,m)—系统在时刻t的响应X(t),不仅与其前n个时刻的自身值有关,而且还与其前m个时刻进入系统的扰动存在一定的依存关系。

时间序列建模的基本步骤

1.数据的预处理:数据的剔取及提取趋势项

2.取n=1,拟合ARMA(2n,2n-1)(即ARMA(2,1))模型

3.n=n+1,拟合ARMA(2n,2n-1)模型

4.用F准则检验模型的适用性。若检验显著,则转入第2步。若检验不显著,转入第5步。

5.检查远端时刻的系数值的值是否很小,其置信区间是否包含零。若不是,则适用的模型就是ARMA(2n,2n-1) 。若很小,且其置信区间包含零,则拟合ARMA(2n-1,2n-2) 。

6.利用F准则检验模型ARMA(2n,2n-1)和ARMA(2n-1,2n-2) ,若F 值不显著,转入第7步;若F值显著,转入第8步。

7.舍弃小的MA参数,拟合m<2n-2的模型ARMA(2n-1,m) ,并用F 准则进行检验。重复这一过程,直到得出具有最小参数的适用模型为止

8.舍弃小的MA参数,拟合m<2n-1的模型ARMA(2n,m) ,并用F准则进行检验。重复这一过程,直到得出具有最小参数的适用模型为止。图论方法:

最短路问题:两个指定顶点之间的最短路径—给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线(Dijkstra算法)每对顶点之间的最短路径(Dijkstra算法、Floyd 算法)。

最小生成树问题:连线问题—欲修筑连接多个城市的铁路设计一个线路图,使总造价最低(prim算法、Kruskal算法)。

图的匹配问题:人员分派问题:n个工作人员去做件n份工作,每人适合做其中一件或几件,问能否每人都有一份适合的工作?如果不能,最多几人可以有适合的工作?(匈牙利算法)。

遍历性问题:中国邮递员问题—邮递员发送邮件时,要从邮局出发,经过他投递范围内的每条街道至少一次,然后返回邮局,但邮递员希望选择一条行程最短的路线

最大流问题。

运输问题:最小费用最大流问题:在运输问题中,人们总是希望在完成运输任务的同时,寻求一个使总的运输费用最小的运输方案

2 十类算法的详细说明

以下将结合历年的竞赛题,对这十类算法进行详细地说明。

2.1 蒙特卡罗算法

大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。

举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自

己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年y的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

2.2 数据拟合、参数估计、插值等算法

数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在MATLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。

2.3 规划类问题算法

竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。

2.4 图论问题

98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。每一个算法都应该实现一遍,否则到比赛时再写就晚了。

2.5 计算机算法设计中的问题

计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。比如92 年B 题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。这方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。

2.6 最优化理论的三大非经典算法

这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科能是当今前沿科技的抽象体现。03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。2.7 网格算法和穷举算法

网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,

比如在[a; b] 区间内取M +1 个点,就是那么这样循环就需要进行次运算,所以计算量很大。比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用MATLAB 做网格,否则会算很久的。穷举法大家都熟悉,就不说了。

2.8 一些连续数据离散化的方法

大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。

2.9 数值分析算法

这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。

2.10 图象处理算法

01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。

三、自己总结

1.参数检验:如果观测的分布函数类型已知,这时构造出的

统计量依赖于总体的分布函数,这种检验称为参数检验.

2.非参数检验:如果所检验的假设并非是对某个参数作出明

确的判断,因而必须要求构造出的检验统计量的分布函数不依赖于观测值的分布函数类型,这种检验叫非参数检验.

如:要求判断总体分布类型的检验就是非参数检验.

个人认为图论中的最短路问题与线性问题中有关选址问题麻烦的多Lind。与简单Ling。程序的比较

型:差分命令实现微分方程的数值解及画法

随时间是一个动态的过程利用微分或差分的办法,然后利用拟合的方法求未知量的值机理分析及动态分析预测、根据机理分析建立相应的模型

预测回归分析时间序列神经分析

时间序列、样本多时间长数据多的情况得到的结果好一些

神经学习、训练的过程最后得到好的结果

通过关键词来搜索网络、联想需要的方法和办法。在之前知道自己的优势来选

数学建模实验四概论

西北农林科技大学实验报告 学院名称:理学院 专业年级:2013级信计1班 姓 名: 学 号 课 程:数学模型与数学建模 报告日期:2013年12月1日 拟合模型与回归分析 实验目的 配合《数学建模与数学模型》的第3章“常见的模型及其组建”,介绍如何运用数学软件进行模型组建,并结合数学理论分析求解模型。 拟合模型的组建是通过对有关变量的观测数据(散点图)的观察、分析。结合问题背景,运用数学分析,选择当前恰当的数学表达方式得到的。拟合的目的是寻找一条光滑曲线y=ψ(x),能够很好地表现受随机因素干扰的观测数据 (){}n i i i y x 1,=所反映的规律。原则上尽量选择简单的数学公式表达规律,在简单 的数学表达式中选择拟合效果好的。 一、赛跑成绩与赛跑距离 1 实验题目 赛跑成绩与赛跑距离 2 实验问题陈述 下面的表2.1.1给出了1997年以前6个不同距离的中短距离赛跑成绩的世界纪录: 3 实验内容 解 共分4个步骤,分别叙述如下。 步骤1 在坐标系上画出观测数据的散点图。 >> X=[100 200 400 800 1000 1500]; >> Y=[9.95 19.72 43.86 102.4 133.9 212.1]; >> plot(X,Y,'*')

步骤2 根据散点图,取线性拟合模型y=a+bx. 步骤3 利用数据(x i ,y i )估计模型参数a,b 。就是在寻找超定方程(方程个数多于未知数的个数)Ad =y ′的近似解d =(a,b)′,其中 ? ? ?? ?? ??=n x x A ...1...11,????? ? ??=n y y ...y ′ 1 称X=(x 1,x 2,....,x n )′为设计矩阵。采用最小二乘法确定参数的估计值∧a ,∧ b ,也就是求拟合残差平方和 ∑=--=n i i i bx a y Q 12)( 的最小值(a,b)。下面利用MATLAB 指令完成参数估计。 >> A=[ones(size(X))',X']; >> d=A\Y'; >> z=d(1)+d(2).*X; ; 得到线性模型:y=-9.99+0.145x. 步骤4 分析拟合效果,做拟合图。 >> plot(X,Y,'*',X,z,'LineWidth',2) >> Q=sum((Y-z).^2)

企业合并概述.doc

公司合并概述- 公司合并是指两个以上的公司,通过订立合并协议,依据我国法律和法规及政策的规定,而演变成一个公司的行为。从一定意义上讲,公司的合并的性质就是资本的集中,合并会造成公司数量的减少,但会形成留存公司的规模扩大,成为资源配置的一种市场手段和公司外部成长的途径。 合并一词出现在《民法通则》、《合同法》和《公司法》中,但是前两者没有对其内涵加以解释,目前只有《公司法》的规定比较详细。根据《公司法》第182、184条规定,笔者认为合并具有以下法律特征:一是,合并是两个或两个以上的公司依照法律规定和合同约定而归并于一个公司的行为,被合并公司的法人资格必然消失;二是,合并前公司的权利义务由合并后的公司全部地、概括地继受,这种继受实质上是法定继受,不因合并当事人之间的约定而改变;三是,合并是合并各方当事人之间的合同行为,合并方合并对方时必然要支付某种形式的对价,对价的表现形式或者是以现金补偿被合并方的投资者,或者是以自己因合并而增加的资本向被合并方的投资者交付股权,使其成为合并后企业的。 从目前实践来看,公司合并的主要形式主要有吸收合并和新设合并两种。 (一)吸收合并 吸收合并也称为吞并式合并或接受合并,是指一个公司或几个公司(转让公司)的财产作为整体转让给另一个公司(接受公司),转让公司的股东变为接受公司的股东,或取得接受公司

的价款支付,转让公司免经清算程序而解散,其权利义务由存继的接受公司承继的合并行为。吸收合并中,接受公司是已存在的公司,这不同于新设合并,合并后其继续存在,主体不发生变化,但资产规模会相应扩大,而转让公司的股东可能是得到价金支付的,也可能是在按取得或交换取得接受公司的股份成为投资者。同时,转让公司因合并而解散消失,其原有的法律主体资格及实体不复存在,它不同于目标公司资产的收购,其转让的是公司的整体。也不同于目标公司的收购,因公司收购未必导致目标公司的解散,往往只是公司投资者的变更。转让公司的解散可不必经过清算程序,因其权利义务由接受公司全部继承,转让公司原来履行的合同继由接收公司履行。 (二)新设合并 新设合并也称创设合并或新建合并,是指两个以上的公司(加入公司)共同组建一个新的公司(新设公司),将每个加入公司的财产作为整体转让给新设公司,由加入公司的股东获取新设公司的股份或价款支付,各加入公司免经清算程序而解散,其权利义务由新设公司承继的合并行为。新设合并中,新设公司是由各加入公司共同组建的,在合并开始前并不存在,这与吸收合并不同。各加入公司组建新设公司的目的是为了合并,即以各公司的加入为前提和条件。新设公司的成立与加入公司的解散同时发生,因每个加入公司的财产在整体上已经并入新设公司,新设公司的资产是由各加入公司的资产合并形成的,各加入公司的股东在按取得或经交换取得新设公司的股份或价金给付,取得股份者为新公司的股东,获价金给付者实际上是退股权的实现,即丧失了股东地位。由于加入公司的债权债务均要转为新设公司承继,各加入公司的未履行完毕的合同由新设公司继续履行,因而

第1章_软件工程学概述练习题

第一章练习题 一、判断题 1.螺旋模型是在瀑布模型和增量模型的基础上增加了风险分析活动。(√) 2..软件是指用程序设计语言(如PASCAL ,C,VISUAL BASIC 等)编写的程序,软件开 发实际上就是编写程序代码。(X) 3.在面向对象的软件开发方法中,每个类都存在其相应的对象,类是对象的实例,对象是 生成类的模板。(X) 4.快速原型模型可以有效地适应用户需求的动态变化。(√) 5.类是关于对象性质的描述,由方法和数据组成。(√) 6.如果把软件开发所需的资源画成一个金字塔,人是最基本的资源。(√) 二、名字解释: 1.软件:完成特定功能的程序+数据结构+文档。 2.软件危机:软件危机指在计算机软件的开发和维护过程中,所遇到的一系列严重问题。 3.软件工程:指导计算机软件开发和维护的一门工程学。 4.软件生命周期:一个软件从定义、开发、使用和维护直至最终被废弃,要经历的漫长时 期。 5.软件过程:为了获得高质量软件所需要完成的一系列任务的框架,它规定了完成各项任 务的工作步骤。 6.瀑布模型:是将软件生存各个活动规定为依线性顺序联接的若干阶段的模型。它包括可 行性分析、项目开发计划、需求分析、概要设计、详细设计、编码、测试盒维护。它规定了由前至后,相互衔接的固定次序,如同瀑布流水,逐级下落。 7.快速原型模型:是快速建立起来的可以再计算机上运行的程序,它所能完成的功能往往 是最终产品能完成的功能的一个子集。 8.增量模型:是在项目的开发工程中以一系列的增量方式开发系统。增量方式包括增量开 发和增量提交。增量开发是指在项目开发过程中以一定的时间间隔开发部分工作软件; 增量提交是指在开发周期内,以一定的时间间隔增量方式向用户提交工作软件及相应文档。增量开发和增量提交可以同时使用,也可以单独使用。 9.螺旋模型:是一种演化软件开发过程模型,它兼顾了快速原型的迭代的特征以及瀑布模 型的系统化与严格监控。螺旋模型最大的特点在于引入了其他模型不具备的风险分析,使软件在无法排除重大风险时有机会停止,以减小损失。同时,在每个迭代阶段构建原型是螺旋模型用以减小风险的途径。螺旋模型更适合大型的昂贵的系统级的软件应用。 对象。

各类三维设计软件介绍讲课教案

各类三维设计软件介 绍

三维设计软件现在有好多的,不过目前用的最多的是SolidWorks软件。SolidWorks的设计思路十分清晰,设计理念容易理解,模型采用参数化驱动,用数值参数和几何约束来控制三维几何体建模过程,生成三维零件和装配体模型;再根据工程实际需要做出不同的二维视图和各种标注,完成零件工程图和装配工程图。从几何体模型直至工程图的全部设计环节,实现全方位的实时编辑修改,能够应对频繁的设计变更。 PRO/E, 还有MAYA,caxa,sketch up(参数很少,小巧)Auto CAD (三维功能太弱,算不上三维设计软件,平面才是它的天下),SolidWorks,草图大 师,3ds(三维渲染很强) 目前常用三维软件很多,不同行业有不同的软件,各种三维软件各有所长可根据工作需要选择。比较流行的三维软件如:Rhino(Rhinoceros犀牛)、Maya、3ds Max、Softimage/XSI、Lightwave 3D、Cinema 4D、PRO-E等 Maya 是一个包含了许多各种内容的巨大的软件程序。对于一个没有任何使用三维软件程序经验的新用户来说,可能会因为它的内容广泛、复杂而受到打击。对于有一些三维制作经验的用户来说,则可以毫无问题地搞定一切。Maya的工作流程非常得直截了当,与其它的三维程序也没有太大的区别。只需要熟悉一至两个星期,你就会适应Maya的工作环境,因而可以更深一步的探究Maya的各种高级功能,比如节点结构和Mel脚本等。 Softimage/XSI 是一款巨型软件。它的目标是那些企业用户,也就是说,它更适合那些团队合作式的制作环境,而不是那些个人艺术家。籍此原因,我个人认为,这个软件并不特别适合初学者。XSI将电脑的三维动画虚拟能力推向了极至。是最佳的动画工具,除了新的非线性动画功能之外,比之前更容易设定Keyframe的传统动画。是制作电影,广告,3D,建筑表现等方面的强力工具。 Lightwave 对于一个三维领域的新手来说,Lightwave非常容易掌握。因为它所提供的功能更容易使人认为它主要是一个建模软件。对于一个从其它软件转来的初学者,在工具的组织形式上和命名机制上会有一些问题。在Lightwave中,建模工作就像雕刻一样,只需要几天的适应时间,初学者就会对这些工具感到非常地舒服。Lightwave有些特别,它将建模(Modeling:负责建模和贴图)和布局(Layout:动画和特效)分成两大模块来组织,也正是因为这点,丢掉了许多用户。 广泛应用在电影、电视、游戏、网页、广告、印刷、动画等各领域。它的操作简便,易学易用,在生物建模和角色动画方面功能异常强大;基于光线跟踪、光能传递等技术的渲染模块,令它的渲染品质几尽完美。它以其优异性能倍受影视特效制作公司和游戏开发商的青睐。火爆一时的好莱坞大片《TITANIC》中细致逼真的船体模型、《RED PLANET》中的电影特效以及《恐龙危机2》、《生化危机-代号维洛尼卡》等许多经典游戏均由LightWave 3D开发制作完成。 Rhinoceros(Rhino) 是一套专为工业产品及场景设计师所发展的概念设计与模型建构工具,它是第一套将 AGLib NURBS 模型建构技术之强大且完整的能力引进Windows 操作系统的软件,不管您要建构的是汽机车、消费性产品的外型设计或是船壳、机械外装或齿轮、甚至是生物或怪物的外形,Rhino 稳固的技术所提供给使用者的是容易学习与使用、极具弹性及高精确度的模型建构工具。从设计稿、手绘到实际产品,或是只是一个简单的构思,Rhino所提供的曲面工具可以精确地制作所有用来作为彩现、动画、工程图、分析评估以及生产用的模型。Rhino 可以在Windows 的环境下创造、编排或是转译NURBS曲线、表面与实体。在复杂度与尺寸上并没有限制。此外,Rhino并可支持多边网格的制作。 Vue 5 Infinite e-on software公司出品。作为一款为专业艺术家设计的自然景观创作软件,Vue 5 Infinite 提供了强大的性能,整合了所有 Vue 4 Pro 的技术,并新增了超过 110 项的新功能,尤其是 EcoSystem 技术更为创造精细的3D环境提供了无限的可能。Vue 5 Infinite 是几个版本中最有效率,也是在建模、动画、渲染等3D自然环境设计中最高级的解决方案.目前国际界内很多大型电影公司,游戏公司或与景观设计相关的行业都用此软件进行3D自然景观开发. Bryce Bryce是由DAZ推出的一款超强3D自然场景和动画创作软件,它包合了大量自然纹理和物质材质,通过设计与制作能产生极其独特的自然景观。这个革命性的软件在强大和易用中间取得了最优化的平衡,是一个理想的将三维技术融合进您的创作程序的方法,流畅的网络渲染、新的光源效果和树木造型库为您开拓创意的新天堂。全新的网络渲染 - 在网络中渲染一系列动画图像或是单张图片,大大节省时间和金钱。 对于机械行业哪种三维设计软件被最多公司应用。是SolidWorks,UG,PRO-E还是什么。

_企业合并概述,企业合并的会计处理

第二十六章企业合并 考情分析 本章主要介绍了企业合并内容及会计处理,属于重点内容。历年考试中均会结合合并财务报表考核主观题。本章内容具有一定难度,希望各位考生一定要坚持下来。需要说的是本章部分内容将结合第二十七章一并讲解。 第一节企业合并概述 一、企业合并的界定 企业合并是将两个或两个以上单独的企业合并形成一个报告主体的交易或事项。 【手写板】 是否能够按照企业合并准则进行会计处理,主要关注以下两个方面: 1.被购买方是否构成业务; 业务是指企业内部某些生产经营活动或资产负债的组合,该组合具有投入、加工处理过程和产出能力,能够独立计算其成本费用或所产生的收入。 2.交易发生前后是否涉及对标的业务控制权的转移。 二、企业合并的方式 1.控股合并 合并方(或购买方,下同)通过企业合并交易或事项取得对被合并方(或被购买方,下同)的控制权,企业合并后能够通过所取得的股权等主导被合并方的生产经营决策并自被合并方的生产经营活动中获益,被合并方在企业合并后仍维持其独立法人资格继续经营的,为控股合并。 2.吸收合并

合并方在企业合并中取得被合并方的全部净资产,并将有关资产、负债并入合并方自身生产经营活动中。企业合并完成后,注销被合并方的法人资格,由合并方持有合并中取得的被合并方的资产、负债,在新的基础上继续经营,该类合并为吸收合并。 3.新设合并 参与合并的各方在企业合并后法人资格均被注销,重新注册成立一家新的企业,由新注册成立的企业持有参与合并各企业的资产、负债在新的基础上经营,为新设合并。 三、企业合并类型的划分 同一控制下企业合并 非同一控制下企业合并 同一控制: 非同一控制:

软件概论

第一章软件工程概论 1. *软件:是计算机程序、方法、规则、相关的文档以及运行计算机系统时所必需的数据的总和(狭义定义:软件=程序+数据+文档) 2. *软件的特性:软件是复杂的、软件是不可见的、软件是不断变化的和软件质量难以稳定。 3. *软件的质量特性:功能性、可靠性、易用性、效率、维护性、可移植性。 4. 软件危机:指在计算机软件的开发和维护过程中所遇到的一系列严重问题。 5. 软件危机的主要表现: 对软件开发成本和进度估计常常很不准确 用户对"已完成"的系统不满意的现象经常发生 软件产品的质量往往靠不住 软件常常是不可维护的 软件成本在计算机系统总成本所占的比例逐年上升 6. 软件危机产生的主要原因: 软件日益复杂和庞大 软件开发管理困难和复杂 软件开发技术落后 生产方式落后 开发工具落后 软件开发费用不断增加 7. 软件危机如何解决:既要有技术措施(方法和工具),又要有必要的组织管理措施。 8. 软件工程:是指导计算机软件开发和维护的一门工程学科。采用工程的概念、原理、技术和方法来开发与维护软件,把经过时间考验而证明正确的管理技术和当前能够得到的最好的技术方法结合起来,以经济地开发出高质量的软件并有效地维护它。 9. 软件工程以关注软件质量为目标,包括方法、过程、工具、范式四个要素。 10. 软件工程方法学:把软件生命周期全过程中使用的一整套技术方法的集合成为方法学(也称范型paradigm),包括三个要素:方法,工具和过程.目前使用最广泛的是传统方法学和面向对象方法学 传统方法学(也称生命周期方法学或结构化范型):采用结构化技术(结构化分析,结构化技术,结构化实现)来完成软件开发的各项任务,并使用适当的软件工具或软件环境来支持结构化技术的运用...略太过了 面向对象方法学:有4个要点;它是一个多次反复迭代的演化的过程;特有的继承性和多态性进一步提高了面向对象软件的可重用性 11. 软件生命周期 问题定义:确定要解决的问题是什么(通过客户的访问调查,系统分析员写出问题的性质,工程目标和工程规模的书面报告,并得到客户的确认) 可行性研究:不是具体解决问题,而是研究问题的范围,探索问题是否值得去解,是否有可行的解决方法 需求分析:准确确定"为了解决这个问题,目标系统必须做什么",主要是确定目标系统必须具备哪些功能 总体设计:设计出目标系统的多种方案;设计程序的体系结构 详细设计:详细的设计每个模块,确定要实现模块功能所需要的算法和数据结构 编码和单元测试:写出正确的容易理解,容易维护的程序模块 综合测试:通过各种类型的测试(及相应的的调试)使软件达到预定的要求

数学建模课程简介

《数学建模》课程简介 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 内容简介: 本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。 本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年为21人)。 推荐教材或参考书: “数学建模”,杨启帆、谈之奕、何勇编著,浙江大学出版社出版,2006年7月 《数学建模》教学大纲 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 一、教学目的与基本要求: 通过典型数学模型分析和课外建模实践,使学生基本掌握运用数学知识建立数学模型来研究科研问题或实际课题的基本技能与基本技巧,本课程教学除传授知识外还要求学生在实际建模中注意培养和提高自身的能力,以便提高自己的综合素质与实际本领。 二、主要内容及学时分配: 1.数学建模概论,3学时 2.初等模型,8学时:舰艇的汇合,双层玻璃的功效,崖高的估算,经验模型,参数 识别,量纲分析法建模,方桌问题、最短路径与最速方案等 3.微分方程建模,14学时:马尔萨斯模型和罗杰斯蒂克模型,为什么要用三级火箭发 射人造卫星,药物在体内的分布,传染病模型,捕食系统的P-P模型,双种群生态 系统研究等

各类三维设计软件介绍

. 三维设计软件现在有好多的,不过目前用的最多的是SolidWorks软件。SolidWorks的设计思路十分清晰,设计理念容易理解,模型采用参数化驱动,用数值参数和几何约束来控制三维几何体建模过程,生成三维零件和装配体模型;再根据工程实际需要做出不同的二维视图和各种标注,完成零件工程图和装配工程图。从几何体模型直至工程图的全部设计环节,实现全方位的实时编辑修改,能够应对频繁的设计变更。 PRO/E, 还有MAYA,caxa,sketch up(参数很少,小巧)Auto CAD (三维功能太弱,算不上三维设计软件,平面才是它的天下),SolidWorks,草图大 师,3ds(三维渲染很强) 目前常用三维软件很多,不同行业有不同的软件,各种三维软件各有所长可根据工作需要选择。比较流行的三维软件如:Rhino(Rhinoceros犀牛)、Maya、3ds Max、Softimage/XSI、Lightwave 3D、Cinema 4D、PRO-E等 Maya 是一个包含了许多各种内容的巨大的软件程序。对于一个没有任何使用三维软件程序经验的新用户来说,可能会因为它的内容广泛、复杂而受到打击。对于有一些三维制作经验的用户来说,则可以毫无问题地搞定一切。Maya的工作流程非常得直截了当,与其它的三维程序也没有太大的区别。只需要熟悉一至两个星期,你就会适应Maya的工作环境,因而可以更深一步的探究Maya的各种高级功能,比如节点结构和Mel脚本等。 Softimage/XSI 是一款巨型软件。它的目标是那些企业用户,也就是说,它更适合那些团队合作式的制作环境,而不是那些个人艺术家。籍此原因,我个人认为,这个软件并不特别适合初学者。XSI将电脑的三维动画虚拟能力推向了极至。是最佳的动画工具,除了新的非线性动画功能之外,比之前更容易设定Keyframe的传统动画。是制作电影,广告,3D,建筑表现等方面的强力工具。 Lightwave 对于一个三维领域的新手来说,Lightwave非常容易掌握。因为它所提供的功能更容易使人认为它主要是一个建模软件。对于一个从其它软件转来的初学者,在工具的组织形式上和命名机制上会有一些问题。在Lightwave中,建模工作就像雕刻一样,只需要几天的适应时间,初学者就会对这些工具感到非常地舒服。Lightwave有些特别,它将建模(Modeling:负责建模和贴图)和布局(Layout:动画和特效)分成两大模块来组织,也正是因为这点,丢掉了许多用户。 广泛应用在电影、电视、游戏、网页、广告、印刷、动画等各领域。它的操作简便,易学易用,在生物建模和角色动画方面功能异常强大;基于光线跟踪、光能传递等技术的渲染模块,令它的渲染品质几尽完美。它以其优异性能倍受影视特效制作公司和游戏开发商的青睐。火爆一时的好莱坞大片《TITANIC》中细致逼真的船体模型、《RED PLANET》中的电影特效以及《恐龙危机2》、《生化危机-代号维洛尼卡》等许多经典游戏均由LightWave 3D开发制作完成。 Rhinoceros(Rhino) 是一套专为工业产品及场景设计师所发展的概念设计与模型建构工具,它是第一套将AGLib NURBS 模型建构技术之强大且完整的能力引进Windows 操作系统的软件,不管您要建构的是汽机车、消费性产品的外型设计或是船壳、机械外装或齿轮、甚至是生物或怪物的外形,Rhino 稳固的技术所提供给使用者的是容易学习与使用、极具弹性及高精确度的模型建构工具。从设计稿、手绘到实际产品,或是只是一个简单的构思,Rhino所提供的曲面工具可以精确地制作所有用来作为彩现、动画、工程图、分析评估以及生产用的模型。Rhino 可以在Windows 的环境下创造、编排或是转译NURBS曲线、表面与实体。在复杂度与尺寸上并没有限制。此外,Rhino并可支持多边网格的制作。 Vue 5 Infinite e-on software公司出品。作为一款为专业艺术家设计的自然景观创作软件,Vue 5 Infinite 提供了强大的性能,整合了所有Vue 4 Pro 的技术,并新增了超过110 项的新功能,尤其是EcoSystem 技术更为创造精细的3D环境提供了无限的可能。Vue 5 Infinite 是几个版本中最有效率,也是在建模、动画、渲染等3D自然环境设计中最高级的解决方案.目前国际界内很多大型电影公司,游戏公司或与景观设计相关的行业都用此软件进行3D自然景观开发. Bryce Bryce是由DAZ推出的一款超强3D自然场景和动画创作软件,它包合了大量自然纹理和物质材质,通过设计与制作能产生极其独特的自然景观。这个革命性的软件在强大和易用中间取得了最优化的平衡,是一个理想的将三维技术融合进您的创作程序的方法,流畅的网络渲染、新的光源效果和树木造型库为您开拓创意的新天堂。全新的网络渲染- 在网络中渲染一系列动画图像或是单张图片,大大节省时间和金钱。 对于机械行业哪种三维设计软件被最多公司应用。是SolidWorks,UG,PRO-E还是什么。 NXUG在工业产品中应用广泛,包括汽车、模具、机箱机柜、等等,钣金模块强大,设产品计、开模、数控一条进行 PROE在家用产品行业应用广泛,包括冰箱、洗衣机、电视机等等,软件产品视觉效果很好,产品设计者情有独钟 cait在流体领域应用较多,如飞机、潜艇等,曲面模块强大 SolidWorks贵在综合, AUTOCAD主要用于二维出图。 SolidWorks Pro/E UG同为三维设计软件学哪个最好? Solidworks简单易学,Windows操作界面,很容易上手,但感觉用的时候占内存较多,对电脑配置要求高,它的工程图功能相当强大。 Pro/e相对内存占用稍少,运行较快,功能齐全,便没有前者好学,它也在不断改进操作界面,现在比之前应该好操作一点儿,不过用熟了的话,是感觉不到区别的,主要是对新学者来说。 UG;Solidworks与之是一个内核,没学过,不过看到界面也很友好,应该不难。 最后,其实这些工业设计软件,个人觉得,只要学会一个,其它的可无师自通,有很强的相似性。 SolidWorks易学易用,性价比高,在中国及国外,越来越多的人在学习。好学不代表功能不好。 proe功能比较不错,但汉化不彻底,学起来很费劲。 ug模具方面不错,学起来也超级费劲。价格昂贵, 3D机械模具设计:CATIA,UG,CERO(Proe),Solidedge,Solidworks,inventor 3D工业设计:3ds Max, Maya,Softimage,Solidthinking ;.

【会计知识点】企业合并概述

合并成本小于取得的可辨认净资产公 允价值份额的差额 确认负商誉(计入当期 损益) 【提示1】在企业合并中,交易费用应被费用化。 【提示2】业务合并中购买的资产和承担的债务因账面价值与计税基础不同形成的暂时性差异应确认递延所得税影响。 3.不形成企业合并的交易或事项 一个企业取得了对另一个或多个企业的控制权,而被购买方(或被合并方)并不构成业务。 4.不包括在企业合并准则规范范围内的交易或事项 (1)购买子公司的少数股权,考虑到该交易或事项发生前后,不涉及控制权的转移,报告主体未发生变化,不属于企业合并。 (2)两方或多方形成合营企业。 二、企业合并的方式 三、企业合并类型的划分 企业合并类型概念 同一控制下 企业合并 是指参与合并的企业在合并前后均受同一方或相同的多方最 终控制且该控制并非暂时性的 非同一控制 下企业合并 是指参与合并各方在合并前后不受同一方或相同多方最终控 制的合并交易,即除判断属于同一控制下企业合并的情况以外 其他的企业合并 (一)同一控制下的企业合并的处理 判断某一企业合并是否属于同一控制下的企业合并,应当把握以下要点: 1.能够对参与合并各方在合并前后均实施最终控制的一方通常指企业集团的母公司。 2.能够对参与合并的企业在合并前后均实施最终控制的相同多方,是指根据合同或协议的约定,拥有最终决定参与合并企业的财务和经营政策,并从中获取利益的投资者群体。 3.实施控制的时间性要求,是指参与合并各方在合并前后较长时间内为最终控制方所控制。具体是指在企业合并之前(即合并日之前),参与合并各方在最终控制方的控制时间一般在1年以上(含1年),企业合并后所形成的报告主体在最终控制方的控制时间也应达到1年以上(含1年)。 4.企业之间的合并是否属于同一控制下的企业合并,应综合构成企业合并交易的各方面情况,按照实质重于形式的原则进行判断。通常情况下,同一控制下的企业合并是指发生在同一企业集团内部企业之间的合并。同受国家控制的企业之间发生的合并,不应仅仅因为参与合并各方在合并前后均受国家控制而将其作为同一控制下的企业合并。 (二)非同一控制下的企业合并的处理

第一章 系统建模与仿真概述

第一章系统建模与仿真概述 系统:系统是由两个以上相互区别或相互作用的单元有机的结合在起来,完成某一功能的综合体。 系统的特征:1.系统的整体性 2.系统的层次性 3.系统的相关系 4.系统的目的性 5.系统对环境的适应性系统: 模型:模型是对系统的特征要素,有关信息和变化规律的一种抽象表述、它反映 了系统某些本质属性,描述了系统各要素间的相互关系,系统与环境之间的相互 作用。 模型的意义:1.客观实体系统很难做试验,或者根本不能做实验。 2.对象问题虽然可以做试验,但是利用模型更便于理解。 3.模型易于操作,利用模型的参数变化来了解现实问题的本质和规 律更加经济方便。 系统模型的种类:抽象模型和形象模型 抽象模型:数学模型图形模型计算机模型概念模型 形象模型:模拟模型实体模型 建立模型的步骤: 1.弄清问题,掌握实际情况 2.搜集资料 3.确定因素之间的关系 4.构造建模 5.求解模型 6.检验模型的正确性 系统建模预防针的一般方法和步骤(P17) 仿真的发展趋势:建模方法面对对象仿真分布交互仿真人工智能与 计算机仿真虚拟现实仿真 Internet网上仿真 第二章商贸物流系统建模与仿真 商贸流通在社会经济中的地位与作用:1,商贸流通是连接生产和消费的纽带; 2,商贸流通对生产具有反作用; 3,商贸流通是国民经济现代化的支柱。 商贸活动的内容: 1,商流,对象物所有权转移的活动称为商流。 2,物流,是指事物从供给方向需求方的转移。

3,资金流,主要是指资金流的转移过程,包括付款,转账等过程,是 整个商贸活动的目的。 4,信息流,指商品信息的提供,商品促销信息,技术支持,售后服务 等内容,也包括诸如询单价,报单价,付款通知单,转账通知单等商业贸易单证以及交易 方的支付能力和支付信誉。 预测:所谓预测就是人们对某一不确定的或未知事件的表述。 预测的作用:从变化的事物中找出使事物发生变化的变化的固有规律,寻找和研究各种变化现象的背景及其演变的逻辑关系,从而去揭示事物未来的面貌。 判断预测方法:一,部门负责人评判预测法;二,销售人员估计法;三,德尔菲法;四, 历时类比法。 德尔菲法:依靠技术专家小组背靠背景来判断,来代替面对面的会议,是不同专家将分歧的幅度和理由都能够表达出来,经过客观分析以求达到客观规律的一致意见。 时间序列预测技术:一,移动平均预测法(计算题p30例2); 二,指数平均预测法。 DRP:是分销需求计划的简称,它是MRP原理和技术在流通领域中的应用。该技术主要解决分销物资的应用和调度问题,其基本目标是合理进行分销物资和资源配置,以达到既有效 地满足市场需求优势的配置费用最省的目的。 *DRP的基本概念 1.库存:指仓库或物流中心实际存在的物资数量。 2.安全库存:为便于生产经营活动正常进行,防止因需求货供应的波动 引起缺货或停工待料,经常在仓库各项目保持一定数量的计划库存量, 成为安全库存。 3.期初和期末库存:指在论述的时间段开始和结束时本单位的实际库存。 4.进货提前期:指从发出订货到所定货物运回并入库所需要的时间长度。 5.送货提前期:指从接收订单到货物送到用户手中并接收入库的时间长度。 6.在途物资:指供应商已经接受订单备货,但尚未来到本单位入库的物资。 7.订货批量:指一次订货所订的物资数量。 8.时间周期:就是根据实际需要划分的时间段信息,如一日,周,月划分。 9.计划期:是指DRP尽心运算的整个时间段,可能是一个月,一个季度 或一年,他可划分为几个计划周期。 10.物流中心:从事物流活动的具有完善的信息网络的场所或组织。 BOD简介:B OD是MRP中物料清单BOM的概念和结构在分销领域的运用,它同BOM在产品结构树中连接各零件和成品一样,在供应方和各个需求方之间架起了一座沟通的桥梁。 DRP在分销网络中的运作原理(p43DRP原理图)

S-GeMs软件基本原理及三维地质建模应用

目录 第一章 S-Gems软件简介及建模工区概况 (2) 1.1 S-GeMs软件的基本概况 (2) 1.2 建模工区及地质背景简介 (2) 第二章数据的导入及基本分析 (3) 2.1 数据的格式及导入操作 (3) 2.2 数据分析及处理(正态变换) (4) 第三章各变量的变差函数分析 (8) 3.1 变差函数的基本原理 (8) 3.2 S-GeMs软件变差函数分析模块及基本操作简介 (8) 3.3 变差函数分析结果 (10) 第四章三维沉积相建模 (14) 4.1 三维沉积相确定性建模(指示克里金方法) (14) 4.2 三维沉积相随机建模(序贯指示模拟方法) (15) 第五章三维储层参数建模 (20) 5.1 协同克里金方法(cokriging)三维储层参数确定性建模 (20) 5.2 协同序贯高斯模拟方法(cosgsim)三维储层参数随机建模 (22) 第六章 S-GeMs软件建模的优越性与局限性 (26) 6.1 S-GeMs软件建模的优越性 (26) 6.2 S-GeMs软件建模的局限性(约束条件) (26) 参考文献 (27)

S-GeMs软件基本原理与三维地质建模应用 ——《地质与地球物理软件应用》课程报告第一章 S-Gems软件简介及建模工区概况 1.1 S-GeMs软件的基本概况 S-GeMS(Stanford Geostatistical Modeling Software)是Nicolas Remy在斯坦福大学油藏预测中心(SCRF:The Stanford Center for Reservoir Forecasting)开发的一套开源地质建模及地质统计学研究软件。2004年首次发布,其后进行了更新和升级。该软件包括传统的经典地质统计学算法和新近发展的多点地质统计学方法。由于操作简单、源代码公开,而且有二次开发的接口,因此日益成为继Gslib之后又一重要的地质统计学研究和应用软件。 1.2 建模工区及地质背景简介 已知建模工区的范围沿x、y、z方向为1000×1300×20米。三维网格数为100×130×10,网格大小为10×10×2米。主要沉积的砂体为发育在泛滥平原泥岩上的河道砂体,且河道砂体近东西向展布。另有部分河道发育决口扇砂体。工区第6网格层的沉积相切片如图1所示。 图1-1 建模工区中部沉积相分布图 本次实验共提供350口井的井数据,所有350井均为直井。垂向上每口井分为10个小层,每层厚度为2米,如图 2 所示。

第一章数学建模概述

1数学建模概述 ? 数学模型 ? 数学建模过程 ? 数学建模示例 ? 建立数学模型的方法和步骤 ? 数学模型的分类 1数学模型 模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。 直观模型: 实物模型,主要追求外观上的逼真。 物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。 思维模型,符号模型,数学模型 数学模型: 1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。它是模型的一种。 2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。 3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用 适当的数学工具得到一个数学结构。 数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。 总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。古希腊时期:“数理是宇宙的基本原理”。文艺复兴时期:应用数学来阐明现象“进行尝试”。微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。费马(P.Fermal 1601-1665)用变分法表示“光沿着所需时间最短的路径前进”。牛顿(Newton 1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律: 结合开普勒三定律得出万有引力定律 航行问题: 甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少? 用y x ,分别代表船速、水速,可以列出方程 解方程组,得 22 1r m m G F =ma F =?? ?=?-=?+75050)(75030)(y x y x 小时) (千米小时)(千米/5/20==y x

三维建模软件概述

三维建模软件概述 三维建模软件概述 一、市面上软件概览(一)国外软件1.CATIA CATIA是英文Computer Aided Tri-Dimensional Interface Application 的缩写。是世界上一种主流的CAD/CAE/CAM一体化软件。在70年代Dassault Aviation 成为了第一个用户,CATIA 也应运而生。从1982年到1988年,CATIA 相继发布了1版本、2版本、3版本,并于1993年发布了功能强大的4版本,现在的CATIA 软件分为V4版本和V5版本两个系列。V4版本应用于UNIX 平台,V5版本应用于UNIX和Windows 两种平台。V5版本的开发开始于1994年。为了使软件能够易学易用,Dassault System 于94年开始重新开发全新的CATIA V5版本,新的V5版本界面更加友好,功能也日趋强大,并且开创了CAD/CAE/CAM 软件的一种全新风格。法国Dassault Aviation 是世界著名的航空航天企业。其产品以幻影2000和阵风战斗机最为著名。CATIA的产品开发商Dassault System 成立于1981年。而如今其在CAD/CAE/CAM 以及PDM 领域内的领导地位,已得到世界范围内的承认。其销售利润从最开始的一百万美圆增长到现在的近二十亿美圆。雇员人数由20人发展到2,000多人。CATIA是法国Dassault System公司的CAD/CAE/CAM一体化软件,居世界CAD/CAE/CAM领域的领导地位,广泛应用于航空航天、汽车制造、造船、机械制造、电子\电器、消费品行业,它的集成解决方案覆盖所有的产品设计与制造领域,其特有的DMU电子样机模块功能及混合建模技术更是推动着企业竞争力和生产力的提高。CATIA 提供方便的解决方案,迎合所有工业领域的大、中、小型企业需要。包括:从大型的波音747飞机、火箭发动机到化妆品的包装盒,几乎涵盖了所有的制造业产品。在世界上有超过13,000的用户选择了CATIA。CATIA 源于航空航天业,但其强大的功能以得到各行业的认可,在欧洲汽车业,已成为事实上的标准。CATIA 的著名用户包括波音、克莱斯勒、宝马、奔驰等一大批知名企业。其用户群体在世界制造业中具有举足轻重的地位。波音飞机公司使用CATIA完成了整个波音777的电子装配,创造了业界的一个奇迹,从而也确定了CATIA 在CAD/CAE/CAM 行业内的领先地位。CATIA V5版本是IBM和达索系统公司长期以来在为数字化企业服务过程中不断探索的结晶。围绕数字化产品和电子商务集成概念进行系统结构设计的CATIA V5版本,可为数字化企业建立一个针对产品整个开发过程的工作环境。在这个环境中,可以对产品开发过程的各个方面进行仿真,并能够实现工程人员和非工程人员之间的电子通信。产品整个开发过程包括概念设计、详细设计、工程分析、成品定义和制造乃至成品在整个生命周期中的使用和维护。CATIA V5版本具有:1.重新构造的新一代体系结构为确保CATIA产品系列的发展,CATIA V5新的体系结构突破传统的设计技术,采用了新一代的技术和标准,可快速地适应企业的业务发展需求,使客户具有更大的竞争优势。2.支持不同应用层次的可扩充性CATIA V5对于开发过程、功能和硬件平台可以进行灵活的搭配组合,可为产品开发链中的每个专业成员配置最合理的解决方案。允许任意配置的解决方案可满足从最小的供货商到最大的跨国公司的需要。3.与NT和UNIX硬件平台的独立性CATIA V5是在Windows NT平台和UNIX平台上开发完成的,并在所有所支持的硬件平台上具有统一的数据、功能、版本发放日期、操作环境和应用支持。CATIA V5在Windows平台的应用可使设计师更加简便地同办公应用系统共享数据;而UNIX平台上NT风格的用户界面,可使用户在UNIX平台上高效地处理复杂的工作。4.专用知识的捕捉和重复使用CATIA V5结合了显式知识规则的优点,可在设计过程中交互式捕捉设计意图,定义产品的性能和变化。隐式的经验知识变成了显式的专用知识,提高了设计的自动化程度,降低了设计错误的风险。5.给现存客户平稳升级CATIA V4和V5具有兼容性,两个系统可并行使用。对于现有的CATIA V4用户,V5年引领他们迈向NT

数学模型教学大纲

《数学模型》教学大纲 课程名称: 数学模型(Mathematical Model) 适用专业:应用数学、信息与计算科学 课程学时: 48学时理论+32学时实验 课程学分: 4 先修课程:微积分、线性代数、概率论 考核方式:期末论文 理论课教学大纲 一、课程的性质与任务 随着其它学科和计算机的迅速发展,数学已经向各个领域广泛渗透,数学已经由原来的高度抽象、严格推理和严密证明的理论课过渡成为解决许多边缘学科和交叉学科的关键技术。而数学一开始就是为了解决实际问题的需要而产生,数学模型或建立数学模型课程的开设就是一个朴素的回归。 设立数学建模课程的主要目的是培养学生应用所学的数学基础知识(微积分、线性代数、概率统计)解决实际问题的能力,培养新型的应用型动手能力强的人才。本课程通过一系列典型案例的分析、学习和应用,使学生掌握解决实际问题的一般步骤和原理;通过一些必要的辅助计算软件(lingo优化软件、matlab科学计算软件等)的培训,培养学生新型的数学观:数学中很多的复杂而重复的计算,应该完全交给计算机去做,人就回到思考、分析、设计、评估等更重要的工作中去。 由于实际问题的复杂性和广泛性,本课程在讲授不同类型的模型时,可以参考不同的教材和选取不同的计算软件,所以在教材的选取上本着灵活性和多样性,因而不同章节有不同的参考书。 二、课程的内容 第1章.数学建模概论 1.1 什么是数学模型 1.2 几个简单的建模案例 1.3 建立数学模型的基本方法和步骤 1.4 数学模型的特点和分类 1.5 数学建模能力的培养 参考教材:《数学模型》.高教出版社.姜启源 《数学建模与数学实验》.高教出版社.赵静 《数学建模方法及其应用》高教出版社.韩中庚 第2章. 初等数学模型 2.1 公平的席位分配问题

三维建模软件工作流程图

我们在工作中经常需要绘制一些简单的流程图,我们经常用软件工具来绘制。每款软件都有自己的 独到之处,也有自己的缺点。通过比较不同软件和工具的使用效果,我们总能选出适合自己的一款。我们在这里说的流程图,仅仅指日常用到的常规的,用来表示某项工作的流程规划图,并不是指某 项专业领域的流程图,当然以下叙述的软件中也有能绘制一些专业流程图的功能。 当你对那些简洁美观的流程图感到羡慕不已,是否好奇它们是怎样做出来的,是否想知道需要 什么样的专业技能。今天,这一切将变得非常简单,你只需要点击几下鼠标就能制作出属于自己的 可视化流程图。而且一切操作都异常简洁。

流程图的基本符号 首先,设计流程图的难点在于对业务逻辑的清晰把握。熟悉整个流程的方方面面。这要求设计者自己对任何活动、事件的流程设计,都要事先对该活动、事件本身进行深入分析,研究内在的属性和规律,在此基础上把握流程设计的环节和时序,做出流程的科学设计。研究内在属性与规律,这是流程设计应该考虑的基本因素。也是设计一个好的流程图的前提条件。

然后再根据事物内在属性和规律进行具体分析,将流程的全过程,按每个阶段的作用、功能的不同,分解为若干小环节,每一个环节都可以用一个进程来表示。在流程图中进程使用方框符号来表达。 既然是流程,每个环节就会有先后顺序,按照每个环节应该经历的时间顺序,将各环节依次排开,并用箭头线连接起来。箭头线在流程图中表示各环节、步骤在顺序中的进展。 对某环节,按需要可在方框中或方框外,作简要注释,也可不作注释。 经常判断是非常重要的,用来表示过程中的一项判定或一个分岔点,判定或分岔的说明写在菱形内,常以问题的形式出现。对该问题的回答决定了判定符号之外引出的路线,每条路线标上相应的回答。 选择好的流程图制作工具 亿图发布第一款支持快捷操作的流程图制作工具从而极大的降低了专业流程设计的门槛,让大多数人可以在很短的时间里绘制出专业的流程图。

相关主题
文本预览
相关文档 最新文档