当前位置:文档之家› 第一章数学建模概述

第一章数学建模概述

第一章数学建模概述
第一章数学建模概述

1数学建模概述

? 数学模型 ? 数学建模过程 ? 数学建模示例

? 建立数学模型的方法和步骤 ?

数学模型的分类

1数学模型

模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。 直观模型: 实物模型,主要追求外观上的逼真。

物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。 思维模型,符号模型,数学模型 数学模型:

1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。它是模型的一种。

2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。

3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用 适当的数学工具得到一个数学结构。

数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。 总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。古希腊时期:“数理是宇宙的基本原理”。文艺复兴时期:应用数学来阐明现象“进行尝试”。微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。费马(P.Fermal 1601-1665)用变分法表示“光沿着所需时间最短的路径前进”。牛顿(Newton 1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律:

结合开普勒三定律得出万有引力定律

航行问题:

甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少?

用y x ,分别代表船速、水速,可以列出方程

解方程组,得

22

1r m m G F =ma F =??

?=?-=?+75050)(75030)(y x y x 小时)

(千米小时)(千米/5/20==y x

答:船速、水速分别为20千米/小时、5千米小时。

2数学建模过程:

实现对象和数学模型的关系

3数学建模示例:

建模示例之一 椅子的稳定性问题 问题:将四条腿一样长的正方形椅子放在不平的地面上,是否总能设法使它的四条腿同时着

地,即放稳。 1假设

1)地面为光滑曲面;

2)相对地面的弯曲程度而言,椅子的腿是足够长的;

3)只要有一点着地就视为已经着地,即将与地面的接 触视为几何上的点接触; 4)椅子的中心不动。 2 建模分析

()θg 表示A,C 与地面距离之和,()θf 表示B,D 与地面距离之和,则由三点着地,有

()()0,0θθθ≤=g f

x

3 数学命题:

假设: 是 θ的连续函数, 且对任意θ,

求证:至少存在 ,使得

4 模型求解

0)0(,0)>=f )(),(θθg f ,0)0(=g ,

0)0(>f 0)()(=?θθg f )2

,0(0πθ∈0)()(00==θθg f ,0)2

(,0)2(>=π

πg f

证明: 将椅子转动 2π,对角线互换,由 可得 令

由 的连续性,根据介值定理,在 中至少存在一点0θ,使得 ,即 ,又 ,所以, 。

结论:能放稳。

连续函数的介值定理

思考题1:长方形的椅子会有同样的性质吗?

4建立数学模型的方法和步骤:

方法

机理分析法:以经典数学为工具,分析其内部的机理规律。 统计分析法:以随机数学为基础,经过对统计数据进行分析,得到其内在的规律。如:多元

统计分析。

系统分析法:对复杂性问题或主观性问题的研究方法。把定性的思维和结论用定量的手段表

示出来。如:层次分析法。

建模步骤

建模步骤

1)模型准备:了解问题的实际背景,明确建模目的,掌握对象的各种信息如统计数据等,弄清实际对象的特征。有时需查资料或到有关单位了解情况等。

2)模型假设:根据实际对象的特征和建模目的,对问题进行必要地合理地简化。不同的假设会得到不同的模型。如果假设过于简单可能会导致模型的失败或部分失败,于是应该修

,0)0(,0)0(>=f g ,0)0()0()0( ),()()(>-=-=g f h g f h 则θθθ ,0)2

()2()2( <-=π

ππg f h 而)(θh )2

,0(π

)(0=θh )()(00θθg f =0)()(00=?θθg f 0)()(00==θθg f .

0)(,),( 0,)()(],[)(=<θθf b a b f a f b a x f 使内至少存在一点则在开区间上连续,在闭区间若ma

F =模型准备 模型假设 模型建立 模型检验

模型分析 模型求解 模型应用

改或补充假设,如“四足动物的体重问题”;如果假设过于详细,试图把复杂的实际现象的各个因素都考虑进去,可能会陷入困境,无法进行下一步工作。分清问题的主要方面和次要方面,抓主要因素,尽量将问题均匀化、线性化。

3)模型建立:

?分清变量类型,恰当使用数学工具;

?抓住问题的本质,简化变量之间的关系;

?要有严密的数学推理,模型本身要正确;

?要有足够的精确度。

4)模型求解:可以包括解方程、画图形、证明定理以及逻辑运算等。会用到传统的和近代的数学方法,计算机技术(编程或软件包)。特别地近似计算方法(泰勒级数,三角级数,二项式展开、代数近似、有效数字等)。

5)模型分析:结果分析、数据分析。变量之间的依赖关系或稳定性态;数学预测;最优决策控制。

6)模型检验:把模型分析的结果“翻译”回到实际对象中,用实际现象、数据等检验模型的合理性和适应性检验结果有三种情况:符合好,不好,阶段性和部分性符合好。

7)模型应用:应用中可能发现新问题,需继续完善。

5模型的分类:

1)按变量的性质分:

2)按时间变化对模型的影响分:

3)按模型的应用领域(或所属学科)分:

人口模型、交通模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型、生物数学模型、医学数学模型、地质数学模型、数量经济学模型、数学社会学模型等。4)按建立模型的数学方法(或所属数学分支)分:

初等模型、几何模型、线性代数模型、微分方程模型、图论模型、马氏链模型、运筹学模型等。

5)按建模目的分:

描述性模型、分析模型、预报模型、优化模型、决策模型、控制模型等。

6)按对模型结构的了解程度分:

白箱模型:其内在机理相当清楚的学科问题,包括力学、热学、电学等。

灰箱模型:其内在机理尚不十分清楚的现象和问题,包括生态、气象、经济、交通等。

黑箱模型:其内在机理(数量关系)很不清楚的现象,如生命科学、社会科学等。

建模示例之二 四足动物的身长和体重问题

问题:四足动物的躯干(不包括头尾)的长度和它的体重有什么关系?

假设:四足动物的躯干为圆柱体,质量为m ,长度为l ,断面面积为s ,直径为d 。

建模: ,重量: ,

实际中,根据动物进化,不同种类的动物其截面积与长度之比可视为常数,即

所以,得出: 重量与长度的平方成正比。即

注意:这个公式要在实际中检验,基本符合实际,就可作为经验公式来应用,否则要重新建立和完善模型。事实上,与实际吻合不好。

假设:四足动物躯干为一根支撑在四肢上的弹性梁。δ为下垂度,即梁的最大弯曲度。由弹性理论:

因为

即 为相对下垂度,其值太大,四肢无法支撑;其值过小,四肢的材料和尺寸超过了支撑身体的需要,是一种浪费。因此,从生物角度可以认为,经过长期进化,对于每一种动物, 已达到其合适的数值,即是一个常数(不同种类的动物此值不尽相同),于是 而 ,所以, 结论: ,k 可以由统计数据找出。此公式比较符合于实际,可在实际中推广使用。

讨论与思考

讨论题1 大小包装问题

在超市购物时你注意到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。

(1)分析商品价格C 与商品重量w 的关系。

(2)给出单位重量价格c 与w 的关系,并解释其实际意义。 提示:

决定商品价格的主要因素:生产成本、包装成本、其他成本。

ρsl m =mg f =ρ

2l l

s m =2kl f =l

s k ρ=2

3

sd fl ∝δsl

m m f ∝∝ 2

3

sd

fl ∝δ2

4

d

l ∝δ23

d l l ∝δl δ

23d l ∝l δ

2 ,d s sl f ∝∝4l f ∞4kl f =

单价随重量增加而减少

单价的减少随重量增加逐渐降低

建模示例之三 安全渡河问题 人狗鸡米过河问题

问题:三名商人各带一名随从乘船渡河,一只小船只能容纳二人,由他们自己划行。随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。但是如何乘船渡河的大权掌握在商人们手中。商人们怎样才能安全渡河呢?(见教材)

二初等模型

1席位分配问题 2观众厅地面设计 1 问题的提出

在影视厅或报告厅,经常会为前边观众遮挡住自己的视线而苦恼。显然,场内的观众都在朝台上看,如果场内地面不做成前低后高的坡度,那么前边观众必然会遮挡后面观众的视线。试建立数学模型设计良好的报告厅地面坡度曲线。 2 问题的假设

1) 观众厅地面的纵剖面图一致,只需求中轴线上地面的起伏曲线即可。 2) 同一排的座位在同一等高线上。

3) 每个坐在座位上的观众的眼睛与地面的距离相等。 4) 每个坐在座位上的观众的头与地面的距离也相等。

5) 所求曲线只要使观众的视线从紧邻的前一个座位的人的头顶擦过即可。 建立坐标系

o —处在台上的设计视点

a —第一排观众与设计视点的水平距离

b —第一排观众到x 轴的垂 直距离

d —相邻两排的排距 δ—视线升高标准 x —表示任一排与设计视点的水平距离 问题

求任一排x 与设计视点o 的竖直距离函数 ,使此曲线满足视线的无遮挡要求。 3 建模

设眼睛升起曲线应满足微分方程 , 1) 从第一排起,观众眼睛与o 点的连线的 斜率随排数的增加而增加,而眼睛升起曲线 显然与这些直线皆相交,故此升起曲线是凹的。

γβα++=32w w C w

w c γβα++=-3123431w w c γβ--='-3

29434w w c γβ+=''-)(x y y =),(y x F dx

dy

=

o a d d x 2)选择某排 和相邻排

x

相似于 , , ,

再计算 , 相似于 , ,

4 模型求解

微分不等式(比较定理)设函数 定义在某个区域上,且满足1)在D 上满

足存在唯一性定理的条件;2)在D 上由不等式

,则初值问题 与 的解 在它们共同存在区间上满足

, 。

, ,

所求曲线的近似曲线方程(折衷法) 折衷法 ),(y x M ),(11y d x M -),(22y d x M +21)(MM x y MM K K K <<δ===AB MN N M 11d

MA B M AB MA K MM δ

+=+=11

MA N 1?oMC ?x d y MA =d x y MA =d x y K MM δ+=1

2MM K oNC ?22C oM ?x x d y y D M +=++δ2()()y x y x d D M -++=δ2δδ++=x d x yd MD D M K MM 22=d x x y δδ++=d

x y K MM δ

+=1<+d x y δ

0)(),(y x y x F dx dy

)(),(x x Φφ0 ),()(x x x x >Φ<当φ0 ),()(x

x x x <Φ>当φ<+d x y δ

x y δδ++?????=+==b y d x y dx dy a x 111δ?????=++==b

y d x x y dx dy a x 222δδa x

x d x a b x y ln

)(1δ+=)1(ln )(2-++=a x a x x d x a b x y δδa x x d x a b ln δ+)(x y <)1(ln -++

a x x d x a

b δδy =

数学建模讲义第一章

第一章引言 众所周知,21世纪是知识经济的时代,所谓知识经济是以现代科学技术为核心,建立在知识和信息的生产、存储、使用和消费之上的经济;是以智力资源为第一生产力要素的经济;是以高科技产业为支柱产业的经济。知识创新和技术创新是知识经济的基本要求和内在动力,培养高素质、复合型的创新人才是时代发展的需要。创新人才主要是指具有较强的创新精神、创新意识和创新能力,并能够将创新能力转化为创造性成果的高素质人才。培养创新人才,大学教育是关键,而大学的数学教育在整个大学教育,乃至在人才的培养中都起着重要的奠基作用。正如著名的数学家王梓坤院士所说:“今天的数学兼有科学和技术两种品质,数学科学是授人以能力的技术。”数学作为一门技术,现已经成为一门能够普遍实施的技术,也是未来所需要的高素质创新人才必须要具有的一门技术。随着知识经济发展的需要,创新人才的供需矛盾日趋突现,这也是全社会急呼教学改革的根本所在。因此,现代大学数学教育的思想核心就是在保证打捞学生基础的同时,力求培养学生的创新意识与创新能力、应用意识与应用能力。也就是大学数学教育应是基于传授知识、培养能力、提高素质于一体的教育理念之下的教学体系。数学建模活动是实现这一改革目标的有效途径,也正是数学建模活动为大学的数学教学改革打开了一个突破口,近几年的实践证明,这一改革方向是正确的,成效是显著的。 1.1 数学建模的作用和地位 我们培养人才的目的主要是为了服务于社会、应用于社会,促进社会的进步和发展。而社会实际中的问题是复杂多变的,量与量之间的关系并不明显,并不是套用某个数学公式或只用某个学科、某个领域的知识就可以圆满解决的,这就要求我们培养的人才应有较高的数学素质。即能够从众多的事物和现象中找出共同的、本质的东西,善于抓住问题的主要矛盾,从大量的数据和定量分析中寻找并发现规律,用数学的理论和数学的思维方法以及相关的知识去解决,从而为社会服务。基于此,我们认为定量分析和数学建模等数学素质是知识经济时代人才素质的一个重要方面,是培养创新能力的一个重要方法和途径。因此,开展数学建模活动将会在人才培养的过程中有着重要的地位和起着重要的作用。 1.1.1 数学建模的创新作用 数学科学在实际中的重要地位和作用已普遍地被人们所认识,它的生命力正在不断地增强,这主要是来源于它的应用地位。各行各业和各科学领域都在运用数学,或是建立在数学基础之上的,正像人们所说的“数学无处不在”已成为不可争辩的事实。特别是在生产实践中运用数学的过程就是一个创造性的过程,成功运用的核心就是创新。我们这里所说的创新是指科技创新,所谓的科技创新主要是指在科学拘束领域的新发明、新创造。即发明新事物、新思想、新知识和新规律;创造新理论、新方法和新成果;开拓新的应用领域、解决新的问题。大学是人才培养的基地,而创新人才的培养核心是创新思想、创新意识和创新能力的培养。传统的教学内容和教学方法显然不足以胜任这一重担,数学建模本身就是一个创造性的思维过程,从数学建模的教学内容、教学方法,以及数学建模竞赛活动的培训等都是围绕着一个培养创新人才的核心这个主题内容进行的,其内容取材于实际、方法结合于实际、结果应用于实际。总之,知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现,这也正是数学建模的创新作用所在。 1.1.2 数学建模的综合作用 对于我们每一个教数学基础科的教师来说,在上第一堂课的时候,按惯例都会讲一下课

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

第一章数学模型

数学模型主讲:林健良

第一章 数学模型导言 §1.1数学与数学模型 1.1.1何谓数学模型 先让我们来看一个简单的例子. 例1.1 现要用100×50厘米的板料裁剪出规格分别为 40×40 厘米与50×20厘米的零件,前者需要25件,后者需 要30件.问如何裁剪,才能最省料? 解:先设计几个裁剪方案. 方案1,如图,在100×50的板料上可裁剪出两块40×40 的零件和一块50×20的零件(图中分别用A 、B 表示). A A ////////////////////////////// B 同样,求出方案2 A ////////////// B B B 方案3 B B B B B 卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备电力保护装置调中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自

显然,若只用其中一个方案,都不是最省料的方法.最佳方 法应是三个方案的优化组合.设方案i 使用原材料x i 件(i =1,2,3).共 用原材料f 件.则根据题意,可用如下数学式子表示: ??? ??=≥≥++≥+++=),,j (x x x x x x .t .s x x x f min j 321030 53252321213 21,整数最优解有四个: x 1 121110 9 x 213 5 7 x 3 32 1 0f 的最小值为16. 这是一个整数线性规划模型. 数学模型-------描述实际问题数量规律的、由数学符号组成的、 抽象的、简化的数学命题、数学公式或图表及算法. 1.1.2 数学建模的方法与步骤 建模的步骤一般分为下列几步. (1)模型准备.首先要了解问题的实际背景,明确题目的要求,搜 集各种必要的信息. 方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模--杨桂元--第一章习题答案

第一章 1-1习题 1.设用原料A 生产甲、乙、丙的数量分别为131211,,x x x ,用原料B 生产甲、乙、丙的数量分别为232221,,x x x ,原料C 生产甲、乙、丙的数量分别为333231,,x x x ,则可以建立线性规划问题的数学模型: ?? ??? ??? ?? ?????=≥≤+--≤+--≥--≤+--≥--≤++≤++≤++++++++-+=) 3,2,1,(,00 5.05.05.004.0 6.06.00 15.015.085.008.02.02.006.06.04.012002500 2000..8.38.56.78.18.36.52.08.16.3max 33231332221232 22123121113121113332312322 21131211333231232221131211j i x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x S ij LINDO 求解程序见程序XT1-1-1。 求解结果: 1200 ,22.1482,33.473,0,78.1017,66.1526322212312111======x x x x x x 0,0,0332313===x x x ,24640max =S (元) 。 2.设用设备,,,,,32121B B B A A 加工产品Ⅰ的数量分别为54321,,,,x x x x x ,设备121,,B A A 加工产品Ⅱ的数量分别为876,,x x x ,设备22,B A 加工产品Ⅲ的数量分别为109,x x ,则目标函数为: 976321)5.08.2())(35.02())(25.025.1(max x x x x x x S -++-+++-= 4000 7200700011478340008625010000129731260001053005 1048397261x x x x x x x x x x ?-+?-+?-++?-+? -整理后得到: ??? ??? ?=≥=-=-+=--++≤≤+≤+≤++≤+-+-++---+=)10,9,8,7,6,5,4,3,2,1(,00;0;0;40007;7000114;400086; 100001297;6000105..2304.19256.15.03692.115.135.04474.0375.07816.075.0max 10987654321510483972611098765 4321j x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x x S j 整数 LINDO 求解的程序见程序XT1-1-2。 求解结果: 324,500,0,571,859,0,230,120010987654321==========x x x x x x x x x x 446.1155max =S 3.设自己生产甲、乙、丙的数量分别为312111,,x x x ,外协加工甲、乙、丙第数量分别为322212,,x x x (外协加工的铸造、机加工和装配的工时均不超过5000小时),则

数学建模方法模型

数学建模方法模型 一、统计学方法 1 多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候用到。具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1) 回归方程的显著性检验(可以通过 sas 和 spss 来解决) (2) 回归系数的显著性检验(可以通过 sas 和 spss 来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等)

2 聚类分析 1、方法概述 该方法说的通俗一点就是,将 n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取 m 聚类中心,通过研究各样本和各个聚类中心的距离 Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者 spss 软件来做聚类分析,就可以得到相应的动态聚类图。这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1) Q型聚类:即对样本聚类; (2) R型聚类:即对变量聚类; 通常聚类中衡量标准的选取有两种: (1) 相似系数法 (2) 距离法 聚类方法: (1) 最短距离法 (2) 最长距离法 (3) 中间距离法 (4) 重心法 (5) 类平均法 (6) 可变类平均法 (7) 可变法

工程技术中常用的数学建模方法概述

工程技术中常用的数学建模方法概述 摘要对目前工程和管理研究领域所涉及的数学建模方法作了简要分析,指出不同的问题所需用到的建模方法,并通过举例说明建模的方法和步骤。 关键词数学建模;建模方法;模型;建模;数学应用 在现实社会生产实践中,随着科学研究的进步,多学科交叉运用越来越多。数学建模就是一种解决实际应用问题的有效方法,当然要在充分了解问题的实际背景的基础上,把实际问题抽象成数学问题,建立起数学模型,利用数学知识对数学模型进行分析探求,得到数学结果,得出应用问题的解。即通过对问题的数学化,模型构建和求解检验[1]。 其一般步骤可分成如下几点: (1)模型准备:了解问题的实际背景,搜集建模必需的各种信息,明确建模目的。 (2)建模:对问题进行必要合理的简化和假设,根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(变量和常量)之间的关系或其他数学结构。 (3)求模:根据数学知识和方法,求解数学模型,得到数学问题的结果。求模时要注意灵活运用各种数学方法,包括matlab等工程软件[2]。 (4)回归:把数学问题的结果回归到实际问题中,通過分析,判断,验证,得到实际问题的结果。 下面谈谈几种常用的数学建模法,限于篇幅,不便举太多例子。 (1)建立函数模型法 有关成本最低,效益最大,用料或费用最省等应用问题,可考虑建立相应函数关系式,并把实际问题转化为求最值的问题。 (2)建立三角形模型法 有关涉及几何、测量、航海等应用问题可考虑转化为三角问题来解决[3]。 (3)建立数列模型法 对于一些产量增长,细菌繁殖,存款利率,物价调节,人口探测等应用问题,往往需要通过观察分析,归纳抽象,建立出数列模型,然后用数列的有关知识加

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,

精品文 (2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t. (4) 可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

数学建模说明概要

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念 模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学 式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的

统计学数学模型

一、多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验

(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。 这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面! 二、聚类分析 聚类有两种类型: (1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法: (1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法 在具体做题中,适当选取方法; 3、注意事项 在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤 (1)首先把每个样本自成一类; (2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类, (4)重复第2步,直到只剩下一个类; 补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分

数学建模试题

数学建模试题 1.设某产品的供给函数)(p ?与需求函数)(p f 皆为线性函数: 9)(, 43)(+-=+=kp p f p p ? 其中p 为商品单价,试推导k 满足什么条件使市场稳定。 解:设Pn 表示t=n 时的市场价格,由供求平衡可知: )()(1n n p f p =-? 2分 9431+-=+-n n kp p 即: k p k p n n 531+- =- 经递推有: k k p k k k k p k p n n n n n n 5 )3()3 (5 )53(31 1 02?-+ ?-=++-?-=-=-∑ 6分 0p 表示初始时的市场价格 :∞→时当n 若即市场稳定收敛则时,,30,13 n p k 即k <<<- 。 10分 2.某植物园的植物基因型为AA 、Aa 、aa ,人们计划用AA 型植物与每种基 因型植物相结合的方案培育后代(遗传方式为常染色体遗传),经过若干代后,这种植物后代的三种基因型分布将出现什么情形?总体趋势如何? 依题意设未杂交时aa 、Aa 、AA 的分布分别为000,,a c b ,杂交n 代后分别为an bn cn (向为白分手) 由遗传学原理有: ??? ? ? ???? ++?=?++=?+?+?=---------111111111210021000n n n n n n n n n n n n c b a c c b a b c b a a 4分 设向量T n n n n c b a x )..(= 1-?=n n X M x

式中 ??? ?? ?? ?????????=12100211 000M 递推可得:0X M X n n ?= 对M 矩阵进行相似对角化后可得: ???? ??????=Λ100021 0000 其相似对角阵 1111012001-=?? ?? ? ?????--=p p 从而 ?? ?? ? ?????-?? ??????????????--=?Λ=-111012001)21(111012001101 n n n p p M ??????? ?????????--=----1)21(1)21(10)21 ()21(0001111n n n n n M 10101010))2 1 (1())21(1(0 )2 1 ()21(0 b a c c b a b a n n n n n n n ?-+?-+=++==---- 8分 当∞→n 时,1,0,0→→→n n n c b a 。 10分 3.试建立人口Logistic(逻辑)模型,并说明模型中何参数为自然增长率,为 什么? 解:人口净增长率与人口极限以及目前人口均相关。人口量的极限为M ,当前人口数量为N (t ),r 为比例系数。建立模型: )()) (1()(t N M t N r dt t dN ?-?= 00|N N t == 4分

1数学建模概述

第1章数学建模概述 (2) §1.1从现实现象到数学模型 (2) §1.2数学建模方法、步骤、特点与分类 (4) §1.3怎样学习数学建模及组织数学建模竞赛 (8) 习题1 (10)

第1章数学建模概述 随着科学技术的发展,特别是计算机技术的飞速发展,数学建模作为一门用数学方法解决实际问题的学科越来越受到人们的重视。对于广大科技人员和应用数学工作者来说,建立数学模型是沟通摆在面前的实际问题与他们掌握的数学工具之间联系的一座必不可少的桥梁.其实,“所谓高科技就是一种数学技术”,几乎所有学科发展到高级阶段都要引入数学,进行量化处理,甚至几乎所有科学理论都可看作数学模型,马克思说过“一门科学只有成功地运用数学时,才算达到了完善的地步”。当今,数学以空前的广度和深度向一切领域渗透,可以从以下几方面来看数学建模在现实世界中的重要意义: (1)在一般工程技术领域数学建模仍然大有用武之地,如机械、电机、土木、水利等; (2)在高新技术领域数学建模几乎是必不可少的工具,如通信、微电子、航天、自动化等; (3)数学进入一些新领域,诸如经济、人口、生态、地质等。所谓非物理领域也为数学建模开辟了许多处女地,如计量经济学、人口控制论、数学生态学等。 本章为数学建模概述,主要讨论建立数学模型的意义、方法和步骤,使读者全面的、初步的了解数学建模,最后给出几点数学建模竞赛建议供读者参考。 §1.1从现实现象到数学模型 现实世界丰富多彩,变化万千。人们无时无刻都在运用自己的智慧和力量去认识、利用、改造世界,从而创造出更加多彩的物质文明和精神文明。博览会是集中展示这些成果的场所之一。工业展厅上,豪华、舒适的新型汽车令人赞叹不已;农业展厅上,硕大、娇艳的各种水果令人流连忘返;科技展厅上,大型水电站模型雄伟壮观,人造卫星模型高高耸立,讲解员深入浅出的介绍原子结构模型的运行机理,电影演播室里播放着一部现代化炼钢厂自动化生产的影片,其中既有火花四溅的炼钢情形,也有控制的框图、公式和程序。参加博览会,既有汽车、水果那些原封不动的从现实搬到展厅的实物,也有各种实物模型、照片、图表、公式……,这些模型在短短几个小时给大家的作用,恐怕置身现实世界很多天也无法做到。 与形形色色的模型相对应,它们在现实世界的原始参照物统称为原型,它们是人们现实世界里关心、研究或者从事生产、管理的实际对象。本书所述的现实对象、研究对象、实际问题等均指原型。模型是为了某个特定目的将原型的某一部分信息简缩、抽象、提炼而构成的原型替代物,也是所研究的系统、过程、事

七年级数学上册第5章数学建模概述(北师大版)

数学建模是怎么回事 一提起数学竞赛,人们脑海里就会浮想起这样的场面:考场里鸦雀无声,监考老师警惕的目光扫视全场.年轻的数学尖子们坐在各自的书桌前,时而冥思苦想,时而奋笔疾书,希望能找到那一道道数学难题的正确答案.而那正确答案早已经由出题的专家们做出来,正锁在某—个保险柜里. 数学建模竞赛,或称数学模型竞赛,是不是也是这样的场面呢?你最好还是先到它的考场去见识见识吧.且慢!它并没有一个固定的考场.那么,参赛的选手们在哪里做题呢?到哪里去找他们呢?你可以到图书馆去试试,他们也许正在那里查阅资料,在那堆积如山的书堆中翻来翻去,希望从浩瀚的书海中打捞到自己需要的宝贝,你也可以到计算机房去看看,或许他们正在熟练地操纵着键盘,聚精会神地注视着计算机屏幕,屏幕上闪烁着的那些枯燥无味的数字和符号,简直就像侦探片、武打片或世界怀足球赛那样能抓住他们的心,让他们或欣喜若狂,或目瞪口呆,或颓丧万分.旁边居然还有一个选手在打瞌睡,小心别吵醒他,他已经连熬了两个通宵了!那边是谁在吵架?不,那是另外一队的选手在讨论问题,七嘴八舌,各有各的主意,要把这些互相冲突的意见统—在同一份答卷里可真是不容易,交卷的时间快到了,不再有争吵的声音,打印机均匀的嚓嚓声在选手们的耳朵里好像是世界上最美妙的音乐,他们打着哈欠检查着打印机吐出的—页页印刷精美的作品.你要是他们现在最想干的事情是什么,他们一定异口同声地回答:“睡觉!” 这像是考试吗?像数学竞赛吗?又是翻书查资料,又是相互讨论,到处跑来跑去也没人管,哪里还有一点考试的体统呢?不像考试像什么?也许你会想到,这有点像是一个科研课题组在突击完成一项任务.这算说对了.参赛选手们自己也这样说:“这不像是在考试,而像是在干活.”但它确实也是考试,是另一种形式的考试,姑且说是干活的考试吧,就是考一考谁千活干得更好.再来看一看竞赛的题目吧,看它出了些什么样的数学题.以1993年我国大学生数学建模竞赛为例,它出了两个题,让每个参赛队选作其中一个.一个题是要为我国12支甲级足球队排名次,做这个题的选手们面对这些足球劲旅的比赛成绩评头品足,俨然是国家体委的官员或体育界的专家.另一个题目是卫星通讯

第一章数学建模概述

1数学建模概述 ? 数学模型 ? 数学建模过程 ? 数学建模示例 ? 建立数学模型的方法和步骤 ? 数学模型的分类 1数学模型 模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。 直观模型: 实物模型,主要追求外观上的逼真。 物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。 思维模型,符号模型,数学模型 数学模型: 1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。它是模型的一种。 2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。 3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用 适当的数学工具得到一个数学结构。 数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。 总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。古希腊时期:“数理是宇宙的基本原理”。文艺复兴时期:应用数学来阐明现象“进行尝试”。微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。费马(P.Fermal 1601-1665)用变分法表示“光沿着所需时间最短的路径前进”。牛顿(Newton 1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律: 结合开普勒三定律得出万有引力定律 航行问题: 甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少? 用y x ,分别代表船速、水速,可以列出方程 解方程组,得 22 1r m m G F =ma F =?? ?=?-=?+75050)(75030)(y x y x 小时) (千米小时)(千米/5/20==y x

10424-数学建模-第一章 线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为

相关主题
文本预览
相关文档 最新文档