当前位置:文档之家› 活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势
活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势

学院:生命科学与化学工程学院

学号:1111603112

班级:环境1111

姓名:宣锴

活性污泥法工艺的现状和发展趋势

1 引言

活性污泥法是利用好氧微生物(包括兼性微生物)处理城市污水和工业废水的有效方法,其能够从废水中去除溶解和胶体类可生物降解的有机物质,以及能被活性污泥吸附的悬浮物质和其他一些无机盐类也能够去除,例如氮磷等化合物,在处理工业废水过程中,好氧活性污泥法主要用于处理厌氧出水,是一种非常广泛的生物处理方法其主要的机理是通过好氧微生物的生物化学代谢反应,分解工业废水中的有机物质,过程中涉及到活性污泥的吸附、凝聚和沉淀,能够有效的去除废水中的胶体和溶解性物质,从而净化废水。

该方法于1913年在英国曼彻斯特市试验成功。80多年来,随着生产上的应用和不断改进及对生化反应和净化机理进行广泛深入的研究,活性污泥法取得了很大发展,出现了多种运行方式,并正在改变那种用经验数据进行工艺设计和运行管理的现象。本文对各种活性污泥的组成、运行方式及其特点作简要的综述,同时谈谈活性污泥法的发展趋势。

2 活性污泥构成简介

活性污泥是由活性微生物、微生物残留物、附着的不能降解的有机物和无机物所组成的褐色絮凝体,由大量细菌、真菌、原生动物和后生动物组成,以细菌为主,由不同大小的微生物群落组成,具有良好的沉降性和传质性能的菌胶团以结构丝状菌为骨架、胶团菌附着其上,并且具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌被附着或游离生长的原生动物和后生动物捕食。少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。也就是说,具有良好结构的活性污泥是以丝状菌为骨架,胶团菌附着于其上而形成的,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流出。胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降

性而不易被出水带走,并且由于胶团菌的包裹使得结构丝状菌获得更加稳定、良好的生态条件,所以这两大类微生物在活性污泥中形成了特殊的共生体。

结构丝状菌与胶团菌构成此消彼长的关系,即结构丝状菌位于胶团菌内部特别是菌胶团较厚时有利于其生长,从而伸长使得包裹在外层的胶团菌不致于过厚形成厌氧状态,其有利条件可能是内部的低氧状态,而一旦结构丝状菌暴露在混合液中时,正常环境条件不利于其生长,待胶团菌包附之后才重新再次生长,如遇供氧不足等时,结构丝状菌大量伸出,则发生结构丝状菌引起的污泥膨胀。结构丝状菌与胶团菌在活性污泥形成共生关系,而非结构丝状菌与胶团菌之间存在着拮抗关系,活性污泥系统的稳定性得益于大环境中微生态群落的相对稳定。实际经验表明,当细菌处于碳氮比较高的条件下,絮凝体的结构就比较好。当细菌处于碳氮比较低或高温、营养不足的环境时,细菌体外多糖类胶体基质或纤维素类基质会被作为营养而被细菌利用,从而导致污泥解絮。

3 活性污泥的现状

活性污泥法的运行最早采用的是普通活性污法(又称习惯活性污泥法或传统活性污泥法) ,随着工业生产和城市建设的发展,在普通活性污泥法的基础上发展起来了多种运行方式,像多点进水活性污泥法,吸附再生活性污泥法(又称生生吸附法或接触稳定法)。延时曝气活性泥法和完全混合性污泥法。

3.1普通活性污泥法

普通活性污泥法的常用流程见图1。曝气池采用长方形,水流是纵向混合的推流式,曝气池混合液的曝气时间常采用4~8 h,污泥浓度一般控制在2~3g/L,回流污泥量需进水水量的25%~50%,生化需气量和悬浮物的去除率达90%~95%。

优点:(1) 去除率高;(2) 适用于处理水质要求高而水质比较稳定的废水。

缺点:(1) 不善于适应水质的变化;(2) 供氧不能得到充分利用。空气供应沿池水平均分布。造成前段氧量不足后段氧量过剩;(3) 曝气结构庞大,占地面积大。

图1:普通活性污泥法流程图

3.2不均匀曝气法

不均匀曝气法的流程与普通活性污泥法一样,只不过是对流程的曝气方式作了改进,把供气沿池长平均分布的曝气方式改成在曝气池前段供给更多的空气,供气量沿池长逐渐减少的供气方式。

3.3多点进水法

多点进水法是普通活性污泥法的简单改进,主要用来克服普通法的第二个缺点。可以在一定程度上降低反应器前段的耗氧速度。多点进水法的过程见图2。

图2:多点进水法流程

从图中可以看出,废水并不是集中在池端进入曝气池,而是沿池长分段投入,这样有机物的分配较均匀,因而氧的需要也较均匀。

优点:(1) 有机物分配较均匀,因而氧的需要较均匀,提高了空气利用效率;

(2) 全部的曝气池体积更小。与普通活性污泥法比较,曝气池容积可以缩小30%

左右,生化需氧量去除率一般可达90%;(3) 运行上有较大的灵活性,便于处理水质不均匀的状态。

3.4完全混合活性污泥法

完全混合活性污泥法常采用二种曝气方式,一种是鼓风曝气,一种是机械曝气。见图3和图4。

图3:采用鼓风曝气的完全混合活性污泥流程

图4:采用机械曝气的完全混合性污泥流程

优点:(1) 曝气池内流体混合良好,各点水质几乎相同;(2) 进水负荷的变化对污泥的影响可降到极小程度;(3) 池内各点水质比较均匀,各处微生物的性质和数量基本上相同,池子各部分的工作情况几乎一致,供气可以恒定。

缺点:(1) 连续进出水时,可能产生短流;(2) 在进水水质比较稳定及目前常用的负荷下出水水质往往不及普通法(可用延时曝气池的负荷,获得好的水质)。

3.5吸附再生(生物吸附或接触稳定)法

活性污泥净化水质的第一阶段主要是依靠污泥的吸附作用。良好的活性污泥同生活污水混合后在10~30min 的时间内能够基本完成吸附作用,污水的生经需氧量可被除去85%~90%左右。吸附现生法就是根据这一发现而发展起来的。

图5所示是吸附再生法的流程,其中(b)图在构造上把吸附池和再生池合在一起。

图5:吸附再生发流程

从图5可以看出:废水的吸附和污泥的再生是分别在两个池子里或一个池子的两部分进行,这是它的一个特点,其另一个特点是:为了更好地吸附废水中的污染物质,所用回流污泥量比普通法多,回流比一般在50%~100%。

优点:(1) 只有回流的一部分污泥进行了再生(稳定化),所以生物吸附法的吸附池和再生池的总容积大大小于普通法曝池的总容积,且空气用量不增加;(2) 因回流污泥较多,具有一定的调节平衡能力,适应负荷变化;(3) 最适一处理含悬浮和胶体物质较多的废水。

缺点:(1) 吸附时间短,处理效率和如普通法,一般在85%~90%;(2) 回流污泥多,增加了污泥泵的容量。

3.6纯氧曝气法

纯氧曝气法是对伎曝气方式的革新。利用纯氧曝气,氧的溶解度和氧溶入水中的推动力都得到的提高。

优点:(1) 能满足较高的氧气要求;(2) 曝气池中保持较高的MLVSS 浓度,因此可减小曝气池体积;(3) 污泥沉淀性能好;(4) 对单位BOD原去除而言,最终产污泥量。

3.7A/O法

A/O法称缺氧/好氧(Anoxin/Oxic)工艺或称厌氧好氧(Anaerobic/Oxic)工艺,主要用于水处理方面。A就是厌氧段,主要用于脱氮除磷;O就是好氧段,主要用于去除水中的有机物。它除了可去除废水中的有机污染物外,还可同时去

除氮、磷,对于高浓度有机废水及难降解废水,在好氧段前设置水解酸化段,可显著提高废水可生化性。其主体工艺如图6所示。

图6:A/O法工艺系统

A/O法脱氮工艺的特点:(1) 流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;(2) 反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;(3) 曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;(4) A段搅拌,只起使污泥悬浮,而避免DO的增加。O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。

这种新的组合工艺对于大型活性污泥法污水厂来说,处理效果较稳定,且实现了脱氮或除磷的目的,能耗和运行费用也较低,但处理单元多,管理较复杂,且不能同步脱氮和除磷。

3.8A2/O法

A2/O法又称A/A/O(Anaerobic/Anoxic/Oxic)法,称为厌氧/缺氧/好氧工艺如图7所示。

图7:A2/O工艺系统

从上图可见,污水与含磷回流污泥首先进入厌氧池,此时,含磷回流污泥释放磷,同时部分有机物进行氨化。污水进入缺氧池后,与回流混合液的硝态氮进

行反硝化作用,还原成氮气逸出。然后污水进入曝气池,进行去除BOD,硝化和吸磷等项作用。最后污水进入二沉池进行固液分离。

上世纪80年代以来,在广州、桂林、天津、北京、沈阳等地建成了多个采用A2/O工艺的污水处理厂。在A2/O工艺系统中,其生化池运行控制程序较简单,且具有去除BOD和脱氮除磷的同步作用,但流程较长,构筑物和回流污泥较多。

3.9SBR法

SBR(Sequencing Reactors)法,为序批示反应器,称序批示活性污泥法。SBR法的运行方式以间歇操作为主要特征,故我国常称它为序列间歇式活性污泥法。序批示反应器(SBR)由两个池或多个池所构成,在运行操作上一般按进水、反应、排放和闲置五个阶段周期性进行。

SBR法将生化池(包括厌氧池、缺氧池、好氧池)和二沉池集于一个装置中,利用控制时间程序去完成连续流动设施所达到的去除BOD和脱氮除磷的目的。

近三十年来,在澳大利亚、美国、新加坡等国已建成了近千个SBR工艺的污水处理厂,在我国上海青浦污水厂,昆明第三、第四污水厂,天津等地污水处理厂都已采用SBR工艺,正在建设中的四川巴中城市污水处理厂也将采用SBR工艺。

SBR法工艺简单(将曝气、沉淀集中于一池内,省去回流污泥及其设备),运行方式灵活,能适应城市污水间歇无规律排放,耐冲击负荷,脱氮除磷效果较好,由于它是合建式构筑物,其征地费和土建费一般较低。

由于SBR中各反应器间歇周期运行,反应器中的溶解氧和底物含量随时间不断变化,而且微生物处于富营养、贫营养、好氧、缺氧。和厌氧周期性变化的环境中,故运行中需要设置溶解氧(DO)、氧化还原电位(ORP)测定仪和时间定时器,以便根据池中DO值、运行时间和水位变化来调节风机开启程度,达到降低能耗和保证出水水质达标排放。由此可见,SBR工艺运行的自控程度要求较高。

4 活性污泥法的发展趋势

活性污泥法自问世以来,为了取得良好的运行性能,人们一直对它的运行机理、运行方式,曝气方式及适用范围等进行不断地摸索和总结,发展起以上所述的各种运行方式。随着工业生产特别是化工工业的发展,工业废水数量增多,

性质复杂,一些人工合成的有机物往往能以被微生物所降解。有的还具有致癌、致畸、致突变的物性;另外,无机性营养物N、P 等也会引起污染,它们会引起水生植物包括藻类的过量生长,进而使水中溶解氧含量下降,水质恶化。所有这些都对废水生物处理提出了严峻的挑点。

由于社会生产与科技的进步,众多污水处理厂实际运行经验的积累和满足社会对污水处理目标的新要求,似的活性污泥法工艺不断发展。

近三十年来,为解决水环境中富营养化日益严重的现象,人们要求污水处理厂的目标不仅去除BOD,而且还需要脱氮除磷。因此,目前仍以活性污泥法为主题的污水处理厂,常常把厌氧、缺氧、好氧生物处理技术有机的组合起来,从而使传统的活性污泥法工艺系统不断前进,出现了许多新工艺或新运行方式。4.1运行方式与曝气方式的探讨和完善

迄今为此,人们对活性污泥运行方式上的改进还没有取得突破性的进展,许多研究都是对上述运行方式和某些局部的改进,以探索基最佳运和状态。如M agasak i 等人采用3个或多于3个曝气池的活性污泥法,以便氧化要求改变的情况下确保生物的可降解性。人们对曝气方式的研究比较突出的成果是日、美等国研制出的一种超微气泡扩散器(气泡直径50 Lm) ,氧的吸收率可达90% ,Reid Engineer2ing Comany of F rederick shurg 研制的氧化沟下表面曝气(图8) 也是曝气方式的一种改进。把冲刷曝气brush aerat ion) 改成透平曝气( turbine aeret ion) 避免了产生气溶胶、飞溅和结冰等问题。

图8:氧化沟下表面曝气

4.2粉末碳——活性污泥法

粉末碳——活性污泥法实质上是一种以活性污泥形式的活性碳吸附、生物氧化的综合处理法。其特点是:(1)提高了活性污泥的净化能力;(2)提高对有毒物质和重金属等冲击负荷的稳定;(3)具有较好的脱色、除臭、消减泡沫的效果。

国外已用于合成纤维、化工、印染、炼油、炼焦等工业生产的污水处理。

4.3培养专用微生物,活性污泥法向多功能方面发展

借助于专用细菌,活性污泥法的处理对象不仅仅是一般有机物,还可以处理一些含毒有机废水及一些无机物,像镰刀菌、放线菌等微生物能有效地分解剧毒的无机氰化物,含酚极毛杆菌、解酚极毛杆菌等具有强大的氧化分解酚类物质的能力。

4.4活性污泥用于脱磷、脱氮

活性污泥脱磷、脱氮系统的生产性实例目前还很少,多数是半生产性试验装置,尚处于积累资料的阶段。目前开发和各种脱磷、脱氮工艺,均属于A/O系统的修正和改良。脱磷工艺主要包括厌氧(anaerobic) 脱磷反应器,需氧(oxic) 反应器和沉淀池;脱氮工艺主要包括缺氧(anoxic) 脱氮反应器,需氧反应器和沉淀池。活性污泥脱氮系统最具典型是A – A/O (Auaerobic- Anoxic/Oxic) 流程。见图9。

图9:A–A/O 脱磷脱氮流程

4.5与化学法结合起来使用,提高某些难降解化合物的去除效果

活性污泥法对多氯联苯一类的有机化合物以及有机磷等去除效果都比较差,但如能与化学法结合起来使用,则可提高净化效果。

污水处理活性污泥运行的异常情况及其对策

污水处理活性污泥运行的异常情况及其对策 生物处理系统在运行时,常常会因进水水质、水量或运行参数的变化而出现异常情况,导致处理效率的降低,甚至损坏处理设备。了解常见的异常现在及其常用对策,有助于及时地发现问题和解决问题,使废水处理厂(站)长期稳定运行。 (1)污泥膨胀正常的活性污泥沉降性能良好,含水率一般在99%左右。当污泥变质时,污泥就不易沉降,含水率上升,体积膨胀,澄清液减少,这种现象叫污泥膨胀。污泥膨胀主要是大量丝状菌(特别是球衣菌)在污泥内的繁殖,使污泥松散、密度降低所致。其次,真菌的繁殖也会一起污泥膨胀,也有可能由于污泥中结合水异常增多导致污泥膨胀。 活性污泥的主体是菌胶团。与菌胶团比较,丝状菌和真菌生长时需较多的碳素,对氮、磷的要求则较低。它们对氧的要求也和菌胶团不同,菌胶团要求较多的氧(至少0.5mg/L)才能很好的生长,真菌和丝状菌(如球衣菌)在低于0.1mg/L 的微氧环境中,才能较好地生长。所以在供氧不足的时,菌胶团将减少,丝状菌、真菌则大量繁殖。对于毒物的抵抗力,丝状细菌和菌胶团也有差别,如对氯的抵抗力,丝状菌不及菌胶团。菌胶团生长适宜的pH值范围在6~8,而真菌则在pH 值等于4.5~6.5之间生长良好,所以pH值稍低时,菌胶团生长受到抑制,而真菌的数量则可能大大增加。根据上海城市污水厂经验,水温也是影响污泥膨胀的重要因素。丝状菌在高温季节(水温在25℃以上)宜于生长繁殖,可引起污泥膨胀。因此,污水如碳水化合物较多,溶解氧不足,缺乏氮、磷等养料,水温高或pH值较低的情况下,均因引起污泥膨胀。此外,超负荷、污泥龄过长或有机物浓度梯度小等,也会引起污泥膨胀。排泥不畅则引起结合水性污泥膨胀。 由此可见,为防止污泥膨胀,可针对一起膨胀的原因采取相应的措施。如缺氧、水温高等可加大曝气量,或降低水温,减轻负荷,或适当降低MLSS值,使需氧量减少等;如污泥负荷过高,可适当提高MLSS值,以调整负荷,必要时好要停止进水,“闷曝”一段时间;如缺氮、磷等养料,可投加硝化污泥或氮、磷等

活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势 学院:生命科学与化学工程学院 学号:1111603112 __________ 班级:环境1111 ________ 姓名:_______ 宣锴____________

活性污泥法工艺的现状和发展趋势 1引言 活性污泥法是利用好氧微生物(包括兼性微生物)处理城市污水和工业废水的有效方法,其能够从废水中去除溶解和胶体类可生物降解的有机物质,以及能被活性污泥吸附的悬浮物质和其他一些无机盐类也能够去除,例如氮磷等化合物,在处理工业废水过程中,好氧活性污泥法主要用于处理厌氧出水,是一种非常广泛的生物处理方法其主要的机理是通过好氧微生物的生物化学代谢反应,分解工业废水中的有机物质,过程中涉及到活性污泥的吸附、凝聚和沉淀,能够有效的去除废水中的胶体和溶解性物质,从而净化废水。 该方法于 1913年在英国曼彻斯特市试验成功。 80多年来,随着生产上的应用和不断改进及对生化反应和净化机理进行广泛深入的研究,活性污泥法取得了很大发展,出现了多种运行方式,并正在改变那种用经验数据进行工艺设计和运行管理的现象。本文对各种活性污泥的组成、运行方式及其特点作简要的综述,同时谈谈活性污泥法的发展趋势。 2活性污泥构成简介 活性污泥是由活性微生物、微生物残留物、附着的不能降解的有机物和无机物所组成的褐色絮凝体,由大量细菌、真菌、原生动物和后生动物组成,以细菌为主,由不同大小的微生物群落组成,具有良好的沉降性和传质性能的菌胶团以结构丝状菌为骨架、胶团菌附着其上,并且具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌被附着或游离生长的原生动物和后生动物捕食。少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。也就是说,具有良好结构的活性污泥是以丝状菌为骨架,胶团菌附着于其上而形成的,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流出。胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包裹使得结构丝状菌获得更加稳定、良

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

国内污泥处理现状

国内污泥处理现状 土壤修复设备/尾矿处理设备/污泥处理设备/建筑垃圾处理设备/尾矿综合利用设备/固废利用/工业固废陶粒/工业固废处理技术/工业固废处理设备- 郑州德森环境科技有限公司 业界在考察污泥处理处置问题时,困难重重,比如主流工艺面临技术适应性、成本、管理、选址等诸多难题,土地使用需要明确的政策引导。因为上述因素此前最容易被认为是造成相关工作进展缓慢的根本性原因。当然随着工程陆续的开展,一些最为根本的问题逐渐显现。污水处理厂既无完整的配套设施,也没有预留地,只是简单的把污泥脱水达到一定的含水率,然后就转交给第三方直接填埋或者处理;部分污泥处理设施难以稳定运行。 国内污泥偷排的现象一直层出不穷。城乡交界、农村、还有江河湖海臭水塘,大量的生活污水污泥去向不明。而在相当多的情况下,这些并非污水处理厂自己所为。与发达国家污水、污泥处理是一套完整不可拆分的系统工程相比,我国此前建设的大多数污水处理厂从一开始就没有考虑污泥处理处置问题,既无设施,也无预留地。因此,尽管作为污泥的责任人,但实际上污水处理厂的任务只是把污泥脱水达到一定含水率,然后就可交给第三方进行填埋或是其他处理。而当填埋以及运输的成本越来越高,填埋场成为稀缺资源时,偷排成为事实上的选择。 尽管其后的新建污水处理厂被要求污泥处理装置同步建设,与此同时,一些独立的污泥处理设施也纷纷上马,但往往不能稳定运行,同样未能形成有效的规范的处理处置能力。 脱水+填埋或+不知去向,成为了事实上的污泥处理处置路线。因此,当去年初,京郊一家污水处理厂接到通知说一吨污泥也不允许外运时,相关负责人感觉很“头大”:太突然了!现在不仅厂里没有处理设施,整个城市也没有稳定接收污泥的地方,可污泥每天都在产生,怎么办? 国内外的主要技术都陆续得到了工程上的实践,但是持续运行的成功案例并不多。究其原因,有技术本身的水土不服,但更多的还有技术之外的因素 事实上,近10年来,国内科研院所、企业等各方没有间断对污泥处理处置技术和工程的探索。可以说,国内外叫得上名号的主要技术都陆续得到了工程上的实践。此外,还尝试了不少五花八门的新奇技术。

《环境工程学》选择题及答案.docx

《环境工程学》选择题题目及答案详解 1、下列说法不正确的是( C ) A.水形成自然循环的外因是太阳辐射和地球引力 B.水在社会循环中取用的是径流水源和渗流水源 C.生活污染源对环境污染最为严重 D.工业污染源属于点源而非面源 2、下列说法不正确的是(超编题目) A. 调节池可以调节废水的流量、浓度、pH值和温度 B对角线出水调节池有自动均和的作用 3、 TOD是指(A) A. 总需氧量B生化需氧量C化学需氧量D 总有机碳含量 4、下列说法不正确的是(D) A.可降解的有机物一部分被微生物氧化,一部分被微生物合成细胞 B.BOD是微生物氧化有机物所消耗的氧量与微生物内源呼吸所消耗的氧量之和 C.可降解的有机物分解过程分碳化阶段和硝化阶段 D.BOD是碳化所需氧量和硝化所需氧量之和 5、下列说法不正确的是(A、C ) A.COD测定通常采用K2Cr 2O7和 KMnO7为氧化剂( KMnO4才对,属于书写错误) B.COD测定不仅氧化有机物,还氧化无机性还原物质 C.COD测定包括了碳化和硝化所需的氧量(描述的是BOD) D.COD测定可用于存在有毒物质的水 6、下列不属于水中杂质存在状态的是( A. 悬浮物B胶体D) C溶解物D 沉淀物 7、下列说法不正确的是(B) A.格栅用以阻截水中粗大的漂浮物和悬浮物 B.格栅的水头损失主要在于自身阻力大 ( 水头损失很小,阻力主要是截留物堵塞造成的 ) C.格栅后的渠底应比格栅前的渠底低10- 15 cm D.格栅倾斜 50- 60o,可增加格栅面积 8、颗粒在沉砂池中的沉淀属于(A)8-11题参见课本 76、77 页 A 自由沉淀B絮凝沉淀C拥挤沉淀D 压缩沉淀 9、颗粒在初沉池初期( A ),在初沉池后期( B ) A 自由沉淀B絮凝沉淀C拥挤沉淀D

活性污泥法运行中的常见问题及对策

活性污泥法运行中的常见问题及对策 活性污泥法是常用的好氧法,所以能够做好其运营管理非常重要,本文总结了活性污泥法运行过程中的5大常见问题以及对策,具有很强的实用价值。 01污泥膨胀的概念及其解决办法有哪些? 污泥膨胀的原因: ①丝状菌膨胀 活性污泥絮体中的丝状菌过度繁殖,导致膨胀,促成条件包括进水有机物少,F/M太低,微生物食料不足;进水氮、磷不足;pH值低;混合液溶解氧太低,不能满足需要;进水波动太大,对微生物造成冲击。 ②非丝状菌膨胀 由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的N、P,或者DO(溶氧)不足。细菌很快把大量有机物吸入体内,又不能代谢分解,向外分泌出过量的多糖类物质。这些物质分子中含羟基而具有较强的亲水性,使活性污泥的结合水高达400%(正常为100%左右),呈黏性的凝胶状,无法在二沉池分离。另一种非丝状菌膨胀是进水中含有较多毒物,导致细菌中毒,不能分泌出足够量的黏性物质,形不成絮体,也无法分离。 解决办法: 组成废水的各种成分由于比例失调,也可引起污泥膨胀,如废水中C/N 比失调,若由于碳水化合物的含量过高,可适当的投加尿素、碳酸铵或氯化铵。如系统进水浓度太高,可减低进水量。至于曝气池的环境(如pH、温度溶解氧等)对活性污泥的性质也有一定的影响。其他如废水中含有大量的有机物或石油,以及含有大量的腐败物质都可以引起膨胀。在曝气池中过多或过少地充氧或搅动不充分,都可引起膨胀。由此可知,为防止污

泥膨胀,首先应加强管理操作,经常检测污水水质、曝气池内溶解氧、污泥沉降比、污泥指数和进行显微镜观察,如发现异常情况应及时采取措施,如加大空气量、及时排泥、在有可能时采取分段进水,以减轻二沉池的负荷。 02污泥上浮的概念及其解决办法有哪些? 污泥上浮:主要是指污泥脱氮上浮。污水在二沉池中经过长时间停留会造成缺氧(DO在0.5mg/L以下),则反硝化菌会使硝酸盐转化成氨和氮气,在氨和氮气逸出时,污泥吸附氨和氮气而上浮使污泥沉降性降低。 解决办法: 污泥上浮现象和活性污泥的性质无关,只因污泥中产生气泡,使污泥密度低于水,因此污泥上浮不应与污泥膨胀混为一谈。具体解决办法有: ①降低进水盐浓度,控制高负荷COD的冲击。 ②准确地控制曝气池内的COD负荷。因此,在运行操作上要控制曝气池进水量。通过准确地控制MLSS(建议6~8g/L)和曝气池进水量,将COD负荷控制在0.2~0.4kg/(m3·d)的适当范围,以减少污水的冲击,如果该污水经过均质池后的COD浓度仍然超过设计标准,应将该股污水引入事故池以待日后处理。 ③完善新建污水预处理工艺,控制污水厌氧与兼氧酸化水解池是保障后续曝气池正常运转的关键步骤,污水中的难降解有机物在此得到降解后,可以保证曝气池污水的出水要求,也改善了二沉池的沉降性能。应采取以下措施:完成潜水搅拌机配电系统的改造,尽快泵污泥至酸化池,进行酸化池的调试和酸化污泥的驯化。一次投加剩余污泥约为池容的1/5,投加量约为100m3,使池内混合液浓度在4~6g/L。 ④控制氧曝池的溶解氧浓度,适当降低氧曝池MLSS,基本控制在10g/L以内,与之相应的溶解氧浓度控制应根据进水有机负荷及时调整。⑤增加污泥回流量,及时排除剩余污泥,降低混合液污泥浓度,缩短污泥龄,降低溶解氧浓度,但不能进入消化阶段。

污泥处理处置现状及发展趋势

污泥处理处置现状及发展趋势 近年来,我国污泥处理处置技术取得了一定的进展,污泥处理处置方面的政策和标准也在逐渐完善。但面对社会发展对生物质能源以及环境质量提出的更高要求,我国污泥处理处置应以无害化为目标,以资源化为手段,实现污泥的安全处理处置与资源化,以解决污泥的最终出路问题。 随着我国经济持续快速稳定发展,我国城镇污水处理规模日益提升,污泥产量也相应增加。据统计,2019年我国污泥产量已超过6000万吨(以含水率80%计),预计2025年我国污泥年产量将突破9000万吨。但是,由于我国长期以来“重水轻泥”,污泥处理处置没有与污水处理同步提升,污泥处理处置问题未能得到有效解决,形势十分严峻。 我国污泥泥质特性及处理处置现状 污泥性质 污泥作为污水处理的副产物,富集了污水的污染物质(重金属、难降解有机物、持久性有机物、微塑料等)和营养物质(C、N、P等),源头上具有“资源”和“污染”双重属性。污泥中含有的丰富有机质可通过厌氧处理得到甲烷生物气(沼气)、氢气(H2)等热值较高的燃料,另外也能通过蛋白质提取等技术回收污泥中丰富的资源。处理后的稳定产物还能实现土地利用(营养物质、有机质稳定化处理产物)和建材利用(无机物)等,从而实现污泥的稳定化、无害化和资源化。 与发达国家相比,我国城镇污水处理厂污泥具有有机质含量低、含沙量高、产量大等特点,因而污泥处理处置技术路线的选择应结合我国城镇污水处理厂污泥的特定性质,充分考虑污泥的“资源”和“污染”双重属性,实现环境、经济和社会效益的最大化。

我国污泥的处理处置现状 国家“水十条”明确指出污水处理设施产生的污泥应进行稳定化、无害化和资源化处理处置,并禁止处理处置不达标的污泥进入耕地,从而保障污水厂污泥的全量安全处置,处理过程和处置环节不会对环境产生二次污染。 目前我国常用的污泥处理技术主要包括污泥浓缩技术、污泥脱水技术、污泥厌氧消化技术、高温好氧发酵技术、污泥热干化技术等。 经过处理的污泥需要进行安全处置。目前我国通常采用的处置方法有土地利用(农用)、焚烧、卫生填埋。但这些处置方式现在都遇到了不同程度的阻碍:土地利用对污泥泥质要求较高,污泥中重金属和其他有毒有害物质往往超标;由于污泥含水率较高,焚烧的能耗太高,不生态环保;卫生填埋通常遇到无地可埋的尴尬处境。 由于污泥处理处置责任主体及最终处置路线不明确、法律法规监管体系不完善及我国城市污水处理厂早期建设过程中存在的严重“重水轻泥”现象,当前我国污泥处理设施仅基本实现污泥的减量化, 并未真正实现“三化”,存在严重的二次污染风险。据统计污泥厌氧消化普及率仅为3%,远低于发达国家50%的水平。目前我国的污泥处理处置与发达国家间存在的差距主要体现在:我国污泥处理设施处理能力不足;污泥稳定化、资源化利用率不足;绿色生态化处置方式不足等。

浅谈现代污水处理方法的技术研究进展

浅谈现代污水处理方法的技术研究进展 【摘要】本文通过对我国污水处理的现状和水资源现状以及污水处理意义的分析,了解我国以前污水处理的技术的不足,并分析讨论了现代污水处理技术的新进展。 【关键词】污水污水处理方法进展 随着现代科学技术的不断进步,污水处理行业迅速发展,污水处理技术水平进一步提高,出现了许多新工艺和新方法,应进一步了解相关的污水处理工艺,发挥潜能,来适应不断变化的污水水质,并且持续改进。近年来,我国各个地方都非常重视污水处理事业,推进污水处理工艺的发展,但是,当前污水处理厂大多存在设备效率低下、能耗高、管理水平低等一些问题,投资和生产成本都很高,我们必须对污水处理厂进行改造处理,选择合理的工艺,运用先进的节能设备装置,提高运行和管理水平,不断提高污水的再生利用水平。 1 现代污水处理方法与发展过程 1.1 现代污水处理方法 现代污水处理技术按照原理可分为物理处理法、化学处理法及生物处理法。 (1)物理处理法就是通过物理作用,将污水中的悬浮状的污染物分离、回收,此法操作简单、经济,通常采用重力分离法、离心分离法、过滤法以及蒸发、结晶法等;(2)化学法就是利用化学反应,将污水中的可溶性、胶体性等杂质,通过化学反应将这些杂质去除掉或是转化为无害的物质,包括以投入药剂产生化学反应为处理单元和以传质作为处理单元的处理方法,它能迅速有效的去除很多污染物,特别是一些剧毒和高毒污染物。(3)生物处理法就是利用微生物来降解代谢有机物,将它们转化为无机物,这个是目前应用最广泛、最有效的方法,包括活性污泥法、生物膜法等好氧处理法和微生物厌氧处理法等。我们对活性污泥法和生物膜法研究的比较多,技术比较成熟,但是我们也在不断地改革和革新,来处理我们现在不断变化的污水的水质。厌氧生物对污染物的处理效率低、速度慢而且有些厌氧菌不容易控制,所以它的应用方面很少、局限较大。 1.2 污水处理发展过程 第一阶段是二级处理排放型,主要是物化和生化处理阶段,处理COD、BOD、SS、油类、重金属等污染物,第二阶段是深度处理排放型,主要是为了解决水体富营养化,脱氮除磷,第三个阶段是污水资源化型,将污水处理之后再利用,解决资源短缺的问题,同时改进工艺,降低能耗、提高出水水质,降低成本。 2 现代污水处理方法的技术进展

国内外污泥处理与处置现状及发展趋势

固体废物资源化结课报告 国内外污泥处理与处置现状及发展趋势

国内外污泥处理与处置现状与发展趋势 摘要随着污泥产生量日益增加,其对环境造成的负面影响也逐渐引起全世界的关注。本文从现阶段污泥处理、处置方法入手,介绍了国内外污泥处理处置现状、主流技术及应用进展,并对污泥处理处置的发展趋势做了展望。 关键词污泥处理处置方法现状进展 Abstract With the increase of sludge production increasingly, the negative effects on the environment also gradually the attention all over the world. This article obtains from the current sludge treatment and disposal methods, this paper introduces the current situation, the mainstream sludge disposal technology at home and abroad and the application progress, and the developing trend of sludge disposal were discussed. KEYWORDS:sludge, disposal method, the status quo, progress 引言 随着我国社会经济和城市化的发展, 城市污水处理厂正如雨后春笋般的在全国各城市建成并投入运行, 这固然对防治我国的水污染问题起到了积极作用, 但一个潜在的问题随之产生, 即污泥的处置与处理问题。污泥是污水处理后的附属品, 由于污水处理量的增加, 必然导致污泥数量的增加, 而污泥处理和处置技术在我国还刚刚起步, 并且污泥中含有大量的有害物质( 重金属) 及细菌、各种寄生虫卵、大量的病原微生物等。因此, 了解国内外污泥研究现状及进展,对寻找合理的污泥处理、处置方式, 并充分利用污泥中的资源, 使之达到减量化、稳定化、无害化和资源化[1]具有重要的现实意义。 1 污泥处理与处置技术 从目前国际上已建成运行的污泥处理处置项目来看,常见的污泥处理方式有好氧发酵( 堆肥) 、厌氧消化、干化、焚烧。污泥处置方式有土地利用、填埋、综合利用。由于国情不同,各国采用的处理方式和技术也各不相同。 1.1 好氧发酵 污泥好氧发酵技术是利用污泥中的微生物进行发酵的一项新的生物处理技术,在实际应用中可以达到无害化、减量化、资源化的效果,并且具有经济、实用不需外加能源、不产生二次污染等特点。 目前,国内外研究学者针对堆肥过程中的条件控制、重金属控制、保氮技术以及技术工艺方面进行了大量的研究,取得了很多有价值的成果[2 -7]。污泥好氧发酵技术经过近几十年的发展,取得了很大的进步,但在技术理论和工艺上还存在一些瓶颈,如需要大量辅料、臭气控制难、存在人畜健康安全风险等,好氧发酵技术仍有很大的提高潜力。 1.2 厌氧消化 污泥厌氧消化是指在无氧条件下,由兼性菌和厌氧菌将污泥中可生物降解的有机物分解成二氧化碳、甲烷和水等稳定物质,同时减小污泥体积,去除臭味,杀死寄生虫卵,回收利用消化过程中产生的沼气的过程。污泥厌氧消化以其高效的能量回收和较低的环境影响是目前国际上应用最为广泛的污泥稳定化和资源

活性污泥法动力学模型的研究进展

活性污泥法动力学模型的研究进展 [摘要]从模型的机理、功能等方面对活性污泥法动力学的微生物模型、传统静态模型和动态模型进行简要的介绍,并分析比较了各自的优缺点。 [关键词]活性污泥法模型ASM 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对于活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder 等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已成为国际废水生物处理领域的研究热点。但我国在该领域的研究尚处于起步阶段,与国际先进水平还存在很大差距。 1微生物模型 1942年,Monod发现均衡生长的细菌的生长曲线与活性酶催化的生化反应曲线类似,1949年发表了在静态反应器中经过系统研究得出的Monod模型[1]:Monod模型实质上是一个经验式,是在单一微生物对单一基质、微生物处 于平衡生长状态且无毒性存在的条件下得出的结论。Monod模型的提出使废水生物处理的设计和运行更加理论化和系统化,提高了人们对废水生物处理机理的认识,进一步促进了生物处理设计理论的发展。由于微生物模型描述的是微生物生长和限制微生物生长的基质浓度之间的关系,它是活性污泥法数学模型的理论基础。微生物模型的不断发展和计算机技术的普及同时也推动了活性污泥数学模型研究的日趋深入。 2传统静态模型 传统静态模型主要有20世纪50-70年代推出的Eckenfelder、Mckinney和Lawrence-McCarty模型,这些模型所采用的是生长-衰减机理[2]。 2.1Eckenfelder模型 该模型提出当微生物处于生长率上升阶段时,基质浓度高,微生物生长速度与基质浓度无关,呈零级反应;当微生物处于生长率下降阶段时,微生物生长主要受食料不足的限制,微生物的增长与基质的降解遵循一级反应关系;当微生物处于内源代谢阶段时,微生物进行自身氧化。 2.2McKinney模型 该模型忽略了微生物浓度对基质去除速度的影响,认为在活性污泥反应器内,微生物浓度与底物浓度相比,属低基质浓度,微生物处于生长率下降阶段,代谢过程为基质浓度所控制,遵循一级反应动力学。并首次提出活性物质的概念,

关于活性污泥法的详解

关于活性污泥法的详解 活性污泥法是由多种好氧微生物与兼性厌氧微生物(在某些情况下还可能有少量厌氧微生物)与废水中的有机、无机固体物混凝交织在一起形成的絮状物。使活性污泥起到净化作用的主体是细菌,多数是革兰阴性菌,此外还有大量的原生动物和后生动物,以及微生物代谢残留物和一些从污水中夹带的惰性有机物、无机物等。 活性污泥的含水率在99%左右,密度为1.002~1.006g/m3。其结构疏松,表面积很大,对有机污染物有着强烈的吸附和氧化(分解)能力。此外,活性污泥还具有良好的自身凝聚和沉降性能。 1.活性污泥法的原理及环境影响因素 活性污泥法的工艺原理是在人工充氧的曝气池中,利用活性污泥去除废水中的有机物,然后再二沉池中使污泥和水分离。大部分污泥再回流到曝气池中,多余部分则排出。 普通活性污泥法的处理系统中由以下几部分组成:①曝气池、②曝气系统、③二沉池、④污泥回流系统、⑤剩余污泥排放系统。 活性污泥法净化废水能力强、效率高、占地面积小、臭味轻微,但产生剩余污泥量大,另外需要一定的电能来向废水中不断供氧。 2.影响活性污泥性能的环境因素主要有: (1).溶解氧(好氧处理中,一般在1.5~2mg/L为宜)。 (2).水温(好氧处理中,宜在15~25℃的范围内)。 (3).pH值(一般以6.5~9为宜)。

(4).营养料(一般要求BOD?:N:P=100:5:1为宜)。 (5).有毒物质(重金属、一些非金属化合物、油类物质等)数量亦应加予控制。 3.活性污泥法的性能评价指标 活性污泥法的性能评价指标主要有以下几项。 (1).生物相观察:即利用光学显微镜或电子显微镜观察活性污泥中的细菌、真菌、原生动物及后生动物等微生物的种类、数量、优势度及代谢活动等状况,在一定程度上反映整个系统的运行状况。 (2).混合液悬浮固体浓度(MLSS):指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称为污泥浓度。MLSS代表混合液悬浮固体中有机物的含量。 (3).污泥沉降比(SV):指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。 (4).污泥体积指数(SVI):指曝气池混合液沉淀30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。 污泥体积指数(SVI)能较好的反应出活性污泥的松散程度、凝聚和沉降性能。一般城市污水正常运行条件下的SVI值在100~150mL/g 之间。SVI值过低,说明泥粒细小,无机质含量高,缺乏活性;SVI 值过高,说明污泥沉降性能不好,并且已经有产生膨胀现象的可能。如果SVI>200mL/g,污泥难于分离,容易产生污泥膨胀。 4.活性污泥法的运行方式

25个活性污泥法运行中的常见问题及故障解答

25个活性污泥法运行中的常见问题及故障解答 (一)氧化沟泥少,微生物因为天气寒冷,难培养,怎么办? 答:1.如果是在系统刚刚启动时的培养,污泥量少是正常的,随着培养的进行,污泥量会增多。培养时,曝气过度是很不利于污泥培养的。 2.当然微生物的量是和你的源水中的碳氢含量有关,碳氢不足自然无法使微生物数量上升。还请检查。 3.如果你的系统早就启动了,想要提高微生物数量。我觉得没有太大必要的。达到平衡就行了,重要的是处理出水的情况。 4.特意地提高微生物数量将使污泥老化,反而不利于出水水质的。 5.温度的问题,我觉得出水水温不低于10度,微生物活性是没有太大问题的。 6.根据F/M值的大小,可以知道你的微生物数量是否太低,该值不大于0.25,就说明你的微生物数量不是太低。 (二) 在CASS工艺设计时应注意些什麽,同时出水堰如何设计(负荷取多大比较合适)?同时,在该工艺中,所用到的设备,都有那些,我初次接触该工艺,对所涉及到的设备不太了解,请你多多指教!同时活性污泥如何进行培养驯化,整个工程在调试运行适应注意些什麽?如何能实现很高的自控技术。在曝气过程中,哪种曝气装置比较好? 答: 1.CASS工艺有点像我们比较了解的SBR工艺,属批次处理范畴。为了提高脱氮除磷的效果并抑制丝状菌的增生。曝气池前又加设了厌氧和缺氧段。 2.设计中应该根据水量和负荷来确定各池的大小及比例。 3.出水堰大多由泌水器代替的,保证排水时液面均匀下降。排水量可根据设定的排水时间来确定选择。 4.所用到的设备与SBR工艺接近,泌水器和厌缺氧段的潜水式搅拌机要设置的。当然还要一套自动控制装置。 5.污泥培养也没有太大的特殊之处,首先接种污泥,24小时闷曝,而后正常曝气(不要过度)先少量排水少量进水,然后逐渐提高进水即可。 6.调试和运行过程中要自己总结合理的操控参数,如进水、反应、沉淀、泌水的时间;回流污泥量等。 7.曝气装置选择,对曝气头选择应保证沉淀时不堵塞,也可选射流曝气器,搅拌和充氧都比较好,也很少发生堵塞。 (三)如何降低污水厂的能耗?政府拨的经费可怜,希望您能介绍一下运营管理方面的经验。 答: 污水厂运行费用最大的应该是电费,如果污泥委托处理其费用也很高的。针对以上问题: 1.降低曝气量,以减少电费。我的经验是,理论上的曝气池溶解氧控制在3ppm,不利于节能降耗,通常,我认为,若生物系统是低负荷运行(F/M小于0.15),溶解氧控制在 1.5ppm已经足够了。由此可产生节电效果。 2.系统有调节池、中段提升泵站的,可发挥其储水能力,以进行间隙运行来降低运行费用。 3.污泥费用如有产生,可根据情况用于厂内花木堆肥。由此只需增加点工费用即可。 (四)溶解氧控制在1.5ppm,在北方的冬季会不会影响一些高效的微生物繁殖(氧化沟工艺),降低出水水质?

水污染控制工程试题库

一、名词解释题(每题3分): 1.生化需氧量:表示在有氧的情况下,由于微生物的活动,可降解的有机物稳定化所需的氧量 2.化学需氧量:表示利用化学氧化剂氧化有机物所需的氧量。 3.沉淀:是固液分离或液液分离的过程,在重力作用下,依靠悬浮颗粒或液滴与水的密度差进行分离。 4.化学沉淀法:是往水中投加某种化学药剂,使与水中的溶解物质发生互换反应,生成难溶于水的盐类, 形成沉渣,从而降低水中溶解物质的含量。 5.电解法:是应用电解的基本原理,使废水中有害物质,通过电解过程,在阳、阴极上分别发生氧化和 还原反应转化成为无害物质以实现废水净化的方法。 6.吸附:是一种物质附着在另一种物质表面上的过程,它可发生在气-液、气-固、液-固两相之间。 7.物理吸附:是吸附质与吸附剂之间的分子引力产生的吸附。 8.化学吸附:是吸附质与吸附剂之间由于化学键力发生了化学作用,使得化学性质改变。 9.膜分离法:是把一种特殊的半透膜将溶液隔开,使溶液中的某种溶质或者溶剂渗透出来,从而达到分 离溶质的目的。 10.污泥龄:是指每日新增的污泥平均停留在曝气池中的天数,也就是曝气池全部活性污泥平均更新一次 所需的时间,或工作着的活性污泥总量同每日排放的剩余污泥量的比值。 11.氧化沟:是一个具有封闭沟渠的活性污泥曝气池。 12.总充氧量:稳定条件下,单位时间内转移到曝气池的总氧量。 13.悬浮生长:在活性污泥法中,微生物形成絮状,悬浮在混合液中不停地与废水混合和接触。 14.生物膜反应器:利用生物膜净化废水的装置。 15.面积负荷率法:即单位面积每日能去除废水中的有机物等量。 16.活性污泥法:是以活性污泥来净化废水的生物处理方法。 17.活性污泥:充满微生物的絮状泥粒。 18.污泥负荷率:指的是单位活性污泥(微生物)量在单位时间内所能承受的有机物量。 19.污泥浓度:指曝气池中单位体积混合液所含悬浮固体的重量,常用表示。 20.污泥沉降比:指曝气池中混合液沉淀30后,沉淀污泥体积占混合液总体积的百分数。 21.污泥体积指数:简称污泥指数,是曝气池混合液经30沉淀后1g干污泥所占的湿污泥体积(以计)。 22.生物接触氧化法:是一个介于活性污泥法和生物滤池之间的处理方法,它兼具有这两种方法的优点。 23.厌氧流化床:当床内载体的膨胀率达到40~50%以上,载体处于流化状态。 24.厌氧生物法:在无分子氧条件下,通过兼性菌和厌氧菌的代谢作用降解污泥和废水中的有机污染物, 分解的最终产物主要是沼气,可作为能源。 25.重力浓缩法:利用重力将污泥中的固体与水分离而使污泥的含水率降低的方法。 26.扩散:污染物由高浓度处向低浓度处转移,称为扩散。 二、水污染控制工程选择题(每题2分): 2、下列不属于水中杂质存在状态的是( D ) A.悬浮物B胶体C溶解物D沉淀物 3、是指( A ) A.总需氧量 4、下列说法不正确的是( D ) A.可降解的有机物一部分被微生物氧化,一部分被微生物合成细胞 是微生物氧化有机物所消耗的氧量与微生物内源呼吸所消耗的氧量之和 C.可降解的有机物分解过程分碳化阶段和硝化阶段 是碳化所需氧量和硝化所需氧量之和 5、下列说法不正确的是( C ) 测定通常采用K22O7和7为氧化剂

污泥处理处置现状

摘要:主要介绍了北京市污水处理厂污泥产量现状,分析了污泥处理处置存在的主要问题,提出了北京市污泥处理处置思路及对策。 关键词:污泥处理处置对策北京 污泥是污水处理厂在污水净化处理过程中产生的含水率不同的废弃物,它是污水处理厂附属产物[1]。近年来,北京市城乡污水处理量大幅增加,污水处理厂产生的污泥也随之增长,产量十分惊人,由于全市污泥无害化处理和循环利用设施严重不足,致使大量污泥简单堆置于废弃沙坑和沙荒地,易对环境造成二次污染,社会反响强烈,污泥处理处置问题亟待解决[2]。污水处理和污泥处理是解决城市水污染问题同等重要而又紧密关联的两个系统,解决不好污泥的问题就不可能从根本上实现水环境的改善[3]。本研究对摸清北京市污泥处理处置现状,探索污泥问题解决途径及对策,建设“绿色北京”有着重要意义。 1 北京市污水处理厂污泥产量现状 2008 年,北京市年污水排放量为13.4 亿m3,污水处理率达78%,年污水处理量为10.5 亿m3。其中,城区年污水排放量9 亿m3,污水处理率达93%,年污水处理量为8.4 亿 m3;郊区年污水排放量4.4 亿m3,污水处理率48%,年污水处理量为2.1 亿m3。根据《北京城市总体规划(2004 年— 2020 年)》,预计2020年,北京市年污水排放量18 亿m3,污水处理率达90%,年污水处理量16.2 亿m3。 随着北京市污水处理设施的增加、处理率的提高和处理程度的深化,污水处理厂的污泥产量急剧增加。2008 年,北京市污泥产量达100 万t (含水率80%),其中,城区2 400 t / d,郊区400 t / d。预计到2015 年,北京市污泥产量将达5 000 t / d (年产量183 万t),其中中心城区3 300 t / d,郊区1 700 t / d。 2 北京市污水处理厂污泥处理处置存在的主要问题 2.1 处理能力不足 目前,北京市仅有大兴区庞各庄堆肥厂、昌平区堆肥厂、方庄石灰干化厂、清河热干化厂、北京水泥厂5 座污泥处理厂,其处理规模分别为11.0 万t / a、2.9 万t / a、1.1 万t / a、14.6 万t / a、18.4 万t / a,总处理规模为48 万t / a (80 %含水率),不足当前污泥产量的50%。 2.2 经济实用技术不完善 目前,只有高碑店、小红门污水处理厂具有污泥厌氧消化处理设施,但由于管理不到位,2 处设施均未达到稳定运行。其余污水处理厂污泥均采用浓缩—脱水工艺处理,污泥含水率高达80%左右,不能满足最终处置要求,而深度脱水(80%~60%)技术成本较高,没有可推广的经济实用技术。 堆肥自动化程度低、周期长、效果不稳定,堆肥后农用的环境风险依然存在。同时,堆肥过程中散发的臭味、蚊蝇等都没有得到有效解决,污染周围环境[4]。 2.3 资源化利用率低 根据2008 年调查结果,污泥资源化利用主要为土地利用和建筑材料,两项合计仅占污泥总量的17.4%,造成大量有机质及氮、磷等养分流失和资源浪费。 2.4 环境安全风险大 根据2008 年调查结果,北京市污泥处置方式为土地利用10.8 %、建筑材料6.5 %、填埋5.5 %、堆置70.1%、直接农用7.1%。其中由于堆置不符合《城镇污水处理厂污泥处置分类》(CJ / T 290—2007)标准要求、直接农用不符合《城镇污水处理厂污泥土地改良用泥质》(CJ / T 291—2008)标准要求,两类处置方式均不合理,而且所占比例较大,达到了77.2%。 不合理处置污泥的细菌总数、大肠杆菌、蛔虫卵含量比较高,并且含有一定数量的重金属离子、有毒有害有机污染物及氮磷等元素,这些物质进入土壤,产生新的污染源,并随降

活性污泥运行管理

技术次资料 活性污泥系统的运行管理 (参考) 第一节活性污泥的培养与驯化 根据废水水量、水质和废水处理厂的条件、可采用的活性污泥培养法有下列几种: 一. 全流量边续直接培养法 全部流量通过活性污泥系统按设计水量边续进水和出水。不排放剩余污泥,全部保留在曝气池,直到MLSS和SV达到适宜数值为止。 为了加快培养速度,减少培养时间,可以大量供气,以保证向混合液提供足够的溶解氧,并使其充分混合外,也可以从同类的正在运行的废水处理厂提取一定数量的污泥进行接种。 在活性污泥的培养驯化期间,必须考虑满足微生物的营养物质保持平衡,即BOD:N:P=100:5:1,对城市废水和生活污水来说,这个条件具备的,但是对某些工业废水,就要考虑投加某些营养物质了,此外,在这个期间还要进行废水、混合液、处理水以及活性污泥的分析测定,项目有:SV、MLSS、SVI,溶解氧含量,处理水的透明度,原废水及处理水的BOD、COD以及SS等。 二. 流量分段直接培养法 方法与前同,不同的地方是废水投配流量随形成的污泥量的增加而增加。即将培养期分为几个阶段、最后达到设计流量和MLSS达到适宜浓度。

三.间歇培养法 本法适用于生活污水所占比例较小的城市水厂,将废水引入曝气池,水量约为曝气池容积50~70%,曝气一段时间(约4~6小时),再静置1~1.5h。排放上清液,排放量约占总水量的50%左右,此后再注入废水,重复上述操作,每天1~3次,直到混合液中的污泥量达到15~20%进为止。 水温在15℃以上的条件下,使用一般营养比较平衡的城市废水,经7~15日的培养即可以达到上述情况,为了缩短培养时间,可以考虑用同类废水处理厂的剩余污泥进行接种向混合液中投加适量的粪便稀释液,也能够加快培养过程. 四.活性污泥的驯化 对工业废水,除培养外,还应对活性污泥加以驯化,使其适应于所处理的废水,驯化方法可分为异步驯化法和同步驯化法二种.异步驯化法是先培养后驯化,即先用生活污水或粪便稀释水将活性污泥培养成熟,此后再逐步增加工业废水在混合中的比例,以逐步驯化污泥,同步驯化法则是在用生活污水掊养活性污泥的开始,就投加少量的工业废水,以后则逐步提高工业废水在混合液中的比例,逐步使污泥适应工业废水的特性,二者的驯化阶段都是以全部使用工业废水而告终. 第二節对活性污泥系统重要运行参数的调节与观测 一.对活性污泥状况的镜检观察 正常发育的活性污泥,呈茶褐色,个体大小适宜,菌胶絮体发育讔好,稍具泥土气味. 二对曝气时间(活性污泥反应时间)的调节 曝气时间主要以处理水达标为准,根据原废水水量、水质及曝气池容积等因

活性污泥法日常运行7大指标(二)

活性污泥法日常运行7大指标(二) 上周我们讨论了好氧系统日常运行中的4个常见指标,今天我们来接着讨论其余三个常见指标的日常控制。 1、剩余污泥排放 随着处理水量的不断增加,曝气池内的活性污泥量也会不断增长,MLSS值和SV值都会升高。为了保证曝气池内MLSS值相对稳定,必须将增加的污泥量及时排出,排放的剩余污泥量应大致等于污泥的增长量,排放量过大或过小都会导致曝气池内MLSS的波动。 剩余污泥排放量与采用的活性污泥法及具体的进水水质有关,在没有经验的情况下,可大致按进水量的1%左右排放剩余污泥,确切适宜的排放值应根据一定时期的实际运行结果来确定。 2、回流污泥量 调节回流污泥量的目的也是为了保证曝气池内MLSS值相对稳定,而污水处理厂的回流量一般也是相对固定的。活性污泥法的回流污泥浓度一般介于7-10g/l。纯氧曝气活性污泥法的回流污泥浓度可超过15g/l,回流污泥沉降比一般在90%左右。因此在进水水质水量比较稳定的情况下,实际上是根据每日测定的SV值为依据,

通过调整剩余污泥的排放量来达到维持污泥回流量固定的目的。在进水水量发生大的波动时,就需要调整回流量,以保证曝气池内MLSS值不因进水量的增大或减少而出现大的波动。 3、观察二沉池 应经常观察二沉池泥面的高低、上清液的透明程度及液面和出水中悬浮物的情况。正常运行时二沉池上清液的厚度应不少于0.5-0.7m。如果泥面上升,往往说明污泥沉降性能差;如果上清液浑浊,说明进水负荷过高,污水净化效果差;如果上清液透明但带有小污泥絮片,说明污泥解絮;如果液面不连续大块污泥上浮,说明池底局部厌氧或出现反硝化;如果大范围污泥上浮,说明污泥可能中毒。 上周和本周,我们连续讨论了好氧系统日常运行中的7个常见指标,希望对大家的日常运行具有参考意义。下周,我们将继续介绍生物相观察的相关内容,若有任何疑问或者建议,欢迎在公众号留言,我们将尽快回复。

相关主题
文本预览
相关文档 最新文档