当前位置:文档之家› 有理数与无理数

有理数与无理数

有理数与无理数
有理数与无理数

谈谈有理数与无理数

实数通常分为有理数和无理数两类。这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。

关于有理数,我们知道得较多,其特征有:

1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数;

2、每个有理数都可以写成分数的形式,即n

m ,其中m 和n 都是整数,且n ≠0。利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。

我们不加证明地给出关于有理数的一条结论: 当有理数n

m 的分母n 能分解质因数为2α35β(其中α、β为自然数)时,有理数n

m 能化成有限小数;否则,化为无限循环小数。(关于有理数与小数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述) 无理数是指那些无限不循环小数。大家熟悉的无理数很多,2、e 、π等等都是。与有理数相比,无理数不具备那样好的性质。譬如,两个无理数的四则运算结果不一定是无理数,象π-π=0,22

=1。

根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用:

1、任何有理数≠任何无理数;

2、设是a 有理数,b 是无理数,则a+b ,a-b ,a 2b (a ≠0),a/b (a ≠0)都是无理数。

下面着重介绍实数无理性的判定方法。

在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算有关,如2,311;与对数值有关,如log 23;与三角函数值有关,如cos20°,sin1°;此外还有象e (自然对数的底)、π(圆周率)这样的特殊值。

判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数和无理数

的关系,α就是有理数,故α=n

m (n ≠0),于是就得到一个具体的等式,这为我们导出矛盾提供了一个直观的工具。下面我们介绍几种常见的初等方法,主要适用于前三类无理数的判定。

一、利用整数的性质

整数特别是整数的奇偶性在判定实数的无理性方面起着重要的作用。

例1 求证:6是无理数。 证明:反证法。设6是有理数,则6=n m (n

m 为既约分数)。将两边平方并整理,得

6n 2=m 2, (1)

由于6n 2是偶数,因此m 2是偶数,从而m 是偶数,设m=2k ,代入(1)式,得

6n 2=4k 2, (2)

化简得3n 2=2k 2。同理3n 2也是偶数,而3是奇数,所以n 是偶数。这与原假设n

m 为既约分数矛盾。故6是无理数。 请证明:2+3是无理数。

二、利用算术基本定理

算术基本定理是数论中的重要定理,它不仅在数论而且在其它数学问题中都有着广泛的应用。有时它也被称作整数的唯一分解定理,内容如下:

对于任意的自然数N (N ≠0,1),它总可以唯一地分解成一些质数相乘的形式。即N=p 1p 2…p s ,其中p 1、p 2、…、p s 都是质数,并且p 1≤p 2≤…≤p s 。

例2 求证:2是无理数。 证明:反证法。设2是有理数,则2=n

m (其中m 和n 都是自然数)。将两边平方并整理,得

2n 2=m 2。 (1)

由于m 和n 都是自然数,则根据算术基本定理,它们都可以分解为质数的乘积,设m=p 1p 2…p s ,n=q 1q 2…q t

其中每一个p 和q 都是质数。代入(1)式,得

2(q 1q 2…q t )2=(p 1p 2…p s )2, (2)

由于2也是质数,故(2)式的左右两边均是一些质数的乘积,并且结果都是自然数,既然相等,那么左右两边质数个数应该相同。但这是不可能的,因为

(2)式左边共有2t+1个质数,而右边却是2s 个质数,奇数不可能等偶数。说明我们假设2是有理数是错误的。故2是无理数。

从以上的证明过程可以发现,2的作用就在于它是一个质数,这样可以推想:对于任意的质数p ,p 都是无理数。

与根式有关的无理数还有很多,基本上都有可以利用算术基本定理解决。下面的两个问题更具有一般性。

问题1 若n ,N 均是自然数(n ≠0,1),而且n N 不是整数,则n N 是无理数。

问题2 幂函数y=n x (n >1的自然数),当x 取无理数时,y 值必为无理数;而仅当x 表成既约正分数的分子和分母均是整数的n 次完全乘方数时,y 值才是有理数。 请证明:10是无理数。

例3 求证:log 221是无理数。

证明:反证法。设log 221是有理数,即log 221=

n

m (其中m 和n 都是自然数)。由对数定义,得

n m

2=21, 两边n 次方,得

2m =21n ,由于21=327,则

2m =3n 27n 。显然这个等式是不能成立的,因为2,3,7都是质数,这样等式左右两边出现的质因数不相同,这与算术基本定理矛盾。故log 221是无理数。

关于对数值的无理性有以下结果:设a ,b 均为正整数,并且其中之一包含的某个质因数不为另一个所包含,则log a b 是无理数。

三、利用整系数方程有理根的性质

在一元多项式方程的理论中,有一个关于整系数一元方程是否有有理根的重要定理,即

设一元k 次方程为

n 0x k +n 1x k-1+…+n k-1x+n k =0 (*)

其中n 0,n 1,…n k-1,n k 均是整数,这样的方程称为整系数方程。如果n

m (n ≠0)是方程(*)的一个有理数根,则

(1)m 一定是n k 的约数;

(2)n 一定是n 0的约数。

在利用这个定理判定实数α的无理性时,需有以下三个步骤:

(1)构造一个整系数多项式方程,使得α是它的根;

(2)求出n 0和n k 的所有因数,只有它们的组合才能是方程的有理根;

(3)检验这些组合是否为方程的根,于是或者方程没有有理数根,而α是方程的根,故α为无理数;或者方程有有理数根,但经比较这些有理根都与α不相等,从而α为无理数。

例4 求证:cos20°是无理数。

证明:讨论三角函数值的无理性时,三角函数公式起着非常重要的作用。 首先注意到余弦函数的三倍角公式,即cos3θ=4cos 3θ-3cos θ,将θ=20°代入公式,有

cos60°=4cos 320°-3cos20°,由于cos60°=2

1,则有 2

1=4cos 320°-3cos20°,整理,得 8cos 320°-6cos20°-1=0, (1)

这说明cos20°是整系数方程8x 3-6x-1=0的根。由定理方程(1)若有有理

n m ,则m 一定是-1的因数,n 是8的因数,从而n m 只可能是±1,±21,±41,±8

1,逐一检验可知,它们均不满足方程(1),故方程(1)只可能有无理根,即cos20°是无理数。 请证明:32-3是无理数。

四、利用“有理数不等于无理数”这一基本性质

例5 设m 和n 是两个正有理数,并且m 和n 都是无理数。求证:m +n 是无理数。

证明:首先我们知道有 (m +n )(m -n )=m -n (1) 和(m +n )+(m -n )=2m (2) 设m +n 是有理数。则由(1)式,得

m -n =n m n

m +-,由于m +n 是有理数,m -n 也是有理数,则根据有理数的性质,m -n 也必是有理数;进一步由(2)式,得 (m +n )+(m -n )=2m 是有理数,这显然与已知m 是无理数矛盾。故m +n 是无理数。 由以上证明可以看出:m +n 和m -n 的有理性无理性是相同的。作为特例有2+3和2-3都是无理数。 一般地,请证明:2+3+…+n (n 是大于1的自然数)是无理数。 例6 求证:若有有理数a ,b ,c 使得 a+b 2+c 3=0 (1)

成立,则a=b=c=0。

证明:反证法。分情况讨论如下:

i)a ,b ,c 中只有一个不为0。

当a ≠0,b=c=0时,有a=0,矛盾;

当b ≠0,a=c=0时,有b 2=0,矛盾;

当c ≠0,a=b=0时,有c 3=0,矛盾。

ii)a ,b ,c 中恰有两个不为0。

当a=0,b ,c ≠0时,有有理数

b c =-32,易证-32是无理数,矛盾; 当b=0,a ,c ≠0时,有有理数c

a =-3,矛盾; 当c=0,a ,

b ≠0时,有有理数b

a =-2,矛盾。 iii)a ,

b ,

c 全不为0。那么(1)式可变形为 a+b 2=-c 3 (2)

将(2)式两边平方,得

(a+b 2)2=(-c 3)2,

整理为

a 2+22ab+2

b 2=3

c 2, 将2用a ,b ,c 表示,有

2=ab

b a

c 2232

22-- (3) (3)式左边是一个无理数;由于a ,b ,c 均为不为0的有理数,从而右边是一个有理数,出现“无理数=有理数”的情形,矛盾。

综上述,待证结论正确。

作为结束,我们再给出一个是无理数的例子。

例7 求证:无限小数A=0.1010010001…(相邻两个1之间0的个数逐次加

1)是无理数。

证明:反证法。若A 是有理数,则它必是无限循环小数。设其循环节的长度为t ,显然t ≠1。一方面,根据A 的构造,102t+1一定出现在A 的某一位置上,即在A 中有一个包含2t+1个0的片断,而在这个片断中至少包含一个循环节。而另一方面,A 的循环节内不可能每个数字都是0。此矛盾说明A 是一个无理数。

一般地,可证明:无限小数

b c c b c c bcb a A c

s c s 个个121.++= (a ,b ,c 为数字,b ≠c ,s 为大于0的自然数,相邻两个b 之间c 的个数逐次加s)是无理数。

请证明:无限小数B=0.12345678910111213…(小数部分由相继的正整数组成)是无理数。

最后请论证sin1°也是无理数。

七年级数学―有理数和无理数

知识清单 1定义: 有理数:我们把能够写成分数形式n m (m、n是整数,n≠0)的数叫做有理数。 无理数:①无限②不循环小数叫做无理数。 2有理数的分类整数和分数都可以写成分数的形式,它们统称为有理数。零既不是正数,也不是负数。有限小数和无限循环小数是有理数。 3无理数的两个前提条件: (1)无限 (2)不循环 4两者的区别: (1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。 (2)任何一个有理数后可以化为分数的形式,而无理数则不能。 经典例题 例1:下列各数中,哪些是有理数?哪些是无理数? -3,3π,-6 1,0.333…,3.30303030…,42,-3.1415926,0,3.101001000……(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r。 例2:下列说法正确的是:() A.整数就是正整数和负整数 B.分数包括正分数、负分数 C.正有理数和负有理数统称有理数 D.无限小数叫做无理数

闯关全练 一.填空题: 我们把能够写成分数形式n m (m、n是整数,n≠0)的数叫做 (2)有限小数和都可以化为分数,他们都是有理数。 (3) 小数叫做无理数。(4)写出一个比-1大的负有理数 。二.判断题(1)无理数与有理数的差都是有理数; (2)无限小数都是无理数;(3)无理数都是无限小数;(4)两个无理数的和不一定是无理数。(5)有理数不一定是有限小数。答案例1:无理数有:3π,0,3.101001000……,(相邻两个1之间0的个数逐个加1)有理数有:-3, -6 1,0.333…,3.30303030…,42,-3.1415926,0,面积为π的圆半径为r例2:B(A,还有0C,还有0D,无限不循环)闯关全练一、(1)有理数(2)无限循环小数、(3)无限不循环小数、(4)答案不唯一,如:-0.5二、(1)错,如3π -0=3π(2)错,如:0.333…(3)对,无理数的两个前提条件之一无限(4)对,3π+(

七年级数学上册有理数与无理数 同步练习题

有理数与无理数 同步练习题 一、选择 1.π是 ( ) A .整数 B .分数 C .有理数 D .无理数 2.在数0,13,2π,-(-14),2 23,0.3,0.141 041 004…(相邻两个1,4之间的0的个 数逐次加1),22 7中,有理数的个数为 ( ) A .3 B .4 C .5 D .6 3.下列语句正确的是 ( ) A .0是最小的数 B .最大的负数是-1 C .比0大的数是正数 D .最小的自然数是1 4.下列各数中无理数的个数是 ( ) 22 7,0.123 456 789 101 1…,0,2π. A .1 B .2 C .3 D .4 5.下列说法中,正确的是 ( ) A .有理数就是正数和负数的统称 B .零不是自然数,但是正数 C .一个有理数不是整数就是分数 D .正分数、零、负分数统称分数 6.在2π ,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个. A .1 B .2 C .3 D .4 二、填空 7.最小的正整数是 ,最大的负整数是 ,最小的非负整数是 . 8.有理数中,是整数而不是正数的数是 ;是整数而不是负数的数是 . 9.给出下列数:-18,22 7,3.141 6,0,2 001,-35π,-0.14,95%,其中负数 有 ,整数有 ,负分数有 . 10.有六个数:0.123,-1.5,3.141 6,22 7,-2π,0.102 002 000 2…,若其中无理 数的个数为x ,整数的个数为y ,非负数的个数为z ,则x + y + z = . 11.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.

实数可以分为有理数和无理数两类

最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在实数上界(因为 不是有理数)。 实数通过上述性质唯一确定。更准确的说,给定任意两个有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。 5相关性质 基本运算 实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。 4 图册 四则运算封闭性 实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。 有序性 实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一: ab. 传递性 实数大小具有传递性,即若a>b,b>c,则有a>c.

阿基米德性 实数具有阿基米德(Archimedes)性,即对任何a,b ∈R,若b>a>0,则存在正整数n,使得na>b. 稠密性 实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数. 唯一性 如果在一条直线(通常为水平直线)上确定O作为原点,指定一个方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位长度,则称此直线为数轴。任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集R与数轴上的点有着一一对应的关系。 完备性 作为度量空间或一致空间,实数集合是个完备空间,它有以下性质: 一.所有实数的柯西序列都有一个实数极限。 有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限√2。实数是有理数的完备化——这亦是构造实数集合的一种方法。 极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。 二.“完备的有序域” 实数集合通常被描述为“完备的有序域”,这可以几种解释。 首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。 另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。 这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的

初一数学上有理数与无理数的概念和练习(有详细的答案)

有理数和无理数 1.什么是有理数?我们把能够写成分数形式 n m (m 、n 是整数,n≠0)的数叫做有理数。 2.有理数的分类? 整数和分数都可以写成分数的形式,它们统称为有理数。零既不是正数,也不是负数。有限小数和无限循环小数是有理数。 2.什么是无理数?①无限②不循环小数叫做无理数。 3无理数的两个前提条件是什么? (1) 无限(2)不循环 4两者的区别是什么? (1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。 (2)任何一个有理数后可以化为分数的形式,而无理数则不能。 1:下列各数中,哪些是有理数?哪些是无理数? -3,3π,-61,0.333…,3.30303030…,42,-3.1415926,0,3.101001000……(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r 。 答:无理数有:3 π,0,3.101001000……,(相邻两个1之间0的个数逐个加1) 有理数有:-3,-6 1,0.333…,3.30303030…,42,-3.1415926,0,面积为π的圆半径为r 2:下列说法正确的是:( ) A.整数就是正整数和负整数 B.分数包括正分数、负分数 C.正有理数和负有理数统称有理数 D.无限小数叫做无理数 答:B 因为:A 、C 的答案里缺少 0这一部分 D ,无限小数循环小数是有理数,无限不循环小数才是无理数 3:我们把能够写成分数形式n m (m 、n 是整数,n≠0)的数叫做 有理数 。 4:有限小数和无限循环小数都可以化为分数,他们都是有理数。

5:无限不循环小数叫做无理数。 6:无理数与有理数的差都是有理数;答:错,如3π-0=3 π 7:无限小数都是无理数;答:错,如:0.333… 8:无理数都是无限小数;答:对,无理数的两个前提条件之一无限 9:两个无理数的和不一定是无理数。答:对,3π+(-3 π)=0 10:有理数不一定是有限小数。答:对,如:0.333…

七年级上册有理数与无理数 知识讲解和巩固练习

有理数与无理数知识讲解 【学习目标】 1、理解有理数的意义,知道无理数是客观存在的,了解无理数的概念. 2、会判断一个数是有理数还是无理数. 【要点梳理】 要点一、有理数 我们把能够写成分数形式m n (m,n是整数,n≠0)的数叫做有理数. 要点诠释:(1)有限小数和循环小数都可以化为分数,他们都是有理数. (2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数. 要点二、无理数 1.定义: 无限不循环小数叫做无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式. (2)目前常见的无理数有两种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111……. 2.有理数与无理数的区别 (1)无理数是无限不循环小数,有理数是有限小数或无限循环小数. (2)任何一个有理数都可以化为分数的形式,而无理数则不能. 要点三、循环小数化分数 1.定义: 如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数,其中重复出现的一个或几个数字叫做它的一个循环节. 2.纯循环小数 从小数点后面第一位起就开始循环的小数,叫做纯循环小数.例如:0.666…、0.2..纯 循环小数化为分数的方法是:分子是一个循环节的数字组成的数;分母的各位数字都是9,9的个数等于一个循环节的位数. 例如 31 0.3 93 ==, 1897 0.189 99937 ==. 3.混循环小数 如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.12、0.3456456….混循环小数化为分数的方法是:分子是不循环部 分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数. 例如 9189101 0.918 990110 - ==, 239236 0.239 90025 - ==, 35135353510013 0.35135 999009990037 - ===. 要点诠释:(1)任何一个循环小数都可化为分数. (2)混循环小数化分数也可以先化为纯循环小数,然后再化为分数.

1.1.2.6用有理数估计无理数的大致范围

1. (2011 安徽省) 设1a =,a 在两个相邻整数之间,则这两个整数是 A .1和2 B.2和3 C.3和4 D.4和5 答案:C 2. (2011 江苏省徐州市) 的值( ) A.在2到3之间 B .在3到4之间 C .在4到5之间 D .在5到6之间 答案:B 3. (2011 安徽省芜湖市) 已知a 、b 为两个连续的整数,且a b < <,则a b += . 答案:11 4. (2011 辽宁省本溪市) ) A .2 B .4 C .15 D .16 答案:B 5. (2011 辽宁省大连市) ) A.2 B.3 C.4 D.5 答案:B

6. (2011 福建省泉州市) 比较大小:>”或“<”号填空). 答案:>; 7. (2011 山东省威海市) 在实数0,2-中,最小的是( ) A .2- B . C .0 D 答案:A 8. (2011 广西贺州市) 在22-__________. 答案:2 9. (2011 四川省凉州市) 已知a b 、为有理数,m n 、分别表示5且 21amn bn +=,则2a b += 。 答案: 52 10. (2011 广西柳州市) 在0,2-,3 ) A .0 B .2- C .3 D

答案:B 11. (2011 天津市) ) (A)1到2之间 (B)2到3之间 (C)3到4之间 (D)4到5之间 答案:C 12. (2011 贵州省六盘水市) 一个正方形的面积是20,通过估算,它的边长在整数________与________之间. 答案:4与5或5与4 13. (2011 贵州省遵义市) a 、b 均为正整数,且a >b <则a b +的最小值...是( ) A .3 B .4 C .5 D .6 答案:B 14. (2011 河北省) π-40,,这四个数中,最大的数是 . 答案:π 15. (2011 贵州省黔南州) 估计20的算术平方根的大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 答案:C

有理数与无理数辨析

有理数与无理数辨析 四川省邻水县九龙中学 任贤德 2006.8 在初中,我们已学过实数的有关概念,实数包括有理数和无理数。很多同学对于有理数和无理数概念的理解较模糊,对学习造成一定影响,甚至到了高中,也存在这种现象。为此,有必要对此进行辨析。 有理数包括整数、有限小数和无限循环小数,如:218、18.25、1..6等。我们可将整数、有限小数的小数位后面添加0,把它看成是以0为循环节的无限循环小数,如:218=218..0 ,18.25=18.25.0,在此观点下,有理数就可看成是无限循环小数。而有理数又可化为分数,整数可看成是分母为1的分数,如:218=218/1,有限小数化成分数,先去掉小数点得到的数作为分子,若小数点后的位数有n 位,则分母就为n 10,如18.25=1825/100=73/4,无限循环小数可化为分数(其化法见后),如:1..6=4/3,所以有理数都可表示成分数,即表示成q/p(其中p 、q 是整数,且p 、q 互质)。分数化小数时,若除不尽,则得到的小数一定是无限循环小数,因此分数与小数可以互化。与此相对,无理数就是无限不循环的小数,如:2、3、π=3.1415926……、e=2.71828……、0.101001000……。有人说无理数就是开方开不尽的数,这种理解是片面的,当然开方开不尽的数是无理数,但如π=3.1415926……、e=2.71828……并不是因为开方开不尽而得到的数,又如0.101001000……,1的后面依次多一个0,也不是因为开方开不尽而得到的数,所以前面对于无理数的理解是错误的,必须纠正。 下面再来谈谈有关的几个问题: 1.(混)循环小数化为分数(此法证明须用到无穷递缩等比数列,证明较繁,故略去) (1) 无限循环小数化分数 无限循环小数化分数时,其分母为9···90···0,其中9的个数为一个循环节的数字个数,0的个数为循环节前、小数点后0的个数,其分子为一个循环节的数字。 例如:..76.0=67/99,..6310.0=136/9990=68/4995 (2) 混循环小数化分数 混循环小数化为分数时,先将其分为有限小数与无限循环小数之和,然后再分别将有限小数和无限循环小数化为分数,最后求和即可。 例如:..6512.3=3.12+0.00. .65=312/100+56/9900=7708/2205 .70.2=2+.70.0=2+7/90=187/90 2.任何一个不能整除的分数一定是无限循环小数 任何一个不能整除的分数一定是无限循环小数,这是为什么呢?在中学,学生通过除

(专题)有理数与无理数的计算

XX教育学科教师辅导讲义 组长签字:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 二、课前自主学习 检查上次作业,让学生讲解错题,知识反馈。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 三、知识梳理+经典例题 课题1.有理数的加减乘除混合运算(30min.) 考点一:有理数的加法 1.有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数。 2.有理数加法的运算律:(1)加法交换律:a b b a +=+;(2)加法结合律:)()(c b a c b a ++=++。 点拨:灵活运用运算律的几条规则:①“相反数结合法”―互为相反数的两个数先相加;②“同号结合法” ―符号相同的两个数相加;③“同分母结合法”―分母相同的数先相加;④“凑整法”―几个数相加得到整数,先相加;⑤“同形结合法”―整数与整数,小数与小数相加。 考点二:有理数的减法 1.有理数减法的意义:有理数减法的意义与小学学过的减法意义相同。已知两个数的和与其中一个加数,求另一个数的运算叫做减法。减法是加法的逆运算。 2.有理数的减法法则:减去一个数等于加上这个数的相反数。 考点三:有理数的乘法 1.有理数的乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘。任何数与零相乘都得零。 (2)几个不为0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

经典证明:几乎所有有理数都是无理数的无理数次方

一个无理数的无理数次方是否有可能是一个有理数?这是一个非常经典的老问题了。答案是肯定的,证明方法非常巧妙:考虑根号 2 的根号 2 次方。如果这个数是有理数,问题就已经解决了。如果这个数是无理数,那么就有: 我们同样会得到一个无理数的无理数次方是有理数的例子。 这是一个典型的非构造性证明的例子:我们证明了无理数的无理数次方有可能等于有理数,但却并没有给出一个确凿的例子。毕竟我们也不知道,真实情况究竟是上述推理中的哪一种。那么,真实情况究竟是上述推理中的哪一种呢?Gelfond-Schneider 定理告诉我们,假设α 和β 都是代数数,如果α 不等于0 和1 ,并且β 不是有理数,那么α 的β 次方一定是超越数。根据这一定理我们可以立即看出,根号 2 的根号 2 次方真的是一个无理数,实际情况应该是上述推理中的后者。 那么,是否存在一个无理数a ,使得a 的a 次方是有理数呢?最近,Stan Dolan 证明了这样一个结论:事实上,几乎所有(1, ∞) 里的有理数都是某个无理数a 的 a 次方。 注意到当x 大于1 时,函数f(x) = x x是连续单调递增的,因而对于所有(1, ∞) 里的有理数r ,一定存在唯一的a ,使得a a = r 。不妨假设a 是一个有理数,它的最简分数形式是n / m 。如果m = 1 ,那么我们会有平凡解n n = r 。下面我们证明,m 是不可能大于 1 的,否则会产生矛盾。 假设有理数r 的最简分数形式是c / b ,于是我们有: (n / m)n / m = c / b 或者说: n n · b m = m n · c m 注意到,m n是n n · b m的约数。然而,m 和n 是互质的,m n与n n没有公共因子,因而m n一定是b m的约数。同理,b m是m n · c m的约数,但由于b

初一数学上有理数与无理数的概念和练习有详细的答案

有理数和无理数的概念与练习 知识清单 1定义:有理数:我们把能够写成分数形式 n m (m 、n 是整数,n≠0)的数叫做有理数。 无理数:①无限②不循环小数叫做无理数。 2有理数的分类 整数和分数都可以写成分数的形式,它们统称为有理数。零既不是正数,也不是负数。有限小数和无限循环小数是有理数。 3无理数的两个前提条件: (1) 无限(2)不循环 4两者的区别: (1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。 (2)任何一个有理数后可以化为分数的形式,而无理数则不能。 经典例题 例1:下列各数中,哪些是有理数?哪些是无理数? -3,3π,-6 1,…,3.…,42,,0,3.(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r 。 例2:下列说法正确的是:( ) A.整数就是正整数和负整数 B.分数包括正分数、负分数 C.正有理数和负有理数统称有理数 D.无限小数叫做无理数 闯关全练 一. 填空题: (1)我们把能够写成分数形式n m (m 、n 是整数,n≠0)的数叫做 。 (2)有限小数和 都可以化为分数,他们都是有理数。 (3) 小数叫做无理数。 (4)写出一个比-1大的负有理数 。 二. 判断题 (1)无理数与有理数的差都是有理数;

(2)无限小数都是无理数; (3)无理数都是无限小数; (4)两个无理数的和不一定是无理数。 (5)有理数不一定是有限小数。 答案 例1: 无理数有:3 π,0,,(相邻两个1之间0的个数逐个加1) 有理数有:-3,-6 1,…,,42,,0,面积为π的圆半径为r 例2: B (A ,还有0 C ,还有0 D ,无限不循环) 闯关全练 一、(1)有理数 (2)无限循环小数、 (3)无限不循环小数、 (4)答案不唯一,如: 二、(1)错,如3π-0=3 π (2)错,如:… (3)对,无理数的两个前提条件之一无限 (4)对,3π+(-3 π)=0 (5)对,如:…

第1讲有理数的概念和性质和答案

新苏教版七升八数学第一讲有理数的概念和性质 一、【概念和性质】 1、正数和负数 正数:比0大的数。如+3、+1.5、+1 2、+584(正号可以省略) 负数:比0小的数。如-3、-1.5、-1 2、-584(负号不可以省略) 零:既不是正数,也不是负数。零是正数和负数的分界。 【实际意义】如“零上”和“零下”“高出”和“低于” “上升”和“下降”“超出”和“不足” “盈利”和“亏损”“收入”和“支出” ▲如正数表示某种意义,那么负数表示它的相反的意义。 例:用正数表示向南,那么向北3km可以用负数表示为-3km, 向南-5km表示向北5km 填空(1)若汽车向东行驶2.5千米记作+2.5千米,则向西行驶1.5千米记作; 汽车原地不动记作。 (2)某人转动转盘,如果+2圈表示沿顺时针转2圈,那么圈-3表示。 2、整数和分数统称为有理数。 ▲有理数可以写成 m n( m、n是整数,n≠0)。 ▲有理数的两种分类: ①按定义分: ②按符号分(常用): 整数 分数 正整数 负整数 正分数 负分数 有理数 正有理数 正整数 正分数 有限小数 无限小数 分数(分子是1时,这个分数就是正数) 无限循环小数 无限不循环小数(无理数) 小数 自然数

几个重要概念 (1)非负数:正数和零 (2)非正数:负数和零 (3)非负整数:正整数和零 (4)非正整数:负整数和零 3、规定了原点、正方向和单位长度的直线叫做数轴。 所有有理数都可以用数轴上的点表示,但不是数轴上所有点都是有理数。 左边的数 〈 右边的数 ▲ 正数大于0,0大于负数,正数大于负数。 两个负数,绝对值大的反而小。 4、绝对值的意义与性质: ① 数轴上表示a 的点与原点的距离叫做a 的绝对值,记作||a 。 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。 ② ③ 非负性 2(||0,0)a a ≥≥ ④ 非负数的性质: i )非负数的和仍为非负数。 ii )几个非负数的和为0,则他们都为0。 5、绝对值相同,符号相反的两个数叫做互为相反数。0的相反数是0。 ▲ 几何特征:关于原点对称(到原点的距离相等) 6、乘积是1的两个数是互为倒数(0没有倒数) 乘积是-1的两个数是互为负倒数 ▲ 正数的倒数是正数,负数的倒数仍是负数 ▲ 除以一个不为0的数,等于乘以这个数的倒数。 【思考】 已知a 为有理数,判断下列语句是否正确: ① (a+12 )2是正数; ② -(a -12 )2 是负数; 111 -2 -1 0 1 2 大 小

2018年七年级专题辅导有理数与无理数含答案解析

2018年七年级专题辅导有理数与无理数 一、选择 1.实数π是( ) A.整数 B.分数 C.有理数D.无理数 2.在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为( ) A.3 B.4 C.5 D.6 3.下列语句正确的是( ) A.0是最小的数B.最大的负数是﹣1C.比0大的数是正数D.最小的自然数是1 4.下列各数中无理数的个数是( ) ,0.1234567891011…(省略的为1),0,2π. A.1个B.2个C.3个D.4个 5.下列说法中,正确的是( ) A.有理数就是正数和负数的统称 B.零不是自然数,但是正数 C.一个有理数不是整数就是分数 D.正分数、零、负分数统称分数 6.在,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个. A.1 B.2 C.3 D.4 二、填空 7.最小的正整数是__________,最大的负整数是__________,最小的非负整数是__________.8.有理数中.是整数而不是正数的数是__________;是整数而不是负数的数是__________.9.若一个正方形的面积为5,则其边长可能是__________数. 10.给出下列数:﹣18,,3.1416,0,2001,﹣,﹣0.14,95%,其中负数有__________, 整数有__________,负分数有__________. 11.有六个位:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002…,若其中无理数的个 数为x,整数的个数为y,非负数的个数为z,则x+y+z=__________. 12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数. (1)1,﹣2,4,﹣8,16,﹣32.__________,__________,__________… (2)4,3,2,1,0,﹣1,﹣2.__________,__________,__________… (3)1,2,﹣3,4,5,﹣6,7,8,﹣9,__________,__________,__________… 三、解答 13.有一面积为5π的圆的半径为x,x是有理数吗?说说你的理由.

有理数与无理数练习

有理数与无理数练习 一、耐心填一填,一锤定音 1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。 2、+10千米表示王玲同学向南走了10千米,那么-9千米表示_______;0千米表示_____。 3、在月球表面上,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到-183℃,那么-183℃表示的意义为_______。 4、七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作-5分,则小明同学行92分,可记为____,李聪得90分可记为____,程佳+8分,表示______。 5、有理数中,最小的正整数是____,最大的负整数是____。 6、在1.5-7.5之间的整数有_____,在-7.5与-1.5之间的整数有_____ 7、已知下列各数:-23、-3.14、,其中正整数有__________,整数有______,负分数有______,分数有_________。 二、精心选一选,慧眼识金! 1、把向东运动记作“+”,向西运动记作“_”,下列说法正确的是( ) A、-3米表示向东运动了3米 B、+3米表示向西运动了3米 C、向西运动3米表示向东运动-3米 D、向西运动3米,也可记作向西运动-3米。 2、下列语句中正确的是( ) A、零是自然数 B、零是正数 C、零是负数 D、零不是整数 3、下列说法中,其中不正确的是( ) A、0是整数 B、负分数一定是有理数 C、一个数不是正数,就一定是负数 D、0 是有理数 4、正整数集合与负整数集合合并在一起构成的集合是( ) A、整数集合 B、有理数集合 C、自然数集合 D、以上说法都不对 5、下列说法中正确的有( ) ① 0是取小的自然数;②0是最小的正数;③0是最小的非负数;④0既不是奇数,也不是偶数;⑤0表示没有温度。 A、1个 B、2个 C、3个 D、4个 6、下列说法错误的是() A、有理数是指整数、分数、正有理数、零、负有理数这五类数 B、一个有理不是整数就是分数 C、正有理数分为正整数和正分数 D、负整数、负分数统称为负有理数 三、把下列各数填在相应的括号内: -23,0.25,,-5.18,18,-38,10,+7,0,+12,3.1415926, 6.010010001… 正数有() 负数有() 整数有() 有理数有() 无理数有()

七年级数学有理数与无理数易错题含答案

一、选择 1.实数π是( ) A.整数B.分数C.有理数D.无理数 【考点】无理数. 【分析】由于圆周率π是一个无限不循环的小数,由此即可求解. 【解答】解:实数π是一个无限不循环的小数.所以是无理数. 故选D. 【点评】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.2.在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间 的0的个数逐次加1),中,有理数的个数为( ) A.3 B.4 C.5 D.6 【考点】有理数. 【分析】分别根据实数的分类及有理数、无理数的概念进行解答. 【解答】解:在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的是0,,﹣(﹣),,0.3,. 故选D. 【点评】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析. 3.下列语句正确的是( ) A.0是最小的数B.最大的负数是﹣1 C.比0大的数是正数D.最小的自然数是1 【考点】有理数. 【分析】根据正数、自然数、负数、0的定义与特点分别对每一项进行分析即可.【解答】解:A、没有最小的数,故本选项错误; B、最大的负整数是﹣1,故本选项错误; C、比0大的数是正数,故本选项正确; D、最小的自然数是0,故本选项错误; 故选:C. 【点评】此题考查了有理数,用到的知识点是正数、自然数、负数、0的定义与特点,是一道基础题. 4.下列各数中无理数的个数是( ) ,0.1234567891011…(省略的为1),0,2π.

A.1个B.2个C.3个D.4个 【考点】无理数. 【分析】由于无理数就是无限不循环小数,由此即可判定选择项. 【解答】解:下列各数中,0.1234567891011…(省略的为1),0,2π. 无理数是2π,共1个. 故选A. 【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 5.下列说法中,正确的是( ) A.有理数就是正数和负数的统称 B.零不是自然数,但是正数 C.一个有理数不是整数就是分数 D.正分数、零、负分数统称分数 【考点】有理数. 【分析】根据有理数的定义和特点进行判断. 【解答】解:A、有理数包括正数、负数和0,故A错误; B、零是自然数,但不是正数,故B错误; C、整数和分数统称有理数,因此一个有理数不是整数就是分数,故C正确; D、零是整数,不是分数,故D错误. 故选C. 【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点. 注意整数和正数的区别,注意0是整数,但不是正数. 6.在,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个. A.1 B.2 C.3 D.4 【考点】有理数. 【分析】利用分数的定义判断即可. 【解答】解:在,3.14,0,0.313 113 111.…,0.43五个数中分数有3.14,0.43, 故选B. 【点评】此题考查了实数,熟练掌握分数的定义是解本题的关键. 二、填空 7.最小的正整数是1,最大的负整数是﹣1,最小的非负整数是0. 【考点】有理数. 【分析】根据正整数的定义,可得答案; 根据负整数的定义,可得答案; 根据非负数的定义,可得答案. 【解答】解:最小的正整数是1,最大的负整数是﹣1,最小的非负整数是0,故答案为:1,﹣1,0.

有理数与无理数

谈谈有理数与无理数 实数通常分为有理数和无理数两类。这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。 关于有理数,我们知道得较多,其特征有: 1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数; 2、每个有理数都可以写成分数的形式,即n m ,其中m 和n 都是整数,且n ≠0。利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。 我们不加证明地给出关于有理数的一条结论: 当有理数n m 的分母n 能分解质因数为2α×5β(其中α、β为自然数)时,有理数n m 能化成有限小数;否则,化为无限循环小数。(关于有理数与小数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述) 无理数是指那些无限不循环小数。大家熟悉的无理数很多,2、e 、π等等都是。与有理数相比,无理数不具备那样好的性质。譬如,两个无理数的四则运算结果不一定是无理数,象π-π=0,22 =1。 根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用: 1、任何有理数≠任何无理数; 2、设是a 有理数,b 是无理数,则a+b ,a-b ,a ·b (a ≠0),a/b (a ≠0)都是无理数。 下面着重介绍实数无理性的判定方法。 在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算有关,如2,311;与对数值有关,如log 23;与三角函数值有关,如cos20°,sin1°;此外还有象e (自然对数的底)、π(圆周率)这样的特殊值。 判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数和无理数 的关系,α就是有理数,故α=n m (n ≠0),于是就得到一个具体的等式,这为我们导出矛盾提供了一个直观的工具。下面我们介绍几种常见的初等方法,主要适用于前三类无理数的判定。 一、利用整数的性质 整数特别是整数的奇偶性在判定实数的无理性方面起着重要的作用。

有理数与无理数

有理数与无理数 怀文中学XX—XX学年度第二学期教学设计 初一数学2.2 主备:陈秀珍审核:日期:XX-9-1 学习目标:1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。 会判断一个数是有理数还是无理数。经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。 教学重点:区分,知道无理数是客观存在的。感受夹逼法,估算无理数的大小。. 教学难点:会判断一个数是有理数还是无理数,体会“无限”的过程。 教学过程: 一.自主学习 我们上了六多年的学,学过不计其数的数,概括起来我们都学过哪些数呢? 在小学我们学过自然数、小数、分数.,在初一我们还学过负数。我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充了范围,从形式上来看,我们学过的一部分数又可以分为整数和分数。我

们能够把整数写成分数的形式吗?如:5,-4,0……可以吗?可以!如5=,-4=,0=我们把可以化为分数形式“n”的数叫做有理数; 想一想:小学里我们还学过有限小数和循环小数,它们是有理数吗?有限小数如0.3,-3.11……能化成分数吗?它们是有理数吗?0.3=,-3.11=,它们是有理数。请将1/3,4/15,2/9写成小数的形式。1/3=0.333...,4/15=0.26666...,2/9=0.2222.....这些是什么小数?循环小数,反之循环小数也能化为分数的形式,它们也是有理数!循环小数如何化为分数可以一起学习书P17、读一读 二.合作、探究、展示 有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题. 议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形。 设大正方形的边长为a,a满足什么条件? a可能是整数吗?说说你的理由。 a可能是分数吗?说说你的理由 a是正方形的边长,所以a肯定是正数.因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.

有关有理数与无理数的证明

狄利克雷函数(Dirichlet Function),在实数上处处不连续的证明(2006年10月25日修改版)声明:前天下午在与曲建勋的讨论中找到其证明方式 本证明过程,最关键的两个步骤,由我和曲建勋分别提出,在此对曲建勋表示感谢,并郑重声明,并非我一人完成此证明 √2代表根号2 证明过程我写得很啰嗦,尤其是前面三个命题,可能有些人会认为太显而易见了,但为了严谨我还是写出来了,高人可以略过其证明过程 前提:1、任何有理数均可写成既约分数p/q (p,q∈Z 且q≠0) 2、任何无理数据不可写成这样的形式,且均可写成无限不循环小数 3、任何实数必定属于有理数或无理数中的一类,且不能同时属于两类数 命题1:任何有理数与无理数相加结果都是无理数 证明:假设命题不成立 设p/q (p,q∈Z 且q≠0)为任意有理数 X为任意无理数 则p/q+X=m/n (m,n∈Z 且n≠0) X=m/n-p/q=(mq-np)/(n*q) 则根据前提1,X为有理数,与假设矛盾 故假设不成立,命题1成立 命题2:任何无理数除以非零有理数结果都是无理数 证明:假设命题不成立 设p/q (p,q∈Z 且q≠0,p≠0)为任意非零有理数 X为任意无理数 则X/(p/q)=m/n (m,n∈Z 且n≠0) X=(p*m)/(q*n) 则根据前提1,X为有理数,与假设矛盾 故假设不成立,命题2成立 命题3:√2为无理数 证明:假设命题不成立 则√2为有理数,设√2=p/q (p,q∈Z 且q≠0) 2=(p*p)/(q*q) 则p必须是偶数 ∵p/q是既约分数 ∴q是奇数 ∴设p=2n q=2m+1(m,n∈Z)

实数可以分为有理数和无理数两类

是:1/a (a≠0) (1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式。 (2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.

求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. (3)代数式的分类 2.整式的有关概念 (1)单项式:只含有数与字母的积的代数式叫做单项式. 对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。 (2)多项式:几个单项式的和,叫做多项式 对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析 (3)多项式的降幂排列与升幂排列 把一个多项式按某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列 把—个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列, 给出一个多项式,要会根据要求对它进行降幂排列或升幂排列. (4)同类项 所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.要会判断给出的项是否同类项,知道同类项可以合并.即其中的X可以代表单项式中的字母部分,代表其他式子。 3.整式的运算 (1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是: (i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号. (ii)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变. (2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加. 多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加. (3)因式分解:把多项式写成几个整式相乘的积的形式。 例:a^2+2ab+b^2=(a+b)^2 遇到特殊形式的多项式乘法,还可以直接进行计算:

有理数与无理数同步练习

§2.2 有理数与无理数 一、选择 1.π是 ( ) A .整数 B .分数 C .有理数 D .无理数 2.在数0,13,2π,-(-1 4),2 23,0.3,0.141 041 004…(相邻两个1,4之间的0的个 数逐次加1),22 7中,有理数的个数为 ( ) A .3 B .4 C .5 D .6 3.下列语句正确的是 ( ) A .0是最小的数 B .最大的负数是-1 C .比0大的数是正数 D .最小的自然数是1 4.下列各数中无理数的个数是 ( ) 22 7,0.123 456 789 101 1…,0,2π. A .1 B .2 C .3 D .4 5.下列说法中,正确的是 ( ) A .有理数就是正数和负数的统称 B .零不是自然数,但是正数 C .一个有理数不是整数就是分数 D .正分数、零、负分数统称分数 6.在2π ,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个. A .1 B .2 C .3 D .4 二、填空 7.最小的正整数是 ,最大的负整数是 ,最小的非负整数是 . 8.有理数中,是整数而不是正数的数是 ;是整数而不是负数的数是 . 9.若一个正方形的面积为5,则其边长可能是 数. 10.给出下列数:-18,22 7,3.141 6,0,2 001,-35π ,-0.14,95%,其中负数 有 ,整数有 ,负分数有 . 11.有六个数:0.123,-1.5,3.141 6,22 7,-2π,0.102 002 000 2…,若其中无理 数的个数为x ,整数的个数为y ,非负数的个数为z ,则x + y + z = . 12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数. (1) 1,-2,4,-8,16,-32. , , … (2) 4,3,2,1,0,-1,-2. , , … (3) 1,2,-3,4,5,-6,7,8,-9, , , …

相关主题
文本预览
相关文档 最新文档