当前位置:文档之家› 超音速喷涂

超音速喷涂

超音速喷涂
超音速喷涂

热喷涂技术之未来趋势--超音速喷涂技术

摘要:本文简要叙述了热喷涂技术的概况,比如热喷涂设备组成,热喷涂的工作原理,热喷涂技术的特点;着重介绍了热喷涂技术中超音速喷涂技术的发展过程, 简述了超音速火焰喷涂、超音速等离子喷涂、超音速电弧喷涂及冷喷涂等设备的结构和技术特点, 介绍了超音速喷涂工艺及涂层特性, 展望了该技术在制备纳米涂层方面的应用及发展前景。

关键词: 表面处理技术;热喷涂技术;超音速喷涂;超音速火焰喷涂;超音速等离子喷涂;超音速电弧喷涂;冷喷涂

1.1 热喷涂技术概况

众所周知, 除少数贵金属外,金属材料会与周围介质发生化学反应和电化学反应而遭受腐蚀。此外,金属表面受各种机械作用而引起的磨损也极为严重。大量的金属构件因腐蚀和磨损而失效,造成极大的浪费和损失。据一些工业发达国家统计,每年钢材因腐蚀和磨损而造成的损失约占钢材总产量的10 %,损失金额约占国民经济总产值的2 - 4 %。如果将因金属腐蚀和磨损而造成的停工、停产和相应引起的工伤、失火、爆炸事故等损失统计在内的话,其数值更加惊人。因此,发展金属表面防护和强化技术,是各国普遍关心的重大课题。

随着尖端科学和现代工业的发展,各工业部门越来越多地要求机械设备能在高参数(高温、高压、高速度和高度自动化)和恶劣的工况条件(如严重的磨损和腐蚀)下长期稳定的运行。因此,对材料的性能也提出更高要求。采用高性能的高级材料制造整体设备及零件以获得表面防护和强化的效果,显然是不经济的,有时甚至是不可能的。所以,研究和发展材料的表面处理技术就具有重大的技术和经济意义。而表面处理技术也在这种需求的推动下获得了飞速的发展和提高。

热喷涂技术是表面防护和强化的技术之一,是表面工程中一门重要的学科。所谓热喷涂, 就是利用某种热源, 如电弧、等离子弧、燃烧火焰等将粉末状或丝状的金属和非金属涂层材料加热到熔融或半熔融状态,然后借助焰流本身的动力或外加的高速气流雾化并以一定的速度喷射到经过预处理的基体材料表面,与基体材料结合而形成具有各种功能的表面覆盖涂层的一种技术。

近年来,热喷涂技术在国民经济建设中所发挥的重大作用,越来越引起人们重视。它作为表面技术一个重要组成部分,在我国国家“六五”至“九五”连续四个五年计划重点推广应用中取得了显著成绩,获得了重大经济效益。目前,无论在设备、材料、工艺、科研等方面都在迅速发展与提高。从2006年10月在宁波举行的“第十五届全国热喷涂技术经验交流会”上国内外专家的专题报告以及宣读的论文中可以看出,我国热喷涂技术近期发展的概况及特点是:设备方面(喷枪)向高能、高速度方向发展;材料方面向系列化、标准化、商品化方向发展,以保证多功能高质量涂层的需要;工艺方面向机械化、自动化方向发展。

1.2 热喷涂设备

虽然因热喷涂的方法不同其设备也各有差异, 但依据热喷涂技术的原理,其设备都主要由喷枪、热源、涂层材料供给装置以及控制系统和冷却系统组成。下图为热喷涂的设备配置图。

图一热喷涂设备配置图

1.3 热喷涂材料

目前实际应用中已实现工业化生产的喷涂材料有金属、合金和陶瓷等,主要以粉末、丝材、棒材状态使用,其中喷涂粉末占喷涂材料总用量的70 %以上。用作涂层的材料有:1.3.1 热喷涂用粉末

纯金属粉末:W,Mo,Al,Cu,Ni,Ti,Ta,Nb 等。

合金粉末:Al-Ni,Ni-Cr,Ti-Ni,Ni-Cr-Al,Co-Cr-W,MCrAlY(M=Co、Ni、Fe),Co 基、Ni 基、Fe 基自熔合金等。

氧化物陶瓷粉末:Al2O3,ZrO2,Cr2O3,TiO2 等。

碳化物粉末:WC,TiC,Cr3C2 等。

金属陶瓷粉末:WC-Co,Cr3C2-NiCr 等。

塑料粉末:尼龙,聚乙烯,聚苯硫醚等。

1.3.2 热喷涂用丝材

Al、Cu,Zn,Al-Zn 合金,巴氏合金,不锈钢,Ni-Al 丝等。

1.3.3 热喷涂用棒材

Al2O3,Cr2O3,ZrO2 等。

1.4 热喷涂工艺流程

热喷工艺过程如下:

工件表面预处理→工件预热→喷涂→涂层后处理

1.4.1 表面预处理

为了使涂层与基体材料很好地结合,基材表面必须清洁及粗糙,净化和粗化表面的方法很多,方法的选择要根据涂层的设计要求及基材的材质、形状、厚薄、表面原始状况以及施工条件等因素而定。

净化处理的目的是除去工件表面的所有污垢,如氧化皮、油渍、油漆及其他污物,关键是除去工件表面和渗入其中的油脂。净化处理的方法有,溶剂清洗法、蒸汽清洗法、碱洗法及加热脱脂法等。

粗化处理的目的是增加涂层与基材间的接触面,增大涂层与基材的机械咬合力,使净化处

理过的表面更加活化,以提高涂层与基材的结合强度。同时基材表面粗化还改变涂层中的残余应力分布,对提高涂层的结合强度也是有利的。粗化处理的方法有喷砂、机械加工法(如车螺纹、滚花)、电拉毛等。

其中喷砂处理是最常用的粗化处理方法,常用的喷砂介质有氧化铝、碳化硅和冷硬铸铁等。喷砂时,喷砂介质的种类和粒度、喷砂时风压的大小等条件必须根据工件材质的硬度、工件的形状和尺寸等进行合理的选择。对于各种金属基体,推荐采用的砂粒粒度约为16-60 号砂,粗砂用于坚固件和重型件的喷砂,喷砂压力为0.5-0.7Mpa,薄工件易于变形,喷砂压力为0.3-0.4Mpa。特别值得注意的一点是,用于喷砂的压缩空气一定要是无水无油的,否则会严重影响涂层的质量。喷涂前工件表面的粗化程度对大多数金属材料来说2.5-13 μmRa 就够了。随着表面粗糙度的增加涂层与基体材料的结合增强,但是当表面粗糙度超过10μmRa 后,涂层结合强度的提高程度便会减低。

对于一些与基材粘结不好的涂层材料, 还应选择一种与基体材料粘结好的材料喷涂一层过渡层,称为粘结底层,常用作粘结底层的材料有Mo、NiAl、NiCr 及铝青铜等。粘结底层的厚度一般为0.08-0.18μm。

1.4.2 预热

预热的目的是为了消除工件表面的水分和湿气,提高喷涂粒子与工件接触时的界面温度,以提高涂层与基体的结合强度;减少因基材与涂层材料的热膨胀差异造成的应力而导致的涂层开裂。预热温度取决于工件的大小、形状和材质,以及基材和涂层材料的热膨胀系数等因素,一般情况下预热温度控制在60 - 120 ℃之间。

1.4.3 喷涂

采用何种喷涂方法进行喷涂主要取决于选用的喷涂材料、工件的工况及对涂层质量的要求。例如,如果是陶瓷涂层,则最好选用等离子喷涂;如果是碳化物金属陶瓷涂层则最好采用高速火焰喷涂;若是喷涂塑料则只能采用火焰喷涂;而若要在户外进行大面积防腐工程的喷涂的话,那就非灵活高效的电弧喷涂或丝材火焰喷涂莫属了。总之,喷涂方法的选择一般来说是多样的,但对某种应用来说总有一种方法是最好的。

预处理好的工件要在尽可能短的时间内进行喷涂,喷涂参数要根据涂层材料、喷枪性能和工件的具体情况而定,优化的喷涂条件可以提高喷涂效率、并获得致密度高、结合强度高的高质量涂层。

1.4.4 涂层后处理

喷涂所得涂层有时不能直接使用,必须进行一系列的后处理。用于防腐蚀的涂层,为了防止腐蚀介质透过涂层的孔隙到达基材引起基材的腐蚀,必须对涂层进行封孔处理。用作封孔剂的材料很多,有石腊、环氧树脂、硅树脂等有机材料及氧化物等无机材料,如何选择合适的封孔剂,要根据工件的工作介质、环境、温度及成本等多种因素进行考虑。

对于承受高应力载荷或冲击磨损的工件,为了提高涂层的结合强度,要对喷涂层进行重熔处理(如火焰重熔、感应重熔、激光重熔以及热等静压等),使多孔的且与基体仅以机械结合的涂层变为与基材呈冶金结合的致密涂层。

有尺寸精度要求的,要对涂层进行机械加工。由于喷涂涂层具有与一般的金属及陶瓷材料不同的特点,如涂层有微孔,不利于散热;涂层本身的强度较低,不能承受很大的切削力;涂层中有很多硬的质点,对刀具的磨损很快等,因而形成了喷涂涂层不同于一般材料的难于加工的特点。所以必须选用合理的加工方法和相应的工艺参数才能保证喷涂层机械加工的顺利进行和保证达到所要求的尺寸精度。

1.5热喷涂技术的特点

从热喷涂技术的原理及工艺过程分析,热喷涂技术具有以下一些特点。

1. 由于热源的温度范围很宽,因而可喷涂的涂层材料几乎包括所有固态工程材料,如金属、合金、陶瓷、金属陶瓷、塑料以及由它们组成的复合物等。因而能赋予基体以各种功能(如耐磨、耐蚀、耐高温、抗氧化、绝缘、隔热、生物相容、红外吸收等)的表面。

2. 喷涂过程中基体表面受热的程度较小而且可以控制,因此可以在各种材料上进行喷涂(如金属、陶瓷、玻璃、布疋、纸张、塑料等),并且对基材的组织和性能几乎没有影响,工件变形也小。

3.设备简单、操作灵活,既可对大型构件进行大面积喷涂,也可在指定的局部进行喷涂;既可在工厂室内进行喷涂也可在室外现场进行施工。

4.喷涂操作的程序较少,施工时间较短,效率高,比较经济。

随着热喷涂应用要求的提高和领域的扩大, 特别是喷涂技术本身的进步,如喷涂设备的日益高能和精良,涂层材料品种的逐渐增多、性能逐渐提高, 热喷涂技术近十年来获得了飞速的发展, 不但应用领域大为扩展, 而且该技术已由早期的制备一般的防护涂层发展到制备各种功能涂层;由单个工件的维修发展到大批的产品制造;由单一的涂层制备发展到包括产品失效分析、表面预处理、涂层材料和设备的研制、选择,涂层系统设计和涂层后加工在内的喷涂系统工程;成为材料表面科学领域中一个十分活跃的学科。并且在现代工业中逐渐形成象铸、锻、焊和热处理那样的独立的材料加工技术。成为工业部门节约贵重材料、节约能源、提高产品质量、延长产品使用寿命、降低成本、提高工效的重要的工艺手段,在国民经济的各个领域内得到越来越广泛的应用。

总体上来说,热喷涂技术正朝着高能高速喷涂的方向发展, 并且超音速喷涂已成为一些发达国家竞相研究的热点, 并形成了超音速火焰喷涂、超音速等离子喷涂、超音速电弧喷涂及冷喷涂等几种重要技术。

2.1 超音速喷涂技术发展概况

超音速火焰喷涂包括超音速氧气火焰喷涂(HVO F: High Velocity O xy-Fuel) 和超音速空气火焰喷涂(HVA F: H igh Velocity A ir2Fuel) 两种。该技术及设备在上世纪80 年代初期首先由美国SKS 公司的B row n ing. J. A 公司研制成功, 至今已经历了3 个发展阶段[ 1 ]。第一代的HVO F 喷涂系统以“JET 2KO TE”为代表, 第二代超音速火焰喷涂系统以1989年出现的Top-Gun, D iamond-Jet 和CDS (Continuous Detonation Spray gun) 为代表, 第三代超音速火焰喷涂系统以JP25000 喷涂系统为代表。第一、二代设备的功率偏小, 粒子速度偏低, 涂层的整体性能不够理想。第三代在设计上有了较大改进, 使粒子飞行速度大幅度提高,涂层质量显著改善。国内西安交通大学在这方面开展的研究较多[ 2 ]。

由于HVOF系统使用气体燃料和氧气助燃剂, 故生产成本很高。例如JP25000, 典型工艺参数需氧气流量为0. 9438 m 3?m in, 每瓶氧气只能维持5~6 min[ 3 ]。为此, 美国、英国、日本等国又研制了HVAF系统, 使用压缩空气代替价格昂贵的纯氧气做助燃气体, 且喷枪采用气冷方式。除了大幅度降低成本外, 喷涂温度可以控制在较低范围内, 是热喷涂技术上的一项革新[ 4 ]。沈阳工业大学、装甲兵工程学院均已研制成功了自己的HVAF系统[ 5 ]。

超音速等离子喷涂技术采用非转移型等离子弧与高速气流混合时出现的“扩展弧”得到稳定聚集的超音速等离子焰流。它保留了普通空气等离子喷涂的优点,而且喷涂速度有显著提高。1986 年美国B rowning Eingeering 公司推出了第一台超音速等离子喷枪Plaz-Jet; 随后超音速等离子喷涂的发展主要集中在喷枪射流速度的提高和送粉方式的改良方面。我国已经研制成功了超音速等离子喷涂系统的核心部件——高效能超音速等离子喷枪(HEPJ: High Eff iciency P laz-Jet) [ 6 ]。

电弧喷涂技术具有设备简单、生产率高、能耗低等优点, 因其适合我国国情而在我国得到了长足的发展。上世纪90 年代以来, 第二炮兵工程学院和装甲兵工程学院的科研人员成

功研制出超音速电弧喷涂技术(HVA S: H igh Velocity A rc Spray) , 粒子速度大大超过了普

通电弧喷涂的水平, 达到了385. 7 m ?s, 而且设备结构简单, 易于操作, 与普通电弧喷枪具

有互换性,涂层结合强度和喷涂沉积效率明显提高[ 7 ]。美国U nique Coat 公司也研制生产了SB50 型等超音速活性电弧喷涂设备。

冷喷涂全名冷空气动力喷涂法(CGDS: Cold Gas Dynamic Spray) , 是一种以高速(500~

1 200 m /s) 小颗粒(1~50 ǖm) 气流撞击金属或绝缘基体表面, 在整个过程中粒子没有熔化, 保持固体状态, 粒子发生纯塑性变形聚合形成涂层。冷喷涂于20 世纪80 年代中期,在俄罗斯科学院理论及应用力学研究所最早开发, 近年来受到广泛关注, 并在俄国、美国、德国等国家得到了快速发展[ 8 ]。大连理工大学等单位也在进行该技术的研究, 不过还处于机理研究和探索阶段[ 9 ]。

2超音速喷涂技术原理

现有设备中, 热源有火焰、等离子、电弧等几种, 工作气体(或工作液体) 也有所不同, 但均采用L aval 喷嘴或等截面喷嘴两种方式获得超音速[ 1 ]。如超音速火焰喷涂是利用可燃气(如氢气、丙烷或丙烯) 或液体燃料(如航空煤油) 等与氧气混合, 在燃烧室点燃, 剧烈膨胀的气体受喷嘴的约束形成超音速高温火焰流, 粉末沿燃烧室轴心由惰性气体(如氮气) 送入,受到加热与加速而喷出。超音速等离子喷涂是借助氩气和氮气通过L aval 喷嘴产生扩展型等离子弧,再利用扩展弧来加热气体得到超音速等离子射流同时有效地加温加热喷涂粉末。超音速电弧喷涂则是利用丙烷等燃气与压缩空气燃烧产生焰流,并且燃气被调节成过量,使焰流具有一定的还原性。冷喷涂技术基于加压的预热气流、渐缩放的喷嘴和加压的粉末送料器,产生细的高度聚焦的喷涂气流;气体压力越高,粒子速度越大。

焰流是否达到超音速可通过观察火焰中是否存在马赫锥来判断。当焰流达到超音速时,焰流的速度可以达到2~5 马赫。将粉末沿轴向或径向送进焰流中,即可实现喷涂。

在燃烧过程中产生的能量将用来加热和加速焰流及粉末。气流的速度与气体的成分、压力、流量、温度、密度以及喷枪喷嘴的通径等有关。L aval 喷嘴是按流体动力学的原理设计的。喷嘴的流道是由细的喉管和逐渐加粗到某一尺寸的锥形管组成,在瑞利流和范诺流效应下,L aval 喷嘴在喷嘴内部焰流达到阻塞状态,从而在出口处获得超音速射流,当亚音速气流进入L aval喷嘴的收缩段后,由于过流断面积逐渐减小,气流膨胀加速到喷嘴喉部,压力值下降到临界压强值

P = P 0 [2k + 1] kk - 1

对于空气,k= 14,则P = 0. 528P 0,此时焰速达到音速,气体流量达最大值,此气流在其后的扩张管内的流动将会是继续减压增速,因而在喷嘴出口处可获得超音速焰流。其速度由可压缩流体力学公式计算:

V =

当P 0 达到一定值后,按喷嘴入口和出口的压力,存在一个能够获得超音速焰流的合理的喷嘴形状,燃气通过喷嘴后就可获得超音速流。而且,随着P 0 的增大,喷嘴出口处气流的速度增高[ 10 ]。

但对于等截面喷嘴的喷枪,是在喷嘴出口处达到阻塞状态,在喷嘴可以得到的最大焰流速度为当地音速[ 11 ]。理想气体的当地超音速C 定义为:

C = K R T (1)

其中: K 为气体的比热比, R 为气体常数, T 为当地温度。当地马赫数M 定义为当地气流速度V 与当地音速C 之比:

M = V ?C (2)

马赫数M = 1 的状态为临界状态, 此时, 流动状态被称为阻塞, 对于等截面喷管, 喷枪

出口处焰流速度达到最大, 等于当地音速。因为, 对于流过等截面喷管的焰流, 对焰流的加热(瑞利流: Reyleigh f low ) 和摩擦(范诺流: Fanno f low ) 都将增加焰流的速度和马赫数。当焰流达到阻塞状态时, 在自由射流中将产生膨胀波和压缩波, 这两种波相交将在射流中产生明亮的马赫锥。锥角的一半称为马赫角, 马赫角的正弦与马赫数成正比。

根据马赫角的大小就可以确定马赫数, 再由(1) 式和(2) 式即可得出焰流的速度V 。

3超音速喷枪的结构特点

较先进的HVOF系统如JP25000,使用安全的液体燃料、高压喷涂、吸入式送粉,设备热效率高。氧气和液体燃料被送进喷枪后部的燃烧室,并用火花塞点燃。粉末沿径向并从双孔加入内喷嘴喉管后的过度膨胀负压区,从而不需要高压送粉系统[ 1 ]。

现有超音速火焰喷涂系统之间结构上的主要差别在于: 冷却方式: 空气冷却和水冷却; 送粉方式: 轴向送粉和径向送粉; 燃料种类: 气体燃料(包括丙烯、丙烷、氢气或乙炔) 和液体燃料(包括煤油、酒精、汽油等) ; 喷嘴结构: L aval 喷嘴及等截面长喷管结构[ 1 ]。

HVA F 喷枪的结构原理与HVO F 相近, 只是在燃气雾化后采用空气取代氧气与之混合助燃, 燃烧室设计上要求燃烧的完善程度尽可能高、燃烧稳定性好、点火容易可靠。所以一般采用最常用的圆筒型燃烧室并使燃油通过很细的喷嘴有效雾化; 燃烧室外壁预热空

气时同时冷却燃烧室[ 5 ]。

装甲兵工程学院自行研制的空气超音速火焰喷枪采用圆筒形燃烧室, 中心送粉、空气冷却方式, 结构简单; 使用液体燃料和压缩空气助燃, 焰流温度较低, 但粒子飞行速度高, 可有效抑制涂层材料的相变、氧化和分解。

HEPJ 设备中等离子体发生器是其关键部件之一。由喷枪后枪体输入主气(氩气) 和大流量的次级气(氮气) , 经气体旋流环作用, 通过拉伐尔管型的二次喷嘴射出。而同时钨极接负极, 引弧时一次喷嘴接正极,在主气中经高频引弧, 正极接二次喷嘴, 即在二次喷嘴内壁间产生电弧, 在旋转的次级气强烈作用下, 电弧被压缩在喷嘴中心并被拉长至喷嘴外缘, 形成弧压高达几百伏的扩展型等离子弧, 大功率的扩展弧有效地加热气体, 从喷嘴中射出稳定集聚的超音速等离子射流,送入的喷涂粉末被有效地升温加速, 撞击工件形成涂层[ 12 ]。

HVAA 是一种新发展的电弧喷涂技术, 它是在普通压缩空气气流的基础上, 加入丙烷或者丙稀等燃气,与压缩空气混合燃烧产生焰流, 并且燃气被调节成过量, 使焰流具有一定的还原性。由于燃烧产生的加速作用, 最终的焰流速度可高达2 马赫以上。同时燃烧于丝材端部的电弧将均匀送进的丝材熔化, 经超音速火焰气流将熔化的丝材雾化为粒度细小、分布均匀的粒子,通过喷嘴, 喷向基体表面形成涂层[ 13 ]。

CGDS 技术中, 经低温预热的高压气体通过缩放喷管产生超音速气体射流, 将喷涂粒子从轴向送入气体射流中加速, 以固态的形式撞击基体形成涂层。通常的冷喷涂将高压气流分为两部分: 一部分经电阻加热后进入喷管; 另一部分加热后携带颗粒进入喷管, 在喷管中定位并加速后喷向基体并堆积形成涂层。冷喷涂技术的工作气体一般为He 和N 2, 而He 比N 2 的加速效果更好[ 8 ]。

4超音速喷涂的工艺控制

超音速喷涂主要是依靠大幅度提高喷涂颗粒的速度来获得高质量的涂层, 即: 高的燃烧室压力→高的燃流速度→高的颗粒飞行速度→高的涂层质量。涂层性能与气流的速度和温度有关, 但目前研究结论趋向于认为[ 3, 14 ]: 粒子的速度或动能对涂层质量的贡献更大。由动量定理可知, 粒子速度越高, 动量越大, 沉积时的冲量越大; 粒子速度越高, 粒子对基体的撞击作用越强, 粒子变形越充分, 使涂层中颗粒之间的连接更加紧密, 从而减小了涂层孔隙率, 增大了涂层的结合强度。因此, 新一代超音速喷涂系统的设计都是将温度定位在某一区

间内, 将速度的提高作为结构优化的主要目标函数。按照喷涂过程中粒子的加热形式可以分为热喷涂、温喷涂和冷喷涂三个区间。

在HVO F 喷涂中可控工艺参数有: 喷嘴长度, 喷涂距离, 氧气流量及压力, 燃料流量及压力, 送粉气体流量及压力, 压缩空气压力, 冷却水流量, 喷枪移动距离。大多数喷枪采用圆筒型燃烧室, 压力为0. 4~0. 5M Pa, 主要由喷枪结构和燃料与空气流量比决定。燃烧火焰温度2 700~3 000℃, 焰流速度可达1 500m /s 以上, 粒子速度400~800 m / s。HVOF在喷涂金属陶瓷材料过程中能有效地抑制碳化物等硬质相的分解, 涂层质量优越, 结合强度可高达70

M Pa 以上, 孔隙率低, 约为1% 左右[ 15 ]。

HVA F 技术的特点就是将喷涂粉末加热到它们的熔点以下同时加速到700 m /s 以上, 在热退化影响最低的前提下, 形成致密、几乎不含氧化物的高质量涂层。其工艺特点是通过在高热气体中加入适量水, 使粒子温度控制在800~1 500℃, 从而使粒子温度填补了HVO F 工艺到冷喷工艺中间的空白温度区, 因此也可以称为温喷涂。其水流量可调, 使粒子尽量不熔化,但比在冷喷条件下的延展性好[ 16 ]。

超音速等离子喷涂中通过气体的旋流稳定作用与收缩作用得到稳定集聚的高热焓、超高速等离子体焰流, 其弧压高达200~400 V , 电流400~500 A , 喷嘴喷射出的等离子射流

温度达到2 500℃以上, 焰流速度超过3 600 m ?s, 喷涂颗粒速度可达500 m ?s 以上。而且工艺参数可通过喷涂功率、工作电压、工作电流、主气(A r)、次气(N 2) 的压力和流量、喷涂距离等加以控制。超音速等离子弧喷涂功率高, 气流量大, 速度极高, 具有极高的喷涂效率, 而且等离子弧不发散, 热焓高, 使涂层质量明显优于一般等离子喷涂, 与爆炸喷涂和超音速火焰喷涂相近, 而且非常适用于高熔点陶瓷材料的喷涂[ 17 ]。

超音速电弧喷涂与火焰喷涂相比, 其特点是: 热效率高, 生产效率高, 喷涂成本低, 操

作简单, 易于现场操作。超音速电弧喷涂需要控制的工艺参数有: 喷涂电压, 喷涂电流, 空气压力, 燃气压力。相对传统电弧喷涂, 由于超音速气流的雾化、加速作用, 粒子细小、均匀而且速度高, 从而提高了涂层的结合强度和内聚强度,并降低了涂层孔隙率; 同时粒子在空

中停留时间短, 涂层氧化物含量低[ 18 ]。

冷喷涂时, 粒子始终保持固体状态并通过纯塑性变形聚合形成涂层。因此, 粒子是形成涂层还是对基体产生喷丸或冲蚀作用, 取决于粒子撞击前的速度。一般情况下, 粒子喷涂速度以500 m ?s 为界限, 只有大于500 m /s 才能形成喷涂层,如下图。因此, 实现喷涂粒子的高速是冷喷涂技术的关键。在喷管的几何形状确定后, 影响喷涂粒子飞行速度的主要因素有: 工作气体种类、工作气体压力和预热温度及粒子的大小与密度等[ 8 ]。

图二涂层横截面示意图

在冷喷涂过程中, 气体温度约为800℃, 粒子速度可达1 000 m /s 以上。使传统热喷涂方法中的有害影响, 如高温氧化、蒸发、溶解、结晶、残余应力、剥离、气体释放等, 均可减

到最小甚至消除。但这一技术目前存在孔隙率高, 对喷涂粒子尺寸范围要求严格等缺点, 而且应用范围较窄、耗能大、不易实现与其它喷涂的对接。随着冷喷涂技术的不断改进与完善, 喷涂层的质量将不断得到提高[ 8 ]。

5超音速喷涂技术的最新应用及展望

超音速喷涂已经成为热喷涂技术的主流发展方向, 目前在国外已经渗透到各种领域: 石油化工、机械、印刷、航空、冶金、电力、塑料等工业部门。特别是在高科技领域, 超音速喷涂的高质量涂层能满足航天、航空、原子能等尖端领域对材料的苛刻要求。美国已采用HVO F 逐步取代常规等离子喷涂修复飞机涡轮发动机部件, 既降低了成本, 又改善了涂层的耐磨蚀性能[ 19 ]。固体颗粒磨蚀所造成的汽轮机中固定和旋转部件的磨损是水力、电力行业面临的一个耗资巨大的难题。国外已有采用HVO F 和HEPJ 技术解决水力、电力行业过流部件磨蚀问题的广泛报道[ 20 ]。HVAA 由于其成本低廉, 效益显著, 在国内防腐工程上已有较广泛地应用[ 13 ]。

近年来, 超音速喷涂制备纳米结构涂层成为目前表面工程领域的一个研究热点。纳米结构材料作为涂层材料可望解决传统涂层材料提高涂层硬度要以牺牲其韧性为代价、造成脆性增加、结果导致涂层与基体的匹配性与结合性下降、涂层易开裂、硬质相易脱落等问题, 从而进一步提高涂层的综合使用性能[ 21 ]。

较系统的对比研究表明, HVO F 喷涂纳米Cr3C2225 (N i20Cr) 涂层的硬度指标已经提高到了一个新的水平, 硬度大于1 000 HV [ 22 ] , HVO F 纳米316 不锈钢涂层的显微硬度比普通316不锈钢粉末的HVO F 涂层有显著提高[ 23 ]; HVO F 纳米Inconel 718 镍基高温合金涂层呈现出优良的热稳定性[ 24 ]; 采用超音速等离子喷涂技术的A l2O 32T iO 2 纳米结构涂层, 结合强度达31. 2M Pa, 显微硬度1221 HV 0. 2, 远高于常规A l2O 3-T iO 2 涂层的显微硬度(约700 HV ) [ 25 ]; 采用冷喷涂技术制备的T iO 2 纳米涂层, 基本保持了喷涂前材料的特性[ 26 ]; 采用冷喷涂技术制备了纯钛纳米涂层, 加入羟基磷灰石(HA ) 制备了HA ?T i 复合涂层, 有望在生物医用材料中得到应用[ 27 ]。

随着纳米结构涂层研究的不断深入,对喷涂技术提出了越来越高的要求。由于超音速空气火焰喷涂和冷喷涂技术具有喷涂温度较低但粒子飞行速度极高的特点,从而可使喷涂粒子的氧化、烧结及长大等倾向降低至最低水平,因而特别适合对温度敏感的纳米涂层的研究,可望成为制备纳米结构涂层的理想方法。

参考文献:

[ 1 ]田欣利, 王志健. 超音速火焰喷枪设计理论与数值模拟的研究进展[J ]. 焊接学报, 2002, 23 (1) : 93297.

[ 2 ]李长久. 超音速火焰喷涂及涂层性能简介[J ]. 表面工程, 1996,(4) : 29223.

[ 3 ]王志健, 田欣利. 超音速火焰喷涂理论与技术的研究进展[J ]. 兵器材料科学与工程, 2002, 25 (3) : 62265.

[ 4 ]神和彦. 根据数据模拟探讨喷嘴形状对超音速火焰喷涂工艺的影响[J ]. 热喷涂技术, 1998, (3) : 55257.

[ 5 ]王汉功, 查柏林. KY2HVO?A F 多功能超音速火焰喷涂技术研究[J ]. 云南大学学报, 2002, 24 (1A ) : 1932196.

[ 6 ]张平, 王海军, 朱胜, 等. 高效能超音速等离子喷涂系统的研制[J ].中国表面工程, 2003, 61 (30) : 12216.

[7 ]杨晖, 王汉功. 超音速电弧喷涂粒子速度的测定[J ]. 中国表面工程, 1999, 43 (2) : 8211.

[ 8 ]梁秀兵, 徐滨士. 先进的冷喷涂技术[J ]. 修理与改造, 2001, (12) :19221.

[ 9 ]王晓放, 黄钟岳, 王德真, 等. 新型材料改性方法—常温超音速冷喷涂制备功能涂层[J ]. 机械功能材料, 2002, (5) : 30233.

[ 10 ]王志健, 田欣利, 胡仲翔. 空气超音速火焰喷枪设计理论与数学模型的建立[J ]. 材料科学与工程, 2002, (1) : 54257.

[ 11 ]杨辉. 超音速火焰喷涂的火焰速度特性[J ]. 中国表面工程, 1998,(2) : 37241.

[ 12 ]李春旭, 陈克选. 大功率超音速等离子弧喷枪的研制[J ]. 焊接,2001, (11) : 24227.

[ 13 ]王汉功. 超音速电弧喷涂技术[M ]. 北京: 国防工业出版社, 1999.

[ 14 ]FaliM , Pap Sp lat. Behavio r of p lasma sp rayed particles on flatsubstrate[A ]. P roceeding of ITSC, 1995. [ 15 ]赵文轸. 金属材料表面新技术[M ]. 西安: 西安交通大学出版社,1992.

[ 16 ]V erstak A ,Baranovsk iV. A ctivated Combustion HVA F Coatingsfo r P ro tection A gainst W ear and H igh Temperature Co rro sion[A ]. International Thermal Sp ray Conference 2003. A dvancingthe Science and App lying the Techno logy [ C ]. O rlando; , F l,

2003, (528) : 5352541.

[ 17 ]徐滨士, 王海军, 朱胜, 等. 高效能超音速等离子喷涂技术的研究与开发应用[J ]. 制造技术与机床, 2003, (2) : 30233.

[ 18 ]郭立峰, 黄立国. 超音速电弧喷涂在风机叶轮上的应用[J ]. 材料保护, 2002, (1) : 43245.

[ 19 ]DanielW Parker , Gerald L Kutner. HVOF Mobes into the IndustrialM ainstream [J ]. A dvancedM aterials & P rocesses, 1994,

(7) : 31235.

[ 20 ]Clake R, Barbezat G, Keller S, et al. 朱有利. 对用于涡轮机械上的优化涂层的HVOF 工艺条件的评论[J ]. 表面工程杂志, 1996,

(3) : 46249.

[ 21 ]张阁, 周香林. 水轮机过流部件用高耐磨耐蚀涂层制备技术[J ].表面技术, 2004, (2) : 428.

[ 22 ]J ianhong He. N ano structured Coatings[J ]. M aterials Science andEngineering, 2002,A 336: 2742319. [ 23 ]L au M aggy L , L avernia E J , Enrique J. M icro structural evo lu2tion and oxidation behavio r of nanocrystlline 3162stainless steel coatings [ J ]. M aterials Science and Engineering, 1999, A 272

(1) : 2222229.

[ 24 ] Tellkamp V L , L au M L , Fabel A. Thermal Sp raying ofN anocrystalline Inconel718 [ J ]. N ano structrued M aterials,

1997, 9 (128) : 4892492.

[ 25 ]李长青, 马世宁. 超音速等离子喷涂纳米结构A l2O 3-T iO 2 喂料涂层性能研究[J ]. 热加工工艺, 2003, (6) : 31232.

[ 26 ]侯根良, 王汉功. 冷喷涂技术制备纳米涂层[J ]. 兵器材料科学与工程, 2003, 26 (2) : 49251.

[ 27 ] Shuk la V , Ellio tt G S, Kear B H. Hyperk inetic depo sition of nanopowders by supersonic rectangular jet imp ingement [J ]. Sc2 rip ta mater, 2001, 44 (829) : 217922182

等离子喷涂参数的选择

等离子喷涂参数的选择 1. 气参数(流量) 主气的流量是重要的工艺参数之一,它直接影响到等离子焰流的热焓和速度,继而影响喷涂效率和涂层孔隙率等。当喷涂功率一定时,主气流量过大或过小均会导致喷涂效率的降低和涂层孔隙率的增加(热喷涂与再制造)。气流量过大,离子浓度减少,过量的气体会冷却等离子的焰流,不利于粉末的加热,粉末熔化不充分,使喷涂效率降低,涂层组织疏松,孔隙率增加;反之主气流量太小,会使焰流软弱无力,次级气在工作气体中的相对含量增加,造成射流热焓和温度的提高,使喷涂粉末过熔。 次级气的流量变化主要反映在喷涂电压的变化上。 送粉气的压力和流量对涂层质量的影响也很大。对外送粉喷枪而言,送粉气对涂层质量的影响尤其严重。如图所示,送粉气压力和流

量过小会使粉末难以到达焰流中心,过大则会使粉末穿过射流中心,产生严重的“边界效应”,致使涂层疏松,结合强度降低。对于内送粉喷枪而言,送粉气压力和流量过大同样不能把粉末送入焰心,若过小,则易造成堵塞喷嘴,严重时则会烧坏喷嘴(热喷涂与再制造)。若要很大送粉气压力和流量才能把粉末送入焰心,则须检查供粉系统的气密性,是否漏气。 所以送粉气的压力和流量应根据送粉量的大小、粉末的比重、粉末的流动性以及供粉系统的性能、射流的功率和刚性来选取。 2. 电参数 (1)功率 输入功率大小首先要满足能够将粉末熔化良好。形成涂层的粉末所需的热功率应为: 式中:Gf——单位时间的送粉量 T0,Tm,Tr——粉末原始温度、粉末熔点和粉末过热的温度;

Cs,Cm——粉末固态和熔态的比热; Hr——熔融粉末材料在Tr下的热焓增量。 根据等离子焰流能量利用系数ηf,可估算出喷嘴出口处等离子体的热功率qp: 最后按喷枪效率η,可估算出所需输入的功率P: 式中:0.24——电能转变为热能的系数 一般来说,采用较高的功率值比较好。一般等离子喷涂常用的功率为20~35 kW,而HEPJet高效能超音速等离子喷涂常用的功率为45~65 kW。 (2)电压和电流 等离子弧电压是由喷枪结构和工作气体决定的。可以通过调节阴极与喷嘴间的距离和变化工作气体的成分来调节弧电压(热喷涂与再制造)。在已选定喷枪结构和主气体流量为一定值的情况下,电压与电流的调节可以通过改变电源调节器和H2流量来进行调节。应当注意的是当改变电压或电流时,主气的流量也会相应的有些变化,因此为了保证稳定的喷涂参数,当调节电压和电流时要适时的调节并维持主气流量不变。 功率确定后,应尽可能选用较高电压和较低电流,这样有利于提

转子超音速喷涂工艺介绍

汽轮机低压转子末级叶片水蚀部位Jet-Kote?超音速喷涂保护项目介绍

第一章概述 第一节末级叶片水蚀部位JK超音速喷涂保护简介 现役机组中,低压转子末级叶片处于特殊湿蒸汽区,在小流量、低真空工况下,叶片水蚀损伤或多或少存在。叶片水蚀后,轻者增加叶片表面粗糙程度,蒸汽效能减弱;重者在叶片水蚀部位缺损处产生裂纹,经长期运行后会导致叶片断裂,引发事故。通过多家火力发电厂多台次、不同类型机组现场超音速喷涂保护应用效果来看,JK135超音速保护涂层,能够阻止叶片水蚀或减缓水蚀速度,有效延长叶片使用寿命,降低机组检修费用,并提高机组运行的安全性。 第二节 JK超音速喷涂发展史 现代工业的发展对各类机械零件的性能提出了更高的要求,与之对应,对材料的研制及其加工工艺提出了挑战。基于对工件综合性能及性能价格比的考虑,单一材料显然无法满足要求。在这种情况下,各类硬面技术(Hardfacing)、喷涂工艺应运而生,并获得长足发展。早在上世纪70年代,美国的Browning工程公司发明了JK超音速喷涂,1983年获得美国专利。1986年该专利转到了美国Deloro Stellite (集团)公司,由美国Deloro Stellite (集团)公司统一开发、销售,并提供技术服务。1987年上海司太立有限公司从美国Deloro Stellite (集团)公司引进了这种国际上最先进的设备及相关专利技术,使之服务于中国经济。经过十几年的不懈努力,上海司太立有限公司已熟练地使用

此工艺,并在航空航天、石油、电力、造纸、化工等行业广泛应用。 第二章末级叶片水蚀部位JK超音速喷涂 保护介绍 第一节 JK超音速喷涂保护工艺原理 JK超音速喷涂保护是美国DELORO STELLITE(集团)公司专利工艺。其原理是采用干净、蒸汽压高、热焓值大的丙烯气体和高压氧气,使两者通过特殊设计的喷枪,以4~5马赫的速度产生高速燃气流。在氮气引导保护下,涂层材料粒子被注入燃气流内加速,从而形成高动能粒子束。粒子与工件表面接触后实现机械嵌合,进而形成保护层。由于JK超音速喷涂系统产生的燃气流温度适中;粒子加速过程中吸收热量很少;粒子的飞行速度很高;尺寸微小,因此形成的保护层具有结合强度高、致密度高、均一性好等特点。 第二节 JK超音速喷涂保护设备构成 JK超音速喷涂保护使用美国DELORO STELLITE(集团)公司原装进口JET-KOTE?超音速喷涂系统及JK3000?型喷枪。美国DELORO STELLITE(集团)公司作为超音速喷涂的创始人,其工艺、设备、材料经过多年不断完善,制备的超音速保护涂层,性能达到国际领先水平。其JK135超音速保护涂层经美国最大的航空发

碳化钨喷涂设备jp5000

HV80型 JP-5000超音速火焰喷涂系统 上海楚越机械设备有限公司 上海市浦东新区栖山路465号鼎隆大厦804室电话:21- 6855 2091/2/3 传真:21- 6853 5408 邮编:200135 https://www.doczj.com/doc/d713458326.html, E-mail: info@https://www.doczj.com/doc/d713458326.html,

1. HV80型HVOF喷涂系统 AMT公司80系列喷涂系统操作灵活、性能可靠、性价比高,经市场的不断验证,该系统已被公认为应用成功、价位合理的喷涂系统。 HV80型HVOF喷涂系统操作界面友好、维护方便,并具有高度的灵活性和可重复性,故尤其适合生产车间及大批量生产时使用。 HV80型HVOF喷涂系统平台(例图) 1.1 HV80型HVOF控制模块 HV80控制模块适用于氧气-煤油燃烧系统的喷 涂过程控制。 HV80控制系统可应用于各种独立操作的 HVOF版本的送粉器,包括客户已有的任何 HVOF类型的送粉器。通过HV80控制模块可 直接控制送粉开/关。 经过严格的设计,HV80控制模块界面友好, 需要极少维护。其中,煤油和氧气的流量通过 浮子流量计来手动调节。 根据客户的需要,HV80控制模块可以集成控

制热交换器、喷涂工装设备、抽风除尘系统及送粉器等设备。 HV80控制模块配备有系统所必须的安全装置,如逆火防止阀等。控制模块还包含高压点火单元。喷枪直接与控制模块相连接。 其他特点 ?具有完备的可扩展的安全诊断系统,集成了外部安全特征。却水温度及流量的安全监控 ?流量预调节旋钮可设定点枪时所需的氧气和煤油的流量 ?系统对气体及燃料压力进行监控,一旦压力低于规定值,将显示报警 ?PLC控制(工业标准型)确保系统的稳定性和可靠性 ?全部喷涂参数集中显示于控制面板上,便于观察。其中包括系统状态及参数设定、冷却水温度、时间显示和点火计数器等 ?火焰熄灭状态下,使用氮气(N2)作为清吹气体。 所有HV80型HVOF喷涂系统均满足最新的CE认证要求。 HV80 HVOF控制模块 HV80控制模块适用于以下喷枪类型: ?JP5000标准喷枪或JP5000-ST喷枪 ?K2喷枪

超音速火焰喷涂工艺流程

永嘉县创优喷涂技术有限公司 超音速火焰喷涂 超音速火焰喷涂工艺流程:施工前的准备工作、表面预处理、喷涂、喷涂后处理四个主要步骤: 一)准备工作: 在编制工艺前首先应该了解被喷涂工件的实际状况和技术要求半进行分析 1、确定涂层的厚度。一般来讲,喷涂后必须进行机械加工,因此涂层厚度就要预留加工余量,同时还要考虑到喷涂时的热胀冷缩等。 2、涂层材料的确定。选择依据是涂层材料应该满足被喷涂工件的材料,配合要求,技术要求及工作条件等,分别选择结合层与工作层材料 3、确定参数:压力,粉末粒度,喷枪与工件的相对运动速度 二)工件表面的预处理 表面制备,是保证涂层与基体结合强度的重要工序 1、凹切处理,表面存在疲劳层和局部严重拉伤的沟痕时,在强度允许的前提下可以进行车削处理,为热喷涂提供容纳的空间。 2、表面清理,清除油污,铁锈,漆层等,使工件表面洁净,油污油漆可以用溶剂清洗剂除去。如果油渍已经渗入基体材料,可以用火焰加热除去,对锈层可以进行酸浸,机械打磨或喷砂除去。 3、表面粗化,目的是为了增强涂层与基体的结合力,消除应力效应,常用的有喷砂、开槽、车螺纹、拉毛。 A:喷砂是最常用的,砂料可以选择石英砂、氧化铝砂、冷硬铁砂等。砂料以锋利坚硬为好,必须清洁干燥,有尖锐棱角。其尺寸,空气压力的大小,喷砂

角度、距离和时间应该根据具体情况确定。 B:开槽、车螺纹、辊花。对轴、套类零件表面的粗化处理,可采用开槽、车螺蚊处理,槽与螺纹表面粗糙度以Ra6.3—12.5为宜,加工过程中不加冷却液与滋润剂,也可以在表面滚花纹,但避免出现尖角。 C:硬度较高的工件可以进行电火花拉毛进行粗化处理,但薄涂层工件应慎用。电火花拉毛法是将细的镍丝或铝丝作为电极,在电弧的作用下,电极材料与基体表面局部熔合,产生粗糙的表面。 表面粗化后呈现的新鲜表面,应该防止污染,严禁用手触摸,保存在清洁,干燥的环境中,粗化后尽快喷涂,一般喷涂时间不超过二个小时。 4、非喷涂部位的保护 喷涂表面附近的非喷涂需要加以保护,可以用耐热的玻璃布或石棉而屏蔽起来。必要时按零件开关制作相应的夹具保护,但是要注意夹具材料要有一定的强度,且不能使用低熔点的合金,以免污染涂层。对于基体表面上的键槽、油孔等不允许喷涂的部位,可以用石墨块或粉笔堵平或略高于表面。 喷后清除时,注意要要碰伤涂层,棱角要倒钝。 三)喷涂工艺及参数 (1)粉末特性: 目前粉末供应商提供了品种繁多的碳化物粉末,而粉末特性往往因其制粉工艺方法的不同而表现出较大的差异。粉末特性包括:粉末粒度分布、颗粒形状、表面粗糙度等。 对JP8000设备来说,适宜的粉末粒度为:15μm-45μm。 (2)喷涂距离: JP8000型超音速火焰喷涂系统,当粉末粒子在距喷枪出口350-380mm以内即已达到了其最高温度,随着喷距的增加粒子温度逐渐降低,在350-380mm

高效能超音速等离子喷涂系统

咼效能超音速等离子喷涂系统及其应用 作者:王海军朱胜郭永明 摘要:超音速等离子喷涂技术是当今热固更更圍 喷涂技术领域的重点发展方向之一。由 于具有焰流温度高、射流速度快等特点,超音速等离子喷涂技术几乎可以喷涂任何粉末材料,且能够制备出高质量的涂层,特别是高质量的陶瓷涂层。装甲兵工程学院自行研制的具有自主知识产权的高效能超音速等离子喷涂系统成功实现了低功率(v 80KW)、小气体流量(v5m3/h)下的超音速等离子喷涂,其各项性能指标明显优于国外同类产品。高效能超音 速等离子喷涂技术在国防、工业及航空航天等重要领域有着广泛的应用前景,已成为高科技维修、制造与再制造的关键技术。 热喷涂技术是将喷涂材料(粉末或丝材)送人某种热源(电弧?燃烧火焰、等离子体等)中加热至比较好的熔融状态,并利用高速射流或气流将其喷射到基体表面形成涂层的一种工艺。 热喷涂技术最早出现于20世纪初期的瑞士。近百年来,随着各种热喷涂设备的研制、新的热喷涂材料的开发及新技术的应用,热喷涂涂层的质量不断得到提高。特别是20世纪40 年代等离子喷涂技术产生后,热喷涂技术已广泛应用于军事、航空航天、纺织、机械、电力及生物工程等各个领域。 随着高科技的发展,现代工业要求涂层更为致密、强度更高、可靠性更好。而涂层的致密性、结合强度和可靠性在很大程度上依赖于喷射熔滴的熔化程度和速度,于是高能、高速和高效喷涂成为了当今国内外热喷涂技术的主要发展方向。 所谓超音速等离子喷涂是利用非转移型等离子弧与高速气流混合时出现的扩展弧”得到 稳定聚集的超音速等离子焰流进行喷涂的方法。与普通等离子喷涂、爆炸喷涂、高速火焰喷涂等其他喷涂技术相比,超音速等离子喷涂兼有焰流温度高和粒子飞行速度快的优点,等离子弧中心温度可达32000K,粒子速度能达到400?800m/s。超音速等离子喷涂特别 适合喷涂各种高熔点陶瓷、难熔金属和金属陶瓷等喷涂材料,获得的涂层致密性、强韧性和结合强度都有显著的提高。 国内外现状 美国从20世纪80年代中期率先投入研究,到80年代后期,国际上对超音速等离子喷涂技术的研究

M152钢基体超音速火焰喷涂WC_17Co涂层性能研究

M 152钢基体超音速火焰喷涂WC -17C o 涂层性能研究 崔永静,陆 峰,汤智慧,王长亮,郭孟秋 (北京航空材料研究院,北京100095) 摘 要:采用超音速火焰喷涂技术在M 152钢上制备了WC -17C o 涂层。对WC -17C o 涂层的耐磨性能和耐蚀性能进 行了研究。结果表明超音速火焰喷涂WC -17C o 涂层显著提高了M 152钢基体的抗盐雾腐蚀性能,同时WC -17C o 涂层具有优异的抗氧化性能和耐磨性能,可用于M 152钢零件中温区域的耐磨、耐蚀防护。 关键词:超音速火焰喷涂;WC -C o 涂层;磨损;腐蚀 中图分类号:TG 174.4文献标识码:A 文章编号:1674-7127(2012)03-0023-05D OI 10.3969/j .issn .1674-7127.2012.03.005 Performance of WC-17Co Coatings Fabricated by High Velocity Oxy-Fuel Thermal Spray on M152Steel CUI Yong-jing ,LU Feng ,TANG Zhi-hui ,WANG Chang-liang ,GUO Meng-qiu (Beijing Institute of Aeronautical Material,Beijing 100095,China) Abstract:WC-17Co coating was fabricated by high velocity oxy-fuel (HVOF)spraying on M152steel.The wear and corrosion properties of the coating were investigated.The results indicated that WC-17Co coating substantially improved the salt spray corrosion performance of M152,and WC-17Co coating showed excellent resistance of wear and oxidation.Obviously,the WC-17Co coating has great potential in protecting M152steel in media temperature. Keywords:HVOF ;WC-Co coating ;Wear ;Corrosion 作者简介:崔永静(1984-),男,河北唐县人,工程师,硕士.E-mai l :c u i y o n g jin g @126.c o m M 152 (1Cr 12N i 3M o2VN )合金钢是一种马氏体耐热钢,主要应用于超超临界机组汽轮机末级叶片及紧固件,燃气轮机及航空发动机机匣部件[1]。它的使用温度达到400℃以上,M 152钢中温区的耐磨损、耐腐蚀防护问题成为限制M 152钢应用的关键。WC 系列涂层是应用最为广泛的耐磨耐蚀防护涂层之一,它具有较高的硬度,优异的耐磨、耐蚀性能,使用温度高达540℃,另外还可以替代耗能高、污染严重的电镀硬铬,成为耐磨、耐蚀涂层防护领域研究的热点。 超音速火焰喷涂(H V O F )工艺是20世纪八十年代初期,由美国B r o wnin g E n g in ee rin g 公司推出的一种新型热喷涂技术。H V O F 的焰流温度可达 2700℃,焰流速度可达2000m/s 。相对于等离子喷 涂工艺来说,H V O F 较低的焰流温度和较高的焰流速度可以减少在喷涂过程中WC 粉末颗粒的脱碳、氧化等反应。因而,H V O F 工艺制备的WC -C o 涂层具有高硬度,低孔隙率,与基体结合强度高(>70 M P a )等优点;与电镀硬铬涂层相比,耐磨性更好, 对环境更加友好,对基体疲劳性能影响低。因此,在 第4卷第3期 2012年9月 热喷涂技术Thermal Spray Technology Vol.4,No.3Sep.,2012

超音速火焰喷涂工艺流程

超音速火焰喷涂工艺流程: 施工前的准备工作、表面预处理、喷涂、喷涂后处理四个主要步骤: 一)准备工作: 在编制工艺前首先应该了解被喷涂工件的实际状况和技术要求并进行分析 1、确定涂层的厚度。一般来讲,喷涂后必须进行机械加工,因此涂层厚度就要预留加工余量,同时还要考虑到喷涂时的热胀冷缩等。 2、涂层材料的确定。选择依据是涂层材料应该满足被喷涂工件的材料,配合要求,技术要求及工作条件等,分别选择结合层与工作层材料。 3、确定参数:压力,粉末粒度,喷枪与工件的相对运动速度。 二)工件表面的预处理 表面制备,是保证涂层与基体结合强度的重要工序 1、凹切处理,表面存在疲劳层和局部严重拉伤的沟痕时,在强度允许的前提下可以进行车削处理,为热喷涂提供容纳的空间。 2、表面清理,清除油污,铁锈,漆层等,使工件表面洁净,油污油漆可以用溶剂清洗剂除去。如果油渍已经渗入基体材料,可以用火焰加热除去,对锈层可以进行酸浸,机械打磨或喷砂除去。 3、表面粗化,目的是为了增强涂层与基体的结合力,消除应力效应,常用的有喷砂、开槽、车螺纹、拉毛等。 A:喷砂是最常用的,砂料可以选择石英砂、氧化铝砂、冷硬铁砂等。砂料以锋利坚硬为好,必须清洁干燥,有尖锐棱角。其尺寸,空气压力的大小,喷砂角度、距离和时间应该根据具体情况确定。 B:开槽、车螺纹、辊花。对轴、套类零件表面的粗化处理,可采用开槽、车螺蚊处理,槽与螺纹表面粗糙度以RA6.3—12.5为宜,加工过程中不加冷却液与滋润剂,也可以在表面滚花纹,但避免出现尖角。 C:硬度较高的工件可以进行电火花拉毛进行粗化处理,但薄涂层工件应慎用。电火花拉毛法是将细的镍丝或铝丝作为电极,在电弧的作用下,电极材料与基体表面局部熔合,产生粗糙的表面。

超音速电弧喷涂技术

防磨防腐新材料超音速电弧喷涂技术 一、超音速电弧喷涂的原理 电弧喷涂原理是利用两根连续送进的金属丝作为自耗电极,在其端部产生电弧作为热源,用压缩空气将熔化了的丝材雾化,并以超音速喷向工作件形成一种结合强度高、孔隙率低、表面粗糙度低的涂层的热喷涂方法。其工作原理与普通电弧喷涂(亚音速雾化)一样,超音速电弧喷涂是一个不断连续进行的熔化-雾化-沉积的过程。但在雾化方式上,超音速电弧喷涂与普通电弧喷涂有根本的区别,即超音速电弧喷涂是采用超音速雾化。其优点是:雾化效果好,雾化后的粒子细小均匀,速度高,有利于获得高质量的涂层。超音速电弧喷涂采用拉伐尔喷嘴,将气流的速度从亚音速提高到超音速,加强了气流对粒子的加速效果,从而提高了粒子速度。粒子速度对涂层的性能有很大的影响。粒子速度高,粒子沉积时对基体的撞击作用就强,粒子变形就充分。有利于粒子与基体、粒子与粒子之间的结合,从而提高涂层的结合强度和内聚强度;粒子速度高,粒子沉积前在空气中的飞行时间短,飞行中产生的氧化物就少,有利于粒子的结合,从而提高涂层的内聚强度,降低涂层的孔隙率。粒子速度越高,越有利于获得高质量的涂层。随着热喷涂设备的更新换代,粒子速度在不断提高,涂层的质量也不断得到改善。 超音速雾化减小了粒子的粒度,降低了涂层的粗糙度。粗糙度是涂层的一项重要性能指标,它取决于雾化后粒子的粒度。超音速雾化加强了气流对丝材端部熔化金属间的作用,雾化的粒子细小均匀,大大降低了涂层的粗糙度。同时,粒子粒度的减小,也降低了粒子扁平化过程中的飞溅,有利于降低涂层的孔隙率。 超音速雾化是超音速电弧喷涂的出发点,是其与普通电弧喷涂的根本区别。 超音速电弧喷涂设备包括电源、喷枪、送丝机构及其附件,关键设备是超音速电弧喷枪。我公司采用进口喷嘴,并且喷涂电流稳定,能在保证丝材雾化效果、涂层质量的前提下,一天的喷涂面积达到20m2。 电弧喷涂时,弧区的温度高达5000-6000℃,用气冷的方式对喷嘴进行冷却。 二、超音速电弧喷涂的技术优点 超音速电弧喷涂与普通火焰喷涂相比,有以下技术优点: 1、热效率高。火焰喷涂产生的大部分热量散失到大气和冷却系统中了,热能的利用率仅为8-15%。而电弧喷涂是直接用电能转化为热能来熔化丝材,热能利用率高达70-80%。

超音速喷涂

高速火焰喷涂 高速火焰喷涂国内习惯上称为超音速火焰喷涂,它的英文缩写为HVOF(High Velocity Oxygen Fuel的首写字母)。高速火焰喷涂是在爆炸喷涂的基础上发展起来的一项新的热喷涂技术,是在上世纪八十年代初期,由美国Browning公司最先研制成功,并推出名为JET-KOTE的商用喷涂设备。高速火焰喷涂技术一经问世,就以其超高的焰流速度和相对较低的温度,在喷涂金属碳化物和金属合金等材料方面显现出了明显优势。在世界各大热喷涂公司的积极推动下,该技术发展很快,目前高速火焰喷涂技术在喷涂金属碳化物、金属合金等方面,已逐步取代了等离子喷涂和其它喷涂工艺,成为热喷涂的一项重要工艺方法。 1.高速火焰喷涂原理 高速火焰喷涂是将助燃气体与燃烧气体在燃烧室中连续燃烧,燃烧的火焰在燃烧室内产生高压并通过与燃烧室出口联接的膨胀喷嘴产生高速焰流,喷涂材料送入高速射流中被加热、加速喷射到经预处理的基体表面上形成涂层的方法。可使用乙炔、丙烷、丙烯、氢气等作为燃气,也可使用柴油或煤油等液体燃料。 煤油、氧气通过小孔进入燃烧室后混合,在燃烧室内稳定、均一地燃烧。有监测器用来监控燃烧室内压力,以确保稳定燃烧,喷涂粉末的速度与燃烧室内压力成正比。燃烧室的出口设计使高速气流急剧扩展加速,形成超音速区和低压区。粉末在低压区域沿径向多点注入,粉末均一混合,在气流中加速喷出。高速火焰喷涂焰流速度高达1500m/s-2000m/s,一般可观察到5-8个明显的马赫锥,粒子流速度高达300-650m/s。2.设备构成 高速火焰喷涂设备一般由喷枪、送粉器、控制系统、喷枪冷却系统、气体供应系统五部分构成。目前我国在用的高速火焰喷涂设备绝大部分是进口的,使用最多的型号为:Sulzer Metco公司的DJ-2700和Praxair 公司的JP-5000,JP-5000 是原Hobart Tafa公司研制成功的,后该公司并入了Praxair公司。这两种设备在国外应用也最为广泛,代表了当今世界高速火焰喷涂技术的发展水平。 (1)Praxair JP-5000型。该设备以煤油作为燃料,其特点是燃烧室压力高(>10bar),功率大、焰流出口速度高(2100m/s);粉末由燃烧嘴低压区沿径向注入,使得粉末受热均匀、充分。相比其它工艺,其适宜喷涂的粉末粒度较粗,这有利于降低成本。目前为止,JP-5000喷制的WC-Co涂层性能略优于其它HVOF 方法,但其氧气和煤油的消耗量十分惊人。 (2)Sulzer Metco DJ-2700 。该设备由Sulzer Metco公司生产,以丙烷或丙烯作为燃气,国内大多用丙烷作燃气。该设备分手动控制型和自动控制型两种,手动型设备仅由喷枪、送粉器、流量控制器三部分构成,具有很好的机动性,可用于现场喷涂生产。同JP-5000相比,DJ-2700具有配置简单实用,操作方便、氧-燃气耗量低的特点。 3.涂层和工艺特点 高速火焰喷涂工艺因其鲜明的特点:超高的焰流速度和相对较低的温度,使其涂层性能和喷涂工艺具有许多特点: (1)火焰及喷涂粒子速度高。火焰速度达到1800m/s以上,粒子速度:300-650m/s。 (2)粉粒受热均匀。喷涂粉粒沿轴向或径向注入燃烧室,使粉末在火焰中停留时间相对较长,熔融充分,产生集中的喷射束流。 (3)粉粒与周围大气接触时间短,粉末粒子飞行速度高,和周围大气接触时间短,很少与大气发生反应,喷涂材料中活泼元素烧损少。这对碳化物材料尤为有利,可避免分解和脱碳。 (4)喷涂粉末细微,涂层光滑用于高速火焰喷涂的粉末粒度一般为:10-45μm,属于细粒度粉末,同时喷涂粒子速度高,熔融充分,形成涂层时变形充分,使得涂层表面粗糙度小。 (5)涂层致密,结合强度高一般高速火焰喷涂涂层的孔隙率<2%,结合强度>70MPa。 4.主要工艺参数 以DJ型高速火焰喷涂系统为例,介绍工艺参数对涂层性能的影响。 (1)粉末特性。目前粉末供应商提供了品种繁多的碳化物粉末,而粉末特性往往因其制粉工艺方法的不同

超音速火焰喷涂

超音速火焰喷涂 超音速火焰喷涂系统,工作原理: 超音速火焰喷涂又称作高速氧燃料喷涂(High Velocity Oxygen Fuel-HVOF)。超音速火焰喷涂是将气态或液态燃料与高压氧气混合后在特定的燃烧室或喷嘴中燃烧,产生的高温、高速的燃烧焰流被用来喷涂。由于燃烧火焰的速度是音速的数倍,目视可见焰流中明亮的“马赫节”,因而一般都称HVOF为超音速火焰喷涂。超音速火焰喷涂是在20世纪80年代研发成功的,与常规火焰喷涂不同的是超音速火焰喷涂采用特殊设计的燃烧室和喷嘴,驱动大流量的燃料并用高压氧气助燃,从而获得了极高速度的燃烧焰流。采用液态燃料的喷枪,又称作高压超音速火焰喷涂(HP-HVOF),其燃烧压力可达8.2巴,火焰速度7倍音速以上。这类产品的代表是以航空煤油为燃料的JP5000型超音速火焰喷涂系统。 该设备由美国TAFA公司出品,性能特点如下: 1、能量输入巨大,热焓输出相当于普通氧乙炔火焰的20余倍,火焰速度>7玛赫,温度约2600~3200℃,熔融粉末飞行速度>720米/秒,涂层性能卓越,适合喷涂碳化钨及部分合金。 2、涂层结合强度高,理论研究认为,涂层结合强度与喷涂速度成正比,JP-5000实现了这个热喷涂界多年的追求,且能与基体产生部分微区冶金结合相,克服了碳化钨涂层易脱落的固疾。 3、涂层呈压应力状态,熔融粉末高速撞击机件后,粉末颗粒形状改变,在JP-5000条件下近球形颗粒改变后,其长短轴比例可达>1/20,

远大于普通火焰喷涂,这些形状改变后的颗粒的叠加所形成的涂层,具备了涂层应力状态由张应力向压应力转化的先决条件—理论研究认为—颗粒长短轴之比大于1/20时将出现压应力效果。 4、综合性能优异,涂层孔隙率更低,硬度更高,耐磨性能更强,使用寿命显著提高。 喷涂材料:为了克服WC高温性能欠佳缺点,美国研制了一种改良型WC,即在WC中加入一定量的CrC+Ni熔炼再结晶改性,使之在保持WC典型的耐磨粒磨损和硬面磨损性能的基础上,同时具备CrC高温性能优异和耐蚀性强的特点,所以,它比其它碳化钨基材料抗氧化和腐蚀性能优越,耐化学腐蚀性能好,耐磨性能优良,涂层更致密光滑,使用温度高达1400oF(760oC)。尤其是这种粉末材料制造工艺十分讲究,近球形的颗粒和粒度分布特别针对JP5000。我公司依此所喷涂球阀类产品最多开合次数超过5000次。 Plazjet高能等离子喷涂系统(目前在烟台) 该设备由美国TAFA公司出品,性能特点如下: 1、能量巨大,最大输入功率320KW,最大输出功率270KW,相当于7把普通等离子枪的能量总和,火焰速度>2900米/秒,温度约13000~15000℃,熔融粉末飞行速度>700米/秒,涂层性能卓越,适合喷涂氧化物陶瓷和部分合金。 2、涂层结合强度高,原理与JP-5000近似,所获得的陶瓷涂层非常值得信赖。 3、涂层呈压应力状态,原理与JP-5000近似。

超音速火焰喷涂

超音速火焰喷涂 超音速火焰喷涂工艺流程:施工前的准备工作、表面预处理、喷涂、喷涂后处理四个主要步骤: 一)准备工作: 在编制工艺前首先应该了解被喷涂工件的实际状况和技术要求半进行分析 1、确定涂层的厚度。一般来讲,喷涂后必须进行机械加工,因此涂层厚度就要预留加工余量,同时还要考虑到喷涂时的热胀冷缩等。 2、涂层材料的确定。选择依据是涂层材料应该满足被喷涂工件的材料,配合要求,技术要求及工作条件等,分别选择结合层与工作层材料 3、确定参数:压力,粉末粒度,喷枪与工件的相对运动速度 二)工件表面的预处理 表面制备,是保证涂层与基体结合强度的重要工序 1、凹切处理,表面存在疲劳层和局部严重拉伤的沟痕时,在强度允许的前提下可以进行车削处理,为热喷涂提供容纳的空间。 2、表面清理,清除油污,铁锈,漆层等,使工件表面洁净,油污油漆可以用溶剂清洗剂除去。如果油渍已经渗入基体材料,可以用火焰加热除去,对锈层可以进行酸浸,机械打磨或喷砂除去。 3、表面粗化,目的是为了增强涂层与基体的结合力,消除应力效应,常用的有喷砂、开槽、车螺纹、拉毛。 A:喷砂是最常用的,砂料可以选择石英砂、氧化铝砂、冷硬铁砂等。砂料以锋利坚硬为好,必须清洁干燥,有尖锐棱角。其尺寸,空气压力的大小,喷砂角度、距离和时间应该根据具体情况确定。

B:开槽、车螺纹、辊花。对轴、套类零件表面的粗化处理,可采用开槽、车螺蚊处理,槽与螺纹表面粗糙度以Ra6.3—12.5为宜,加工过程中不加冷却液与滋润剂,也可以在表面滚花纹,但避免出现尖角。 C:硬度较高的工件可以进行电火花拉毛进行粗化处理,但薄涂层工件应慎用。电火花拉毛法是将细的镍丝或铝丝作为电极,在电弧的作用下,电极材料与基体表面局部熔合,产生粗糙的表面。 表面粗化后呈现的新鲜表面,应该防止污染,严禁用手触摸,保存在清洁,干燥的环境中,粗化后尽快喷涂,一般喷涂时间不超过二个小时。 4、非喷涂部位的保护 喷涂表面附近的非喷涂需要加以保护,可以用耐热的玻璃布或石棉而屏蔽起来。必要时按零件开关制作相应的夹具保护,但是要注意夹具材料要有一定的强度,且不能使用低熔点的合金,以免污染涂层。对于基体表面上的键槽、油孔等不允许喷涂的部位,可以用石墨块或粉笔堵平或略高于表面。 喷后清除时,注意要要碰伤涂层,棱角要倒钝。 三)喷涂工艺及参数 (1)粉末特性: 目前粉末供应商提供了品种繁多的碳化物粉末,而粉末特性往往因其制粉工艺方法的不同而表现出较大的差异。粉末特性包括:粉末粒度分布、颗粒形状、表面粗糙度等。 对ZB-2700设备来说,适宜的粉末粒度为:15μm-40μm。 (2)氧-燃气流量和比例 喷涂的焰流温度及特性取决于氧-燃气流量和混合比例。喷涂时,首先应按照设备的规定要求确定氧气和燃气的流量,以保证喷枪焰流达到设计的功率水平。实际生产过程中有多种因素可导致氧-燃气比例的波动,而氧-燃气比例对确定最终

等离子和超音速火焰喷涂涂层的制备与观测_20

实验29 等离子和超音速火焰喷涂涂层的制备与观测 一、实验目的 1.了解等离子和超音速火焰喷涂的基本原理; 2.初步掌握等离子和超音速火焰喷涂设备的操作方法; 3.对等离子氧化铝涂层和超音速火焰硬质合金涂层进行显微观测; 4.对等离子氧化铝涂层和超音速火焰硬质合金涂层进行显微硬度测试; 5.了解等离子和超音速火焰喷涂各项工艺参数对喷涂涂层性能的影响; 二、实验内容 采用WC/Co 88/12粉末进行超音速火焰喷涂,Al2O3/TiO2 97/3粉末进行等离子喷涂,软钢为基本材料,喷砂工艺进行实验前的准备工作,选择合适的等离子喷涂成行工艺参数,进行喷涂实验,然后将喷涂试样分割成小块金相试样。针对WC/Co 88/12粉末,采用不同的喷嘴,了解喷嘴对喷涂质量的影响;针对等离子喷涂Al2O3/TiO2 97/3粉末,改变氢气的流速,了解氢气含量对喷涂质量的影响。 三、实验原理 超音速火焰喷涂是将大量燃料和氧气在高压下供给喷枪,使燃烧的火焰经拉瓦尔喷嘴,成超音速射流喷出,粉末被送入流动的火焰中,在运动中被加热、加速,高速喷射到金属基体上,形成涂层。等离子喷涂是利用等离子射流将喷镀材料加热到熔化或接近熔化状态,喷附在制品表面上形成保护层的方法。 热喷涂设备包括电气控制柜、气体控制柜、操作台、热交换器、送粉器、逆变电流、水电过渡箱、煤油泵、燃烧室压力感应装置、点火器和空气压缩机。 四、实验数据

试样形貌 样品一 100×200× 500×

样品二 100×200× 500× 样品三 100×200× 500× 工艺四:

100×200× 500× 五、实验分析 显微硬度与宏观硬度的区别在于试验时负荷大小不同。显微硬度试验可以测定宏观硬度试验无法测定的表面层硬度,比如喷涂层。通过实验数据可以看出不同的喷涂参数导致显微硬度有所变化,但宏观硬度基本无变化,说明用显微硬度测试涂层质量较好。在超音速火焰喷涂组中,不同的喷嘴导致显微硬度基本无变化;在等离子喷涂组中,氢气的流速对显微硬度造成影响,说明氢气的含量会影响涂层的质量,需要确定最优的工艺参数。 通过观察试样的显微形貌,可以看出超音速火焰喷涂的涂层与等离子喷涂的涂层有一定的区别,即超音速喷涂的涂层分为两层,而等离子喷涂的涂层分为三层,比超音速喷涂多一层熔化层,原因是超音速喷涂喷出的粉末是粒状的,而等离子喷涂喷出的粉末是熔化状态的,因此在涂层和基体之间就多了一层熔化层。在超音速火焰喷涂组中,可以看出采用不同的喷嘴,涂层的均匀性不同,在一定程度上解释了在显微硬度测试中第二组的数据变化幅度要大,说明涂层的均匀性不太好,说明采用新式的喷涂提高了涂层质量,尤其在提高均匀性方面。新式喷嘴主要采用了模拟仿真的结果,改变了喷嘴的结构,提高了气流的稳定性,故提高了涂层的均匀性。在等离子喷涂中,可以看出氢气流速的不同,导致涂层缺陷的不同,第四组的缺陷明显多于第三组,验证了显微硬度测试的结果,即第三组的显微硬度要高于第四组。氢气在等离子喷涂中提供离子,氢气流量的减少会减

超音速火焰喷涂工艺流程

工艺流程 超音速火焰喷涂工艺流程: 施工前的准备工作、表面预处理、喷涂、喷涂后处理四个主要步骤: 一)准备工作: 在编制工艺前首先应该了解被喷涂工件的实际状况和技术要求半进行分析 1、确定涂层的厚度。一般来讲,喷涂后必须进行机械加工,因此涂层厚度就要预留加工余量,同时还要考虑到喷涂时的热胀冷缩等。 2、涂层材料的确定。选择依据是涂层材料应该满足被喷涂工件的材料,配合要求,技术要求及工作条件等,分别选择结合层与工作层材料 3、确定参数:压力,粉末粒度,喷枪与工件的相对运动速度 二)工件表面的预处理 表面制备,是保证涂层与基体结合强度的重要工序 1、凹切处理,表面存在疲劳层和局部严重拉伤的沟痕时,在强度允许的前提下可以进行车削处理,为热喷涂提供容纳的空间。 2、表面清理,清除油污,铁锈,漆层等,使工件表面洁净,油污油漆可以用溶剂清洗剂除去。如果油渍已经渗入基体材料,可以用火焰加热除去,对锈层可以进行酸浸,机械打磨或喷砂除去。 3、表面粗化,目的是为了增强涂层与基体的结合力,消除应力效应,常用的有喷砂、开槽、车螺纹、拉毛。 A:喷砂是最常用的,砂料可以选择石英砂、氧化铝砂、冷硬铁砂等。砂料以锋利坚硬为好,必须清洁干燥,有尖锐棱角。其尺寸,空气压力的大小,喷砂角度、距离和时间应该根据具体情况确定。 B:开槽、车螺纹、辊花。对轴、套类零件表面的粗化处理,可采用开槽、车螺蚊处理,槽与螺纹表面粗糙度以RA6.3—12.5为宜,加工过程中不加冷却液与滋润剂,也可以在表面滚花纹,但避免出现尖角。 C:硬度较高的工件可以进行电火花拉毛进行粗化处理,但薄涂层工件应慎用。电火花拉毛法是将细的镍丝或铝丝作为电极,在电弧的作用下,电极材料与基体表面局部熔合,产生粗糙的表面。 表面粗化后呈现的新鲜表面,应该防止污染,严禁用手触摸,保存在清洁,干燥的环境中,粗化后尽快喷

等离子喷涂

论文题目:等离子喷涂氧化钇部分稳定氧化锆-漂珠复合涂层的组织与性能研究 研究方向:表面工程材料 题目来源:国家部委省市厂、矿自 选有无 合同 经费 数 备注 √ 题目类型:理论 研究应用 研究 工程 技术 跨学科 研究 其他应用研究 A:研究生论文选题的来源及意义 工程应用背景 热障涂层系统(TBCs,Thermal Barrier Coating Systems)通常是指沉积在金属或其他物质表面、具有良好隔热效果的陶瓷涂层。其主要功能是降低高温环境下零部件的基体温度,以避免其被高温氧化、腐蚀或磨损。金属氧化物及其复合材料相比其他材料而言具有更低的热导率,而且其在富氧的高温环境中具有更好的稳定性,因此成为理想的热障涂层材料。目前,使用等离子喷涂制备的热障涂层已被广泛地应用于航空发动机热端部件、燃烧室器壁、大型钢铁厂轧辊、核反应容器等,用来降低基体的工作温度。采用大气等离子喷涂(APS)方法在MCrAlY (M: Ni,Co或NiCo)粘结低层上喷涂ZrO2-(6~8 wt.%)Y2O3(YSZ)是最常用的TBCs体系。 伴随现代航空工业的快速发展,热端部件的工作条件越来越苛刻,进而对零部件的性能提出更高的要求。例如,直升机高新工程发动机排气系统排气管工作时表面温度高达600℃。排气管隔热材料要求具有防火性能,而且密度低,不影响飞机整体结构设计,隔热效率要高,且能在较小的厚度下将排气管的温度阻隔到其要求的温度以下。 当前工程主要采取在尾喷管外表面捆绑陶瓷隔热材料的方式进行隔热,隔热效果基本能够满足要求,但是其结果却是重量超出了一倍左右,从而带

来了较大的重量代价,不能完全满足工程上所要求的技术性能指标,因此必须研制一种轻质防火隔热材料,以满足新一代热端部件的热防护要求。 选题的意义 我们通过对漂珠的简单分析研究发现其可能是一种能满足上述工程需求的较为理想的材料。漂珠的主要化学成分为硅、铝的氧化物,其中二氧化硅约为50-65%,三氧化二铝约为25-35%。因为二氧化硅的溶点高达摄氏1725度,三氧化二铝的溶点为摄氏2050度,均为高耐火物质。因此,漂珠具有极高的耐火度,一般达摄氏1600-1700度,使其成为优异的高性能耐火材料。质轻、保温隔热。漂珠壁薄中空,空腔内为半真空,只有极微量的气体(N2、H2及CO2等),热传导极慢极微。所以漂珠不但质轻(容重250-450公斤/m3),而且保温隔热优异(导热系数常温0.08-0.1),这为其在轻质保温隔热材料领域大显身手奠定了基础。硬度大、强度高。由于漂珠是以硅铝氧化物矿物相(石英和莫来石)形成的坚硬玻璃体,硬度可达莫氏6-7级,静压强度高达70-140MPa,真密度2.10-2.20克/cm3,和岩石相当。因此,漂珠具有很高的强度。一般轻质多孔或中空材料如珍珠岩、沸岩、硅藻土、海浮石、膨胀蛭石等均是硬度差、强度差,用其制的保温隔热制品或轻质耐火制品,都有强度差的缺点。他们的短处恰恰是漂珠的长处,所以漂珠就更有竞争优势,用途更广。粒度细,比表面积大。漂珠自然形成的粒度为1-250微米。比表面积300-360cm2/g,和水泥差不多。因此,漂珠不需粉磨,可直接使用。细度可满足各种制品的需要,其他轻质保温材料一般粒度都很大(如珍珠岩等),如果粉磨就会大幅度增加容量,使隔热性大大降低。在这方面,漂珠有优势。 综上所述,基于氧化锆导热率低和漂珠材料密度小、中空、隔音、耐火、耐磨的特点,我们提出采用等离子喷涂经过团聚处理的纳米氧化锆/氧化钇/漂珠三元陶瓷热障涂层体系,为研究开发适用工程要求的热障涂层材料开辟了一条新途径,具有重要的科学技术意义和工程应用价值。

超音速火焰喷涂制备WC-12Co涂层实验

HV-80超音速火焰喷涂制备WC-12Co涂层实验 1.实验材料及方法  1.1实验材料  喷涂材料我们选择章源钨业生产的WC-12Co粉末,其中WC颗粒分布呈多峰分布(颗粒平均尺寸为0.2μm占30wt.%,颗粒平均尺寸为2.4μm占70wt.%),粉末的颗粒尺寸为15~45μm。粉末的表面和截面形貌如图1所示,可以看出,粉末的球形度较好,单个喷涂粉粒子内的孔隙较均匀。喷涂试样的基体材料为16Mn钢,磨粒磨损对比试样的材料也是16Mn钢。                      图1 多峰WC-12Co粉末的形貌  1.2涂层制备  采用郑州立佳的HV-80型HVOF设备进行喷涂,使用航空煤油作为燃料,氧气作为助燃气,送粉载气采用氮气。结合以往喷涂经验,选择四因素三水平L9(34)喷涂工艺参数如表1所示。  表1 HVOF制备WC-12co涂层的工艺参数  Level 2 24.6 55.22 75 353  Level 3 26.5 59.47 90 380    喷涂前,对试样进行除锈、除油、然后采用240μm(60目)白刚玉砂进行粗化处理,将待喷涂的试样在特制的风冷夹具上装夹、喷涂,为了使基体温度低于200°C,没喷涂8道次停枪一次,直至涂层厚度达到300~350μm。  1.3相结构测试   用线切割加工出尺寸为10mm×10mm×5mm的带有涂层的试样,在SIEMENSD 5000型X射线衍射仪上对涂层进行相结构测试,阳极靶为Cu 靶,扫描角度从10~90°(本文中取30~85°,),管压35KV,管流30mA,积分时间0.2秒,采样间隔0.02秒。

等离子喷涂技术现状及发展

2007年第7 期 总第1028 期2007年10月 等离子喷涂技术现状及发展 陈丽梅,李强 (福州大学材料科学与工程学院,福州350002) 摘要:从等离子喷涂设备、等离子喷涂过程中的测量技术及等离子喷涂技术的应用等几个方面综合分析了近年来等离子喷涂技术的研究现状和发展概况,指出了等离子喷涂技术的发展方向。 关键词:等离子喷涂设备;测量技术;应用;发展 等离子喷涂属于热喷涂技术,它是将粉末材料送入等离子体(射频放电)中或等离子射流(直流电弧)中,使粉末颗粒在其中加速、熔化或部分熔化后,在冲击力的作用下,在基底上铺展并凝固形成层片,进而通过层片叠层形成涂层的一类加工工艺。它具有生产效率高,制备的涂层质量好,喷涂的材料范围广,成本低等优点。因此,近几十年来,其技术进步和生产应用发展很快,己成为热喷涂技术的最重要组成部分。表1列出了各种热喷涂方法的应用和发展情况。本文着重就近年来等离子喷涂技术在喷涂设备、喷涂测量技术及其应用等方面的研究现状与发展概况进行深入探讨。 1 国内外等离子喷涂设备的现状 喷涂装置的研究始终是等离子喷涂技术的研究热点。从上世纪80 年代起,随着计算机、机器人、传感器、激光等先进技术的发展,等离子喷涂设备的功能也得到了不断的强化。目前,国内外先进的等离子喷涂设备正向轴向送粉技术、多功能集成技术、实时控制技术、喷涂功率两极分化(小功率或大功率)的方向发展。

加拿大Mettech 公司开发出的Axial III 三阴极轴向送粉等离子喷涂系统,是目前国际上获得成功商业应用的轴向送粉等离子喷涂设备。与传统的枪外送粉等离子喷涂设备相比,Axial III 沉积效率高、送粉速率高、孔隙率低、获得的涂层硬度高,且对粉末粒度分布要求不高。Sulzer Metco 公司的Multicoat 等离子喷涂系统第一次将PC 计算机的先进性(过程再现、数据管理) 和PLC 的稳固性结合起来。Multicoat等离子喷涂系统可以进行大气等离子喷涂(APS) 、真空等离子喷涂(VPS) 和超音速火焰喷涂(HVOF) 。喷涂的涂层质量高、重现性好、能自动记录打印喷涂参数、自动报警和处理操作事故,是目前多功能集成等离子喷涂系统的代表。PRAXAIR - TAFA 公司开发的5500 - 2000 等离子喷涂系统则是实时控制技术的代表,它采用专有软件“实时”控制和监测等离子弧的实际能量,使等离子喷涂系统的闭环控制提高到一个新的水平。此外,国外对小功率等离子喷涂设备的研究主要集中在枪内送粉(包括轴向和径向) 和层流等离子喷涂方面。俄罗斯航空工艺研究院对层流等离子射流及其喷涂工艺已进行了多年研究,工艺已较成熟,并已在航空领域得到应用。大功率等离子喷涂系统目前比较成功的是PRAXAIR - TAFA公司的PlazJet ,其喷枪功率可以达到200 kW。 我国从上世纪70年代引进美国Metco公司等离子喷涂装置起,开始了对等离子喷涂技术的研究与应用,与国外的先进水平相比,还有较大的差距。目前,从事等离子喷涂技术研究的机构有北京航空制造工程研究所(625所)、武汉材料保护研究所、华南理工大学、北京矿冶研究总院和广州有色金属研究院等。北京航空制造工程研究所(625所)研制的APS-2000 型等离子喷涂设备采用了许多新技术,总体性能达到国外二十世纪九十年代水准,代表了目前国产等离子喷涂设备的最高水平。由航天科技集团公司703所研制成功的HT-200 型超音速等离子喷涂设备额定使用功率为200 kW,填补了我国在研制生产大功率等离子喷涂设备方面的空白。目前,在小功率喷涂设备方面,北京航空制造工程研究所(625所)也正在开展层流等离子喷涂设备的研制。 2 等离子喷涂过程测量技术的研究现状 随着等离子喷涂技术的深入发展,对涂层性能和质量实时控制的要求愈加迫切。这就需要不断研究新的测量技术,对等离子喷涂工艺过程进行在线诊断,并对工艺参数与涂层性能之间的关系进行有效的推测。

相关主题
文本预览
相关文档 最新文档