当前位置:文档之家› 海洋遥感复习知识点

海洋遥感复习知识点

海洋遥感复习知识点
海洋遥感复习知识点

名词解释、填空

1.海面亮温:低于实际物体的温度

指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。

2.发射率:观测物体的辐射能量与同观测物体具有相同热力学温度的黑体的辐射能量之比

根据发射率,=1黑体,0~1灰体

3.大气气溶胶:悬浮在空气中的来自地球表面的小的液体或固体颗粒。

气溶胶类型:海洋型、陆地型、火山爆发

自然(陆地海洋火山);人为(汽车尾气、污染物)

4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。

散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。对可见光的影响较大。

米散射:当微粒的直径与辐射波长差不多时的大气散射。气溶胶引起的,对波长依赖性很小

无选择散射:云,所有光都被散射回来

5.大气层结构简答,

根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层

1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最

重要

2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加

3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响

4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回

地面

6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;

二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关

7.遥感反射比(可见光、海色遥感):公式、向上辐亮度和向下辐照度之比,Rw和Ed之

归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度

8.黄色物质:有色可溶有机物,陆源(植被,棕黄酸),海洋(动物死亡分解)

9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。由海水上面的离水

辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。

10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程

Lt是卫星接收的总辐射;第一项是离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc是白冒,Lsr是太阳耀斑。

11.归一化雷达散射截面:信号打在上面,考虑到雷达尺寸和距离的面积;,→维基百科的散

射截面,归一化可以描述目标属性

雷达散射截面:散射能量与入射能量之比,

归一化雷达散射截面:除以面积后的雷达散射截面,。

12.布拉格散射条件:在弹性散射(elastic scattering)中: 入射光的能量没有损耗,但入射光的

传播方向发生变化. 当入射光之波长(如X光)与物质晶格间距接近时,为所谓布拉格散射 .

共振条件:

θ

sin

2?

=

radar

water

k

k

或者:

θ

λsin

2?

Λ

=

water,其中,k是波数,radar

λ

是雷

达波长,Λ为海上波浪的波长,θ是入射角。

13.双尺度模型、组合模型(等价):组合是镜面和布拉格,双尺度是大尺度的海浪叠加小

尺度滤波

短无线电波。即小的不规则的短波长叠加在较长、较大波浪上,双尺度模型既考虑了短波长毛细波的布拉格散射,又考虑了长重力波的影响;

14. 地球物理模式函数:

描述微波海面归一化散射系数(归一化雷达散射截面)与风向、风速、入射角之间关系的函数的叫做地球物理模式函数。

散射计、sar 用它来进行风速、风向反演; 高度计进行风速反演。

w ~σ高度计,反比

?σ\~0w SAR (单次测量,须知风向)\散射计(多次测量)

,正比25min

15. 高度计有关概念:

大地水准面:接近地球表面的地球等势面

海平面高度:大地水准面和海洋动力高度之和。湾流、黑潮的地方比较大。 海面地形(动力高度):平均海面与大地水准面之差 海平面:高潮时的海平面和低潮时海平面之间的中值 海平面异常:海平面与平均海平面之差 参考椭球:和地球表面最接近的椭球

16. 空间分辨率:空间分辨率是指像素所代表的的地面范围的大小,即扫描仪的瞬时视场,

或地面物体能分辨的最小单元。

Hλ/D

17.基尔霍夫定律:热平衡时,发射和吸收的相等

18.海色卫星:生态、检测、动力

19.卫星平台分类:

1.简述海洋遥感极其主要研究内容

利用电磁波与大气和海洋的相互作用原理,从卫星或其他空间平台上观测和研究海洋。

红外、微波、可见光

研究海洋温度、水色、动力地形、风场、盐度、海洋现象的技术

2.发展阶段

78~85之前是探索阶段,航天技术,seasat,雨云号,泰勒斯

85(geosat)-90 实验阶段实验设备,传感器上天

90之后各种卫星成系列业务化运行,强调连续性、大量传感器

3.主动传感器:

高度ALT:Joson/Posedion,Topex,Geosat,HY-2/ALT

散射SCAT:Quikscat, ERS/AMI(即可做scat又可做SAR),HY-2/SCAT,ADEOS/Seawinds,,NSCAT, Sea/SASS

合成孔径雷达(SAR): ERS/AMI, Radarsat-1,2, HJ, JERS/SAR, CSAR(L波段),GF-3/SAR

被动传感器

辐射计:

1)红外:NOAA/AVHRR, ERS/ATSR, Terra Aqua/MODIS, Aqua,COCTS

3.7μ,10μ,12μ

2)可见(海色):OCTS, SeaFS, CZCS, MERIS, MODIS, COCTS, VPP/VIIR

412,490,520,550,670,685

3)微波: AMSR,SMMI,SMMR,SMOS

5~10Hz SST

1.4Hz 盐

大于10 Hz风SSW

22Hz 水汽

微波辐射计:SSM,SMMR

温度:AVHRR MODIS

海色:merris,CZCS、MODIS

Hy1:红外,cocts

散射计、高度计、合成孔径雷达主动

高度计被动

风速、海面高度、温度、盐度、降雨

4.与传统观测相比,简述卫星海洋遥感数据的主要特点。

作业有,大面积、大范围、长时间,经济,不能到达的地方(河口极地争议区),多传感器同时研究

微波的话全天候,不受天气影响

常规是接触性测量,有些地方无法到达,遥感是间接测量需要印证,数据都是反演出来的

5.在可见光和近红外波段,大气最主要的散射作用是什么?

6.最主要作用是散射

可见光,散射,改变能量传播方向,包括瑞利、气溶胶

红外(短波),水汽吸收和大气辐射

微波:不考虑散射,水滴,电离层

分波段说

7.简述海洋遥感在海洋科学研究中的作用。

1)它是物理学、信息科学与海洋科学交叉学科,理论涉及电磁波与海洋大气的相互作用以及海洋/大气辐射传递;

2)为海洋科学研究、海洋环境、气候变化预测与预报提供数据集;

3)卫星海洋遥感的多传感器资料可促进海洋科学交叉学科发展;

4)可以发现新的海洋现象,大尺度观测;如中尺度涡现象等

8.按波长从大到小排列P,X,C,Ku,L,可见光,红外,并举例说明各个波段主要用在哪些卫

星传感器

P>L>S>C>X>Ku

L:盐sar一定穿透深度(军方)海洋不好用,不好散射、风很大才散射,主要微波辐射及测盐度。

Ku:散射计,低风速就能散射,敏感。

S、P、X、C、L:合成孔径雷达;

Ku、C、X:散射计上,散射计主要是C;

L:盐度,辐射计;

可见光:海色传感器;

红外:测温的传感器;

9.微波为什么有极强的穿透云层的作用

因为微波的高频的部分有散射,其他部分不考虑云

因为对微波来说,微波1mm-1m波长比粒子直径大得多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被称为具有穿云透雾的能力。衍射

10.简述影响海面发射率的主要因素,并分析说明海洋遥感反演的哪些海洋环境参数与海面

发射率有关

观测条件:频率、波长,极化,入射角、盐度、风、温度、海面粗糙度都有关系

盐度(小于1.4Hz L波段)、风、温度和发射率有关‘

1.4GHZ:和SSS有关;

6~10GHz:和SST有关;

1>10GHZ:和SSW有关;

22GHz:测水汽。是水汽吸收的通道。

11. 简述影响海色遥感反演的主要问题

1)解决大气矫正问题,分子、气溶胶散射,尤其是气溶胶的影响怎么消除,其影响是不固定的很多是人为影响,大气的辐射量占卫星接收到的辐射量的90到95,由卫星测量的幅亮度,计算到海面的

2)生物光学算法:一二类水体的问题,对二类水体组分是变化的,甚至溢出的

12. 简述卫星高度计测量海浪有效波高和风速的原理

前沿的斜率是海面波高标准差的函数(此函数可以通过拟合得到)。有效波高是指再一次给定的观测中所测得的占波浪总个数三分之一的大波波高的平均值。有效波高是海面波高标准差的4倍,即波高均方根的4倍。

k

h H 43

1

测风速:由于卫星高度计是天底视主动式传感器,海面平静时回波信号最强。海面在风的作用下能够产生厘米尺度的波浪,从而引起海面粗糙度(海面均方斜率)的变化。海面起

伏随风增大时,把信号反射回传感器的镜面面积越来越少,回波也就越来越弱。雷达散射计对于大于或等于其工作波长(2cm)的海面粗糙度变化有敏感反应。

风越大,越矮,风和σ成反比

13.写出海面散射的布拉格散射条件并解释各个参数的物理含义。简述散射计测量海面风

场的物理机制以及产生风向多解的原因和解决办法

共振条件:

θ

sin

2?

=

radar

water

k

k

或者:

θ

λsin

2?

Λ

=

radar,其中,k是波数,radar

λ

是雷

达波长,Λ为海上波浪的波长,θ是入射角。

物理机制:布拉格共振。

原因:因为风向和归一化雷达后向散射系数的关系是余弦,不是单值函数,一个后向散射系数最多可以对应四个风向解。

解决办法:一般测4次,比如:41(2)、49(2),如果还消不掉,通过场的方法:求散度、旋度;(粗)预报风场:雷达的风向、散射计的风向,取和预报风向最接近的那个;中值滤波。

14.简述合成孔径雷达对海浪成像的主要机制。

倾斜机制:海浪波浪通常比较长,小尺度重力波在大尺度浪叠加,长波改变小尺度重力波入射角,雷达波和小尺度重力波相互作用

流体动力学:小尺度波均匀分布在平面上,大浪的流体速度和小尺度作用,使得小尺度波分布不均匀,这个过程叫做流体动力学机制

15.简述合成孔径雷达的主要海洋应用并简要说明其物理机制

可用于观测波浪、涡流、风暴潮、内波扰动的海面、海面风及海冰。

现象产生幅聚、幅散,使得短尺度重力波分布改变,短尺度重力波和电磁波布拉格共振。

16.下图是有关大气衰减、黑体辐射随波长的关系,据此分析海色、海温和微波遥感的波段

选择依据

可见光白天3.7会受太阳影响厉害

10.11.12测温用这个区,

微波一般用厘米以上,波长越长,大气就没影响

17.结合上图简要分析微波辐射计测量海面盐度的波段选择。

18.测盐度频率越小越好,用L波段,大于5的就不能用了因为变化

不受盐度影响

19.简述多通道微波辐射计测量海面风速的原理。

风速改变海面粗糙度,粗糙度影响比辐射率,通过测量微波辐射率可以测量风速,没有公式

20.合成空径雷达的空间分辨率

说明各参数物理意义并据此简要说明大气校正方法。

大气矫正方法:找670波长,和低、高叶绿素浓度,仪器改变角度,忽略项,在风比较小时,只剩下三项

通过不同波长,再找一个波长假定离水辐亮度为0,瑞利产生的可以计算,气溶胶麻烦

21.海面皮温、海面亮温、海表温度以及三者之间的关系。

皮温:skinT,海洋学上叫体温;sst毫米、微米量级;皮温一般比实际海表温度低,但有风时两者几乎一样。

亮温:比辐射率小于一,不是真实海体温度,等价黑体温度。

海表温度:是毫米、微米量级;没有海浪海面下1m

当海表层混合比较厉害时三者比较一致

22.简述SAR内波观测的物理机制;

23.简述遥感测量海面盐度的物理机制以及影响盐度观测的主要因素

比辐射率和盐度有关,盐度变化会影响微波辐射发射,通过亮温计算

因为比辐射率同时还受风速、温度影响,所以要精确知道温度、风,L波段是测量盐度的最佳波段,该波段对SST,SSW敏感度低。

U1

1.传感器、平台、电磁波穿过大气还海面相互作用

海洋遥感:相互作用对海面现象测量研究

2.发展历史,航天技术——实验阶段——业务化

U2

1.极轨: 太阳同步(大部分),非太阳同步(jonon,TRMM,T/P)

2.静地(风云偶数)

3.遥感数据产品:1级反演后,2级需要计算,0级原始数据

4.遥感参数:

1)幅宽度:

2)极化:电磁波振动方向

3)光谱分辨率

4)空间分辨率:

5)辐射分辨率:最小到最大能量分多少份

6)时间分辨率

5.电磁辐射

1)可见光、红外、微波

由大气窗口决定,对电磁波衰减少/通过最大的频率范围

2)黑体辐射:辐射只依赖于波长和温度,比辐射率为1

3)基尔霍夫定律:在考虑到局部热平衡状态下,物体的吸收能量和辐射能量之比等于常数

4)朗伯面:粗糙表面,辐亮度不依赖于入射角

5)亮温:等效的黑体辐射温度,来通过黑体辐射定律计算出来的温度

6)比辐射率:表示物体辐射的能力,是物体辐射和黑体辐射之比,越大越高热平衡下,发射率等于吸收率

影响因素:电磁波入射角、波长、偏振,海面温度,海面盐度7)大气对电磁波影响:从分子角度,瑞利,米

6.散射吸收

1)光学厚度

2)大气透射率:0~1,大气衰减情况,衰减系数和路径积分

3)体积散射函数:单位

4)气溶胶:海洋、陆地

5)大气传输方程:描述辐亮度在大气、海洋

7.微波与海面相互作用

1)布拉格散射:入射角大于20°

2)镜面散射:电磁波垂直入射,入射角<10°,对高度计

3)SAR对海浪的成像机制:

倾斜调制,电磁波在小尺度海浪叠加,使得大浪对小狼进行调制

流体力学调制:小尺度重力波本来均匀分布,大浪传来引起波致流,作用

并使其分布不再均匀

速度调制

多普勒,卫星飞海浪运动,速度和加速度引起了速度拘束,引起多普勒频

4)归一化散射截面:单位面积散射截面

散射截面:通过雷达方程得到,和反射能量有关,描述散射目标特性,wiki 5)双尺度模型

3.海表温度遥感和辐射计

1)海表温度:利用黑体辐射测得,又叫皮温,微米毫米级,海洋学中是水下1米亮温低于实际温度

2)红外用2个通道,3.7,10~12两个窗口

海面辐射强,大气有窗口

3)Modis avhr

4)应用:测温度,热污染检测

5)难点:大气校正,尤其水汽;云检测,薄云薄雾和海水低温很容易混合,可以用历年的/长时间消除

6)亮温和频率的微分,在6.9gHz最大,所以在此频率用微波辐射计测,6~10之间

7)微波辐射计和天线有关系,增益可以差好几个数量级,波长,分辨率(红外高,微博低),精度(红外0.5~1k之间,微波1K),原理(黑体辐射的不同部分)4.海色遥感

1)一类水体:海洋离水辐亮度主要由叶绿素及其衍生物决定,大洋

二类水体:叶绿素以及除叶绿素之外的悬浮物、黄色物质,沿岸水体2)赤潮:大量繁殖

3)黄色物质:可溶有机物,陆地、海洋

4)离水辐亮度

5)遥感反射比:向上辐亮度和向下辐照度之比

6)大气矫正算法及其存在问题:即由卫星接收的辐亮度计算出海面之上的离水辐

亮度,大气气溶胶、污染如何消除,海水中的泥沙浓度太大找不出一个通道使离水辐亮度等于0

7)生物光学算法:二类水体问题,因为泥沙、可溶有机物都变,光谱混在一起8)二类水体难点:组分多,大气中气溶胶变化也大

9)Sedseais,meris,modis,vriis,cocts,octs

5.海面风场

1)布拉格散射条件及参数意义

2)双尺度模型、组合模型

3)地球物理模式函数:sigma0和风速风向入射角(散射计)

sigma0和风速风向入射角(高度散射计)

4)Sass,ami,quicscat,HY-2/scat,oceansat

5)和地球物理模式函数有关,因为它不是单值的,需要多次观测才能确定,观测中还有误差和噪声造成多借。中值滤波法,预报

6)高度计原理:sigma0和高度反比,风越大,海面越粗糙,接收到的sigma0能量越小

散射模型:镜面散射模型

7)微波辐射计测风:比辐射率,粗糙度改变比辐射率大小,影响亮温,

8)SAR测风原理:观测一次,和散射计类似,风向要通过其他方式获得,预报等,都是地球物理模式函数,近岸的

散射计缺点是分辨率低,25km,不能得出风向

6.高度计

1)因素:大气对流层、电离层、海面电磁矫正,地球固体、海面潮汐原理:脉冲达到海面返回的时间,不是真正光速

能量一半的位置x光速/2=瞬时海面到卫星的距离

2)测海浪原理:回拨信号上升沿的斜率和海浪有效波高成反比

有效波高:100个波中前三分之一的平均值

3)概念

海面高度:瞬时海平面和参考椭球之间的高度

海面地形(动力高度):瞬时海平面和大地水准面

大地水准面:最接近地球表面的等势面

海面高度异常SSHA:

海平面:最高和最低之间平均的假想平面

起伏:大地水准面和椭球之间差

4)geosat,alt,tp,joson,hy-2

7.合成孔径雷达

1)原理:

2)方位分辨率:和天线尺寸有关和卫星高度无关,卫星飞行方向分辨率,是合成

孔径,不断发射脉冲,连续记录振幅相位,方位分辨率等于实际天线长度的一半

距离分辨率:使用短脉冲测距的方式距离调频

3)seasat,高分,海洋3号

4)应用; 测海冰,海浪,测内波,涡旋,污染,舰船

8.盐度

1)辐亮度与频率的微分对淡水和海水,频率越低越敏感,差别越大

2)难点:要把风消除,温度、盐度、浪

3)Smos,aquaris

9.海洋现象

海冰、内波,涡旋,锋面,渔业资源调查0

物理海洋学试卷1答案

南京信息工程大学期末考试试卷(答案) 2007 - 2008 学年 第 1 学期物理海洋学 课程试卷( A 卷) 本试卷共 1 页;考试时间 120分钟;任课教师 王坚红、陈耀登 ;出卷时间2007 年12 月 系 专业 年级 班 学号 姓名 得分 一、简答题 (每小题 4 分,共32分) 1、平衡潮理论将实际潮波视为哪些分潮之和? 答:实际潮汐可视为是天文潮波,浅水潮波和气象潮波之和。而这三类潮波又可视为由许许多多分潮波组成。 [平衡潮理论将平衡潮潮高展成三大项,长周期项,日周期项,半日周期项,各项有随纬度变化的特征。] 2、海洋下层以什么环流为主,它主要携带的成分是什么? 答:海洋的下层以热盐环流为主。热盐环流不仅只携带热量和盐份,还含有其它成份,如氧气,二氧化碳等。这使得它的重要性不仅仅在它的流动。 3、请根据图说明是何种类型的潮汐,为什么。 答:左图是全日潮,右图是混合的不正规半日潮或全日潮。 在24小时(横坐标)内有仅有一个潮波峰。为全日潮。在24小时内(横坐标)有两个波峰,且峰值大小明显差异。 4、什么是Ekman 螺线?

答:相应于E k man漂流随深度的变化,漂流矢量端点的连线所构成的曲线为 E kman 螺线。 在北半球,漂流随深度向右偏;流速随深度增加呈指数形式减小。 在南半球,漂流随深度向左偏。流速随深度增加呈指数形式减小。 5、什么是等振幅线、同潮时线?指出右图 中的同潮时线和等振幅线及无旋点。 答:等振幅线是振幅相等的波列中振幅相同点的连线。同潮时线是不同波列中相同位相的连线。 图中实线是同潮时线;虚线是等振幅线。等振幅线的圆心是无旋点。该无旋点偏离海峡中线 6、解释波浪辐聚和辐散概念。 答:辐聚:在海岸突出处,波向线发生集中的现象,在此处波高因折射而增大。波能集中,引起海岸冲刷。 辐散:在海湾里,波向线发生分散的现象,在此处波高因折射而减小。波能分散,产生流沙淤积。 7、简述大陆架风暴潮的三个阶段及其对应的波动名称。 答:大陆架风暴潮可分为三个阶段: (1)先兆阶段:海面微微升高或降低,这个阶段波动称为先兆波。 (2)主振阶段:海面异常水位升高,这个阶段波动称为强迫波。 (3)余振阶段:海面相当显著升高,这个阶段波动称为边缘波。 8、解释潮汐调和分析。

海洋学知识点

1、海洋学研究内容 既有海水的运动规律、海洋中的物理、化学、生物、地质过程及其相互作用的基础理论,也包括海洋资源开发、利用以及有关海洋军事活动所迫切需要的应用研究。 1、地球自转偏向力—科氏力的特点? 只改变物体运动方向不改变物体运动速度,北半球偏向力向右,南半球偏向力向左 除赤道外的运动物体受到该力作用。 2、地球的圈层结构? 地核、地幔、地壳、岩石圈、生物圈、水圈、大气圈【对流层,平流层,中间层,热层,散逸层】 3、海洋固有的形态特性? 广漠而有垠,连通又阻隔,深又浅 4、海和洋的划分及特征? 洋:远离陆地,受陆地影响小,面积大,水深(2-3km),有独立潮波系统,底质为软泥,红黏土。 海(54):靠近陆地,受陆地影响大,面积小,水浅,无独立潮波系统,底质为陆屑。 5、构造学说的三个阶段? 大陆漂移,海底扩张,板块(12)构造 6、现代海岸带包含几部分——潮上下间带? 潮上带,潮间带,潮下带【海岸,海滩,水下岸坡】 7、海底地形包括哪些部分——架坡基? 大陆边缘,大洋中脊,洋盆,稳定型大陆边缘【大陆架,大陆坡,大陆基】 1、海水组成:热胀冷缩性质 水,无机盐,有机物,悬浮物 【纯水】4℃以上满足热胀冷缩性质,4℃以下不满足。低于4℃有利于水分子缔合 2、海水盐度(35‰)定义:发展历程 (1)1000g水中所包含的溶质总质量 (2)测定海水的氯度(电导率)与标准海水的比值 (3)样品与KCI的电导率之比 3、海水的热力性质:比热,位温,位密等 (1)海水比热>空气 (2)位温:某一温度海水绝热上升到海面时的温度 (3)位密:位温下的密度 4、海水状态方程 描述海水密度与温、盐、压等理化特征参量之间关系的数学表达式. 5、海冰的分类 新冰,尼罗冰,初期冰,一年冰,多年冰。 6、海冰与气候变化的关系 在结冰的过程中,气温越低,结冰速度越快,冰层厚度发展越厚,被包围在其中的卤水越多,海冰的盐分越高;冻结前海水的盐度越高,海冰的盐度可能也高。在南极大陆附近海域测得的海冰盐度高达22~23。 冰的盐度随冰龄增大而减小。当海冰经过夏季时,冰面融化会使冰中卤汁流出,导致盐度降低,在极地的多年老冰中,盐度几乎为零。 融化时:死水现象;结冰时:对流,析出盐晶;海冰:影响海洋与大气热力交换 1、海面热収支:Qw=Qs-Qb±Qe±Qh Qs:大气透明度和天空中的云量、云状以及太阳高度有关【太阳辐射】 Qb:海面水温、空气中的湿度、云量和云状【海面有效回辐射】

遥感技术的应用以及发展趋势

遥感技术的应用以及发展趋势

一前言 二遥感信息技术基础 三遥感信息技术的应用 3.1遥感信息技术在环境监测方面的应用 3.1.1利用红外扫描仪监视石油污染 3.1.2利用遥感技术监测水体富营养化 3.1.3通过遥感技术调查废水污染和泥沙污染 3.1.4应用红外扫描仪监测水体热污染 3.1.5通过遥感技术分析水域的分

布变化和水体沼泽化 3.2.遥感技术在大气环境监测方面的应用 3.2.1臭氧层 3.2.2大气气溶胶 3.2.3有害气体 3.2.4气候变化 3.3遥感技术在城市环境监测与管理中的应用 3.4应用遥感技术监控生态环境 3.5 利用遥感技术监测自然灾害 四遥感信息技术的发展趋势 4.1遥感影像获取技术越来越先进 4.2遥感信息处理方法和模型越来越科学 4.3 3S一体化 4.4建立高速、高精度和大容量的

遥感数据处理系统 4.5建立国家环境资源信息系统 4.6建立国家环境遥感应用系统 五总结 六参考文 一前言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内得到广泛的应用。自20世纪80年代以来,随着遥感技术的发展,遥感技术在理论上、技术上和实际应用上发生了重大的变化。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理信息技术也更加成熟;在应用方面,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化的方向发展,是遥感技术的应用更加广

泛和深入。 二遥感信息技术基础 遥感技术是指从飞机、飞船、卫星等飞行器上,利用各种波段的遥感器,通过摄影、扫描、信息感应,识别地面物质的性质和运动状态的技术,具有遥远的感知的意思。从上个世纪六十年代提出“遥感”这个词,到1972年美国陆地卫星计划发射了第一颗对地观测卫星,经过几十年的发展,遥感技术已经广泛地应用在军事、国防、农业、林业、国土、海洋、测绘、气象、生态环境、水利、航天、地质、矿产、考古、旅游等领域,影响了人类生活的方方面面,它为人类提供了从多维和宏观角度去认识世界的新方法与新手段,遥感技术能够全面、立体、快速有效地探明地上和地下资源的分布情况,其效率之高是以前各种技术无法企及的。 三遥感技术在环境科学中的应用 3.1.遥感技术在水污染监测方面的应用 3.1.1利用红外扫描仪监视石油污染

遥感技术在海洋中的应用

遥感技术在海洋中的应用 海洋覆盖着地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间。随着人口的增长和陆地非再生资源的大量消耗,开发利用海洋对人类生存与发展的意义日显重要。所以,必须利用先进的科学技术,全面而深入地认识和了解海洋,指导人们科学合理地开发海洋。在种种情况下,遥感技术应运而生。 1.遥感技术在海洋中应用的优越性 与常规的海洋调查手段相比海洋遥感技术具有许多独特的优点: 第一,它不受地理位置、天气和人为条件的限制,可以覆盖地理位置偏远、环境条件恶劣的海区及由于政治原因不能直接去进行常规调查的海区。 第二,卫星遥感能提供大面积的海面图像,每个像幅的覆盖面积达上千平方公里,对海洋资源普查、大面积测绘制图及污染监测都极为有利。 第三,卫星遥感能周期性地监视大洋环流、海面温度场的变化、鱼群的迁移、污染物的运移等。 第四,卫星遥感获取的海洋信息量非常大。 第五,能同步观测风、流、污染、海气相互作用和能量收支情况。 2.遥感技术在海洋中的应用 2.1在海岸开发中的应用 我国有1.8万公里海岸线,海岸带面积约35万平方公里,其中泥沙问题比较突出,特别是黄河、长江、杭州湾、珠江口等大的河口,年平均输沙量在5—12亿吨以上。如果我们掌握了泥沙的运动规律,加以很好地利用,就是一笔巨大的财富;反之,则会带来巨大的灾难。利用多时相的卫星遥感图像不仅可以反映大面积海区水体表层悬浮泥沙的分布规律和变化动态,而且还可以确定大风天时高含沙量的活动范围。这些信息对新港口选址、新航道的开辟、近海石油开采以及解决旧港口淤积等问题是必不可少的依据。 2.2在海洋渔业中的应用 卫星遥感信息可以用于渔场海洋环境研究,主要有: ①水温反演:海水温度与鱼类的生存、洄游有着密切关系,各种鱼类不仅有自己最适生存温度范围,而且随季节进行适温洄游。气象卫星可提供大面积海面

我国农业遥感的应用现状与展望

第19卷第6期2003年11月农业工程学报 Transactions of the CSAE Vol .19 No .6Nov . 2003 我国农业遥感的应用现状与展望 邢素丽1,2,张广录2 (1.中国科学院研究生院,北京100039; 2.中国科学院石家庄农业现代化研究所,石家庄050021) 摘 要:目前,遥感技术在我国农业上主要应用在农用地资源的监测与保护、农作物大面积估产与长势监测、农业气象灾害 监测和作物模拟模型等几方面。该文对我国农业遥感上述几方面的研究、应用进行了讨论、分析与评价,认为3S 一体化、灾害预测研究、高光谱遥感、定量遥感是今后的发展方向。同时,遥感技术的应用与发展,对我国农业数字化进程的推进有不可替代的作用。关键词:遥感;农业应用中图分类号:S127 文献标识码:A 文章编号:1002-6819(2003)06-0174-05 收稿日期:2003-03-21 基金项目:中科院知识创新项目(KZCX2-SW -317;K ZCX2-313)作者简介:邢素丽(1966-),女,河北唐山人,硕士研究生,从事遥感农业应用研究。北京 中国科学院研究生院,100039。Email :sophi -axing @s ina .com . 1 引 言 遥感技术是20世纪60年代以来,在现代物理学(包括光学技术、红外技术、微波雷达技术、激光技术和全息技术等)、空间科学、电子计算机技术、数学方法和地球科学理论的基础上发展起来的一门新兴的、综合性的边缘学科,是一门先进的、实用的探测技术[1],它已越来越广泛地应用在农业、地理、地质、海洋、水文、气象环境监测、地球资源勘探、军事侦察等多个方面。在我国农业应用中,从早期的土地利用和土地覆盖面积估测研究、农作物大面积遥感估产研究开始,已扩展到目前的3S 集成对农作物长势的实时诊断研究、应用高光谱遥感数据对重要的生物和农学参数的反演研究、高光谱农学遥感机理的研究、模型的研究与应用以及草地产量估测、森林动态监测等多层次和多方面。遥感技术和计算机技术的发展和应用,已经使农业生产和研究从沿用传统观念和方法的阶段进入到精准农业、定量化和机理化农业的新阶段,使农业研究从经验水平提高到理论水平。 2 遥感技术在我国农业中的应用研究现状 2.1 农用地资源的监测与保护 在我国,由于耕地的数量减少与质量下降,耕地保护已成为实现农业可持续发展的一个重要战略任务。遥感信息因其覆盖面大、实时性和现势性强、速度快、周期性和准确可靠以及省时、省力、费用低等优点,被广泛用于测定农用地的数量与质量的动态变化[2~7]常用的土地利用遥感监测方法基本上分为两种,即:逐个像元比较法(pixel to pixel composition )和分类后比较法(post classfication composition )。前者首先是对同一区域不同年份同一时相影像的光谱特征差异进行比较,确定土地利用发生变化的位置,在此基础上,再采用分类的方法 来确定土地利用变化信息[8]。该方法优点是先确定土 地利用变化的位置,缩小分类范围,提高监测速度。后者是针对整个监测区域的逐影像系列同一位置分类结果确定土地利用类型变化的位置和所属类型,其优点是可以回避前一种方法所要求的影像系列一致的条件,以及影像间辐射纠正、匹配等问题,但需要选择合适的分类方法来改善精度。 在分类方法上,目前农业遥感中计算机自动分类的研究方法很多,主要集中在如下几种:统计方法、神经网络法、模糊法、小波变换理论分类法等。尤以统计方法和神经网络法研究和应用得最多。统计分类法又可分为“监督分类”和“非监督分类”两种实施方案。以最大似然法应用得最为广泛。最大似然法的基本前提是认为每一类的概率密度分布都是正态分布。其算法内在缺陷少、可靠性好、分类精度较高,缺陷是需要先验概率和条件概率密度函数模型,模型的精度直接影响分类精度。后来有人发展了改进的最大似然分类法,如最小距离分类结果估计先验概率法[9]、Markov 模型分类技术[10]等。 神经网络分类法[11]与传统分类方法的最大区别在于,神经网络分类法并不基于某个假定的概率分布;它在非监督分类中,从特征空间到模式空间的映射是通过网络的自组织来完成的,是一种聚类过程;在监督分类中,网络通过对训练样本的学习,获得网络的权值,形成分类器。一般可以分为前馈网络、后馈网络、自组织网络三大类。神经网络中多层前馈网络的反向传播神经算法(又称BP 算法)在遥感分类中应用得最为广泛。B P 算法的神经网络容错能力强,有较好的适应性,适于解决遥感图像中的“同物异谱”和“同谱异物”问题。 模糊分类技术比传统的最大似然法具有较高的识别精度,模糊分类认为一个像元在某种程度上属于某类而同时在另一程度上属于另一类,这种类属关系的程度用像元隶属度表示。模糊分类技术的关键是确定像元的隶属度函数。 小波变换的基本思想是将任一平方函数或能量的有限信号通过多分辨率分析表示成小波系数的叠加。小波变换在边缘检测和纹理分析中可反映出不同尺度 174

热红外遥感在地热中的应用

专业:测绘工程 班级: 0614111 组别:第一组 指导教师:牛磊 姓名:曹岳飞、闫佩良、马欣欣 梁威力、王君 完成时间: 2013年12月1日

热红外遥感技术及其在地热资源调查中的的应用0614111班第一组曹岳飞闫佩良马欣欣梁威力王君 摘要:热红外遥感即通过热红外探测器收集地物辐射出来的人眼看不到的热红外辐射通量,经过能量转换而变成人眼能看到的图像。热红外遥感自从1962年第一台红外测温仪诞生起在军事、地热油气调查、地质填图、热制图、热惯量估算以及灾害监测、环境污染等方面有了非常广泛的应用。本文主要介绍了热红外遥感技术及其在地热资源调查中的应用。 关键词:热红外技术地热资源调查 引言 自然界任何温度高于热力学温度(0K或-273oC)的物体都不断地向外发射电磁波。热红外遥感即通过热红外探测器收集地物辐射出来的人眼看不到的热红外辐射通量,经过能量转换而变成人眼能看到的图像。热红外遥感技术的发展是为了获取地物的热状况信息,从而推断地物的特征及环境相互作用的过程,为科学和生产所应用。 地热是地球赋予人类的廉价能源,地球就像一个庞大的地热库。 人类在面对环境污染的困扰、地球生态平衡的破坏、不可再生资源的匮乏、各国对能源需求的急速增长。这时地热资源调查就显得尤其重要。热红外遥感技术是一种快速检测地面温度的新技术,它能在瞬间或比较短的时间内获取大面积地面温度场信息,将这一新技术用来进行地热资源调查,取得了许多成功经验,同时在理论探讨方面也在逐步深化,展现出它的应用前景。 1 红外线的起源与发展 热红外遥感的发展可以从1962年第一台红外测温仪诞生算起; 1978年美国发射热惯量卫星(HCMM),首次用卫星来观察地球表面的温度差异,这标志着热红外遥感的发展; 随后,红外技术不断发展,一系列航空航天遥感器运用了热红外波段采集地面数据,并将其应用于军事、地质填图、热制图、热惯量估算以及灾害监测、环境污染等方面; 热红外遥感的发展可以从1962年第一台红外测温仪诞生算起; 1978年美国发射热惯量卫星(HCMM),首次用卫星来观察地球表面的温度差异,这标志着热红外遥感的发展;

中国海洋大学 物理海洋学 课程大纲(理论课程)

中国海洋大学物理海洋学课程大纲(理论课程)(本课程大纲根据2011年本科人才培养方案进行修订或制定) 【开课单位】海洋环境学院【课程模块】学科基础 【课程编号】0701******** 【课程类别】必修 【学时数】50 【学分数】 3 一、课程描述 1、教学对象 海洋科学专业、大气科学专业的本科生 2、教学目标及修读要求 本课程旨在使学生系统地掌握物理海洋的基本理论及其发展全貌、理解已达到的水平和今后发展的方向。要求掌握动力海洋(海流、海浪和潮波)的基本概念和运动变化的基本规律,学会分析研究海洋动力现象的基本思路和方法。 3、先修课程(参照2011版人才培养方案中的课程名称,课程名称要准确) 《海洋学》、《海洋调查》、《流体力学》 二、教学内容 第一章:海流 § 1、引言 § 2、地转流 § 3、考虑摩擦的定常流动 § 4、非定常流动 § 5、风生大洋环流 教学重点:大洋中的基本流动和风生大洋环流 难点:大洋环流的西向强化 教学手段:多媒体课堂讲授为主、随堂讨论与课后大作业为辅第二章:海浪 § 1、引言 § 2、线性波动理论 § 3、线性波动的合成

§ 4、波动的折射和绕射 § 5、有限振幅波动 § 6、海浪的统计性质 § 7、海浪谱 教学重点:线性波动、海浪谱 难点:线性波动、海浪谱 教学手段:多媒体课堂讲授为主、随堂讨论与课后大作业为辅第三章:潮波 § 1、引言 § 2、平衔潮理论 § 3、考虑地球形状的潮波 § 4、等深广阔水域中的潮波 § 5、海峡和海湾中的潮波 § 6、变截面海湾中的潮波 § 7、浅水潮波 § 8、三维潮波 教学重点:平衡潮理论,广阔水域、海峡和海湾中的潮波、三维潮波 难点:等深广阔水域中的潮波、三维潮波 教学手段:多媒体课堂讲授为主、随堂讨论与课后大作业为辅 三、考核方式及评价体系 1、考核方式:闭卷考试 2、评价体系:课程考核成绩由平时成绩和期末考试成绩构成,平时成绩根据出勤、课堂讨论、课后作业、期中检查等评定,所占比重一般不超过50%。考核各部分的比重由老师结合课程内容给定:平时成绩:20 %,期末考试:80 %。 四、选用教材及必读参考书(注明作者、出版社、出版时间及版次) 1、选用教材 叶安乐、李凤歧编著,《物理海洋学》.青岛:青岛海洋大学出版社.1992年12月. 2、主要参考书 1)、吕美仲、侯志明、周毅编著,《动力气象学》.北京:气象出版社,2004

海洋科学导论-海洋学基础-重点知识

海洋科学导论重点知识 第一章 1.海洋科学:研究地球上海洋的自然现象、性质以及其变化规律,以及和开发与利用海洋有关的知识体系。 研究对象:海洋---海水、海水的组成、海洋生物以及海洋的边界(海洋沉积、海底岩石圈,河口、海岸带,海面上的大气等)。 研究内容:海水的运动规律、海洋中的物理、化学、生物和地质过程及其相互作用的基础理论、海洋资源的开发、利用、海洋军事活动应用研究等。 2. 海洋科学研究的特点是什么 1)明显地依赖于直接的观测。 2)。 3) 4)信息论、控制论、系统论等方法在海洋科学研究中越来越显示其作用。 5)学科分支细化与相互交叉、渗透并重,而综合与整体化研究的趋势日趋明显。 相似问题:海洋科学研究对象的特点 ①海洋科学研究对象具有特殊性和复杂性; ②海洋中水---汽---冰的转化时刻都在进行; ③海洋作为一个自然体系,具有多层次耦合的特点。 ¥ 3. 海洋矿产资源的分布特点是什么有哪些主要类型 ·分布特点: 深海锰结核以锰和铁的氧化物及氢氧化物为主要组分,富含锰、铜、镍、钴等多种元素。主要分布于太平洋,其次是大西洋和印度洋水深超过3000米的深海底部。以太平洋中部北纬6°30′~20°、西经110°~180°海区最为富集。 世界96%的锆石和90%的金红石产自海滨砂矿。复合型砂矿多分布于澳大利亚、印度、斯里兰卡、巴西及美国沿岸。金刚石砂矿主要产于非洲南部纳米比亚、南非和安哥拉沿岸;砂锡矿主要分布于缅甸经泰国、马来西亚至印度尼西亚的沿岸海域。 中国近海水深小于200米的大陆架面积有100多万公里,某中含油气远景的沉积盆地有7个:渤海、南黄海、东海、台湾、珠江口、莺歌海及北部湾盆地,总面积约70万公里,并相继在渤海、北部湾、莺歌海和珠江口等获得工业油流。在辽东半岛、山东半岛、广东和

卫星遥感技术应用

卫星遥感技术应用 卫星遥感技术应用现状(对地)首先,到目前为止,我国已经成功发射了十六颗返回式卫星,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的六颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为使用,实现了业务化运行。一九九九年十月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。 其次,除了上述发射的遥感卫星外,我国还先后建立了国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等国家级遥感应用机构。同时,国务院各部委及省市地方纷纷建立了一百六十多个省市级遥感应用机构。这些遥感应用机构广泛的开展气象预报、国土普查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供多方面的信息服务。这也为迎接2 1世纪空间时代和信息社会的挑战,打下了坚实的基础。 最后,非常关键,必须要重点指出的是两大系统的建立完成。一是国家级基本资源与环境遥感动态信息服务体系的完成,标志着我国第一个资源环境领域的大型空间信息系统,也是全球最大规模的一个空间信息系统的成功建立;二是国家级遥感、地理信息系统及全球定位系统的建立,使我国成为世界上少数具有国家级遥感信息服务体系的国家之一。我国遥感监 测的主要内容为如下三方面; 1、对全国土地资源进行概查和详查; 2、对全国农作物的长势及其产量监测和估产; 3、对全国森林覆盖率的统计调查。 卫星遥感技术在海洋中的应用 2.2.1 在海岸开发中的应用 我国有 1.8 万公里海岸线,海岸带面积约 35万平方公里,其中泥沙问题比较突出,特别是黄河、长江、杭州湾、珠江口等大的河口,年平均输沙量在5—12 亿吨以上。如果我们掌握 了泥沙的运动规律,加以很好地利用,就是一笔巨大的财富;反之,则会带来巨大的灾难。利用多时相的卫星遥感图像不仅可以反映大面积海区水体表层悬浮泥沙的分布规律和变化动态,而且还可以确定大风天时高含沙量的活动范围。这些信息对新港口选址、新航道的开辟、近海石油开采以及解决旧港口淤积等问题是必不可少的依据。 2.2.2 在海洋渔业中的应用 卫星遥感信息可以用于渔场海洋环境研究,主要有:第一、水温反演:海水温度与鱼类的生存、洄游有着密切关系,各种鱼类不仅有自己生存的最适温度范围,而且随季节进行适温洄游。海洋卫星可提供大面积海面温度信息,为渔业生产服务。第二、流隔研究:海洋中存在着不同的流系,不同流系之间存在着较大的温度梯度,成为流隔。计算机对红外图像进行密度分割处理后,可以清楚反映出不同流系分布,为确定中心渔场提供指标。第三、渔场小尺度水文现象监测:当利用卫星监测到渔场存在着直径为几十到几百公里的中、小尺度冷水涡 旋时,在涡旋中心附近可形成中心渔场。第四、叶绿素浓度分析:海洋捕捞资源是以浮游生物年产量为基础,通过浮游生物年产量的测定,来估算捕捞资源潜力。而海洋叶绿素又是反映海洋浮游生物光合作用的重要参数。海洋卫星可以提供海洋中叶绿素相对浓度分布。 2.2.3 在保护海洋生态环境中的应用

海洋基础知识问题与答案

第一部分:海洋科学基本知识 (一)海洋科学 1.A [掌握]:海洋科学研究的对象 B [了解]:海洋科学的分支及海洋科学研究的特点 A.海洋科学的研究对象:海洋科学研究的对象是世界海洋及与之密切相关联的大气圈、岩石圈、生物圈 B.海洋科学的分支及海洋科学研究的特点:海洋科学体系既有基础性科学,也有应用与技术研究,还包括管理与开发的研究。属于基础性科学的分支学科体系,提法不尽相同,如有的认为应包括物理海洋、化学海洋学、生物海洋学、海洋地质学、环境海洋学、海气相互作用以及区海洋学等。应用与技术研究的分支有卫星海洋学、渔场海洋学、军事海洋学、海洋学、海洋声学、光学与遥感探测技术、海洋生物技术、海洋环境预报以工程环境海洋学等。管理、开发研究方面的分支有海洋资源、海洋环境功能区、海洋法学、海洋监测与环境评价、海洋污染治理、海域管理等。 海洋科学研究对象的特点:首先是特殊性与复杂性。其次,作为一个物理系统,海洋中水-汽-冰三态的转化无时无刻不在进行,第三,海洋作为一个自然系统,具有多层次耦合的特点. 海洋科学研究的特点:首先,它明显地依赖于直接的观测。这些观测应该是在自然条件下进行长期的,且最好是周密计划的、连续的、系统而多层次的、有区域代表性的海洋考察 其次是信息论、控制论、系统论等方法,在海洋科学研究中越来越显示其作用 第三,学科分支细化与相互交叉、渗透并重,而综合与整体化研究的趋势日趋明显 (二)地球运动和结构 2.[熟悉]:科氏力(地球自转偏向力)的作用;科氏力与地球自转产生的惯性离心力差别 3.[掌握]:地球圈层结构及内部和外部圈层的构成 4.[熟悉]:地球表面海陆分布的特点 科氏力的作用(地球自转偏向力)的作用:科氏力,又称科里奥利力,地转偏向力。是对于运动流体受力而言。由于地球自转,使球体上固体和流体运动差异的力。 无论地球上流体运动方向如何,地转偏向力在北半球始终向运动方向偏右90度,南半球始终向运动方向偏左90度。 地球圈层结构及内部和外部圈层的构成 地球是一个具有同心圈层结构的非均质体,以地球固体表面为界分为内圈和外圈,内圈和外圈又可再分为几个圈层,每个圈层都有自己的物质运动特征和物理化学性质。 外部圈层:地球固体表面以上,根据物质性状可以分为大气圈、水圈和生物圈。 内部圈层:地球内部物质呈同心层圈结构。在各圈层间都存在着地震波速度变化明显的界面(或称不连续面),其中最重要的界面有莫霍面(M面)和古登堡面(G面),它们把地球内

海洋平台基础知识

海洋平台基础知识系列 0. 海洋工程是什么?(名词解释) Ocean engineering 海洋工程,从地理的角度来说,可分为海岸工程、近岸工程(又称离岸工程)和深海工程三大类。一般来说,位于波浪破碎带一线的工程,为海岸工程;位于大陆架范围内的工程,为近岸工程;位于大陆架以外的工程,为深海工程,但是在通常情况下,这三者之间又有所重叠。从结构角度来说,海洋工程又可分为固定式建筑物和系留式设施两大类。固定式建筑物是用桩或者是靠自身重量固定在海底,或是直接坐落在海底;系留式设施是用锚和索链将浮式结构系留在海面上。它们有的露出水面,有的半露在水中,有的置于海底,还有一种水面移动式结构装置或是大型平台,可以随着作业的需要在海面上自由移动。 海洋工程是指以开发、利用、保护、恢复海洋资源为目的,并且工程主体位于海岸线向海一侧的新建、改建、扩建工程。具体包括:围填海、海上堤坝工程,人工岛、海上和海底物资储藏设施、跨海桥梁、海底隧道工程,海底管道、海底电(光)缆工程,海洋矿产资源勘探开发及其附属工程,海上潮汐电站、波浪电站、温差电站等海洋能源开发利用工程,大型海水养殖场、人工鱼礁工程,盐田、海水淡化等海水综合利用工程,海上娱乐及运动、景观开发工程,以及国家海洋主管部门会同国务院环境保护主管部门规定的其他海洋工程。 1: 海洋平台的类型: 海洋平台:(1)移动式平台: 坐底式平台 自升式平台 钻井船 半潜式平台 张力腿式平台 牵索塔式平台 (2)固定式平台:导管架式平台 重力式平台固定平台又可以分为桩式海上固定平台、重力式海上固定平台、自升式海上固定平台 导管架型平台:在软土地基上应用较多的一种桩基平台。由上部结构(即平台甲板)和基础结构组成。上部结构一般由上下层平台甲板和层间桁架或立柱构成。甲板上布置成套钻采装置及辅助工具、动力装置、泥浆循环净化设备、人员的工作、生活设施和直升飞机升降台等。平台甲板的尺寸由使用工艺确定。基础结构(即下部结构)包括导管架和桩。桩支承全部荷载并固定平台位置。桩数、长度和桩径由海底地质条件及荷载决定。导管架立柱的直径取决于桩径,其水平支撑的层数根据立柱长细比的要求而定。在冰块飘流的海区,应尽量在水线区域(潮差段)减少或不设支撑,以免冰块堆积。对深海平台,还需进行结构动力分析。结构应有足够的刚度以防止严重振动,保证安全操作。并应考虑防腐蚀及防海生物附着等问题。导管架焊接管结点的设计是一个重要问题,有些平台的失事,常由于管结点的破坏而引起。管结点是一个空间结点,应力分布复杂;近年应用谱分析技术分析管结点的应力,取得较好的结果。 混凝土重力式平台的底部通常是一个巨大的混凝土基础(沉箱),用三个或四个空心的混凝土立柱支撑着甲板结构,在平台底部的巨大基础中被分隔为许多圆筒型的贮油舱和压载舱,这种平台的重量可达数十万吨,正是依靠自身的巨大重量,平台直接置于海底。现在已有大约20座混凝土重力式平台用于北海 钻井船是浮船式钻井平台,它通常是在机动船或驳船上布置钻井设备。平台是靠锚泊或动力定位系统定位。按其推进能力,分为自航式、非自航式;按船型分,有端部钻井、舷侧钻井、船中钻井和双体船钻井;按定位分,有一般锚泊式、中央转盘锚泊式和动力定位式。浮船式钻井装置船身浮于海面,易受波浪影口向,但是它可以用现有的船只进行改装,因而能以最快的速度投入使用。适用于深海钻井的主要是两种浮式钻

遥感技术的运用与发展趋势

遥感技术的运用与发展趋 势 Prepared on 24 November 2020

我国遥感技术的运用与发展趋势 【摘要】面对新的世纪、新的形势,世界各国政府都在认真思考和积极部署新的经济与社会发展战略。尽管各国在历史文化、现实国情和发展水平方面存在着种种差异,但在关注和重视科技进步上却是完全一致的。这是因为,我们面对的是一个以科技创新为主导的世纪,是以科技实力和创新能力决定兴衰的国际格局。因此,我们要充分认识遥感技术,了解其发展现状及趋势。 【关键词】遥感技术现状趋势商业化 众所周知,近十年来全球空间对地观测技术的发展和应用已经表明,遥感技术是一项应用广泛的高科技,是衡量一个国家科技发展水平的重要尺度。现在不论是西方发达国家还是亚太地区的发展中国家,都十分重视发展这项技术,寄希望于卫星遥感技术能够给国家经济建设的飞跃提供强大的推动力和可靠的战略决策依据。这种希望给卫星遥感技术的发展带来新的机遇。 一、遥感信息技术基础 遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线结目标进行探测和识别的技术。例如航空摄影就是一种遥感技术。人造地球卫星发射成功,大大推动了遥感技术的发展。现代遥感技术主要包括信息的获取、传输、存储和处理等环节。这是20世纪60年代兴起的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术。从上个世纪六十年代提出“遥感”这个词,到1972年美国陆地卫星计划发射了第一颗对地观测卫星,经过几十年的发展,遥感技术已经广泛地应用在军事、国防、农业、林业、国土、海洋、测绘、气象、生态环境、水利、

第二章 海洋学基础知识及其应用

第一节海流 海流概述:1.海流的定义及分类 海流是指海水大规模相对稳定的流动,是海水重要的普遍运动形式之一。海流一般是三维的,由于海洋的水平尺度远远大于其垂直尺度,因此水平方向的流动远比铅直方向上的流动强得多。习惯上常把海流的水平运动分量狭义地称为海流,而其垂直分量称为上升流和下降流。海流的主轴是指海流流动方向上流速最大点的连线。海流的规模常用流幅来表示,流幅是指垂于主轴的水平宽度和上下厚度。海流的强弱常用平均流速或平均流量表示。 海流的单位常用kn(节)和n mile/d(海里/天)表示。海流是矢量,其方向以流的去向表示,通常以8方位或度数为单位。 按照海流的成因,海流可以分为风海流、梯度流、补偿流和潮流等;按照海流本身的温度与其所流经海域的温度高低,海流可以分为冷流、暖流和中性流;按照海流方向与海岸的相对位置,可以分为向岸流、离岸流和沿岸流。在海岸带实测到的海流通常是潮流、风海流、地转流等迭加后的合成海流,可以分解为周期性的海流(潮流)和非周期性的海流(余流)。实际的海流往往是多种原因共同作用的结果,在近海通常以潮流为主,在外海则以风海流为主。 2.海流的表示方法 海流多以矢量分布图来表示,常用的有流场分布图和海流频率玫瑰图。 表层海风流成因与特征:在无限深海中,由于地转偏向力作用,表层风海流的流向在北半球偏于风去向之右约45?,在北南球偏于风去向之左约45?。海流流向随着深度的增加而逐渐向右(南半球向左)偏转,流速随着深度的增加逐渐变小。到某一深度时,流向与表层海流相反而流速仅为表层流速的5%。 在浅海中,流向与海深、摩擦深度有关,流向与风向几乎一致。 地转流:地转流也称梯度流,它是指当等压面(海面)发生倾斜时,海水的水平压强梯度力和水平地转偏向力平衡时的稳定海流。根据引起等压面倾斜的原因不同,地转流又可分为倾斜流和密度流两种。 倾斜流是指在不均匀的外压场作用下的地转流。在海洋上大气压分布不均匀,大河入海的河口或迎风的海边出现的海水不均匀堆积等引起的海面(等压面)倾斜。观测者若背倾斜流而立,则右边等压面高,左边等压面低(南半球相反)。流速大小与等压面的倾斜程度有关,倾斜度越大,水平压力梯度也越大,流速就越大。 由于海水密度分布不均匀引起的等压面倾斜而产生的地转流称为密度流。观测者若背密度流而立,则右边等压面高,密度小(温度高);左边等压面低,密度大(温度低)。在南半球则相反。 冷流与暖流:海流的水温低于它所流经海域的水温称为冷流,亦称寒流。通常由高纬度流向低纬度的海流为冷流,如拉布拉多冷流、亲潮等。 海流的水温高于它所流经海域的水温称为暖流。通常由低纬度流向高纬度的海流为暖流,如墨西哥湾流、黑潮等。 海流的水温与它所流经海域的水温基本一致,称为中性流。通常沿东西方向流动的多属于中性流,如南、北赤道流等。

海洋遥感的应用与展望

海洋遥感的应用与展望 摘要:海洋遥感利用电磁波与大气和海洋的相互作用原理观测和研究海洋,以海洋及海岸带作为监测、研究对象,具有快速、多波段、周期性、大面积覆盖等观测能力的空间遥感技术。回顾了海洋遥感发展的4个阶段,介绍了海洋遥感在海洋资源环境调查、动态监测以及海洋污染等方面的应用。最后,提出了海岸带遥感动态监测技术的精确化和定量化研究、海洋遥感地理信息系统建设以及海洋小卫星遥感的应用是未来海洋遥感研究和应用的重点。 海洋覆盖地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间,“海洋是全球生命支持系统的一个基本组成部分,是一种有助于实现可持续发展的宝贵财富”(联合国《21世纪议程》,1992),开发利用海洋对人类生存与发展的意义日显重要。多年来国内外投入了大量的人力、物力和财力,利用先进的科学调查技术以求全面而深入地认识和了解海洋,指导人们科学合理地开发海洋、改善环境质量。传统的海岸调查在资料获取、信息处理等方面存在较大局限,主要表现在海岸环境的进入性与通达性较差;近海和海岸环境复杂多变,难以进行多变量同步控制观测;海岸环境变化周期长、信息量大,难以取得理想的可控制数据,在实时处理上也有很大困难。因而,常规的海洋观测手段不可能全面、深刻地认识海洋现象,也不可能掌握全球大洋尺度的过程和变化规律。在海洋资源开发、全球性环境变化监测、海洋权益的维护及沿海地区的综合开发和管理上,都需要有一种新的海洋观测技术替代或补充传统的常规海洋调查方法,而海洋遥感所具有的大范围实时同步、全天时、全天候多波段成像技术优势可以快速地探测海洋表面各物理参量的时空变化规律。海洋遥感(Oceanographic Remote Sensing)是指以海洋及海岸带作为监测、研究对象的遥感,包括物理海洋学遥感,如对海面温度、海浪谱、海风矢量、全球海平面变化等的遥感;生物海洋学和化学海洋学遥感,如对海洋水色、黄色物体、叶绿素浓度等的遥感;海冰监测,如监测海冰类型、分布和动态变化;海洋污染监测,如油膜污染等。海洋遥感是利用电磁波与大气和海洋的相互作用原理观测和研究海洋的,其内容涉及到物理学、海洋学和信息科学等多种学科,并与空间技术、光电子技术、微波技术、计算机技术、通讯技术密切相关,是20世纪后期海洋科学取得重大进展的关键学科之一,形成了从海洋波谱分析到海洋现象自动识别等一套完整的理论与方法。海洋遥感与常规的海洋调查手段相比具有许多独特的优点:首先,它不受地表、海面、天气和人为条件的限制,可以探测地理位置偏远、环境条件恶劣等不能直接进入的海区;其次,它的宏观特性使它能进行大范围海洋资源普查、海洋制图以及海冰、海洋污染监测;第三,能周期性地监测大洋环流、海面温度场的变化、鱼群的迁移、污染物的运移等;第四,多波段、高光谱海洋遥感可以提供海量海洋遥感信息,开拓人们的视野;第五,能达到同步观测风、流、污染、海气相互作用,并获取能量收支信息。 1 发展回顾 海洋遥感的发展过程,大致经历了4个阶段: 第1阶段(1957~1970年)是起步阶段。 自从1957年前苏联发射了第一颗人造地球卫星以后,人类就步入了太空时代,空间海洋观测是人类空间计划中最早的项目之一。1960年4月1日,美国宇航局(NASA)发射了第一颗气象卫星TIROS-Ⅰ(泰罗斯),其热红外图像能够显示无云海区丰富的海面温度信息,卫星数据由此成为海洋学研究的新的信息源。随后发射的TIROS-Ⅱ卫星,开始涉及海温观测。1961年美国执行水星计划,宇航员有机会在高空亲眼观察海洋。其后,Gemini与Apollo宇宙飞船获得大量的彩色图像以及多光谱图像。尽管这些航天计划主要试验目的是空间技术,但它已展现了从空间观测和研究海洋的潜力。

物理海洋复习提纲

《物理海洋学》复习提纲 (2012年12月) 第四章 基本方程 1、作用于海水微团的真实力有哪些? 答: 地球引力g * =02()M r a r μ-,压强梯度力1p ρ ?-,摩擦力F V μρ=?,天体引力(包括月球引力()02 M L X L L K μ=-和太阳引力()02 S L X L L K μ=- ) 2、基本方程由哪几个守恒定律推导而来?有几种方程组成? 答:()()()()1 20(,,)T D dV g p V F F dt V s V s k s t V t s p θρθ θκθρρθ?=-?-Ω?++?? ???=???+??=??????+??=???? =?? ——运动方程动量守恒——连续方程质量守恒——盐量扩散方程盐量守恒——热传导方程热量守恒——海水状态方程 3 边界条件出现的物理原因? 答: 海洋是有边界的,它与大气、海底和海岸线之间存在着不连续界面。而这种不连续界面基于连续性的海水运动基本方程组不能应用,必须用边界条件来代替。 4、基本方程及边界条件为什么要进行时间平均? 答: 通常情况下,海水运动处于湍流状态。处于湍流运动状态的流体质点其运动轨道是无序的、随机的。各质点之间存在着不连续的相对运动,这种运动被称为脉冲运动。这种运动分析起

来很困难,通过时间平均,可以将海水运动中的脉动特征分离掉,从而更利于体现海水运动的整体规律。 5、准静力近似、f 平面近似、β平面近似和Boussinesq 近似的概念。 答: 准静力近似:静力方程10p g z ρ?- -=?0z p p gdz ζρ?=+?,其中0p 为海面气压,z gdz ζρ?为z 点以上单位底面积水柱的重量。任意点压强等于海面大气压强与该点以上水柱重量之和,这就是准静力近似又叫静压假设。 f -平面近似:在大尺度运动中,为了理论上研究方便,在不影响海水运动主要特征的情况 下,常常取02sin f f ω?==,即认为海水运动发生在科氏力参量为常数0f 的平面上,该平面叫做f -平面,在该平面上研究海水运动称为f -平面近似。 β-平面近似:科氏参数f 是纬度y 的非线性函数,近似地将f 表示为0f f y β=+的线 性函数,这种近似称为β-平面近似。 Bounssinesq 近似:在海水运动基本方程组中,近似认为海水是不可压缩的,以体积连 续方程0V ??=来买描述海水的连续性。微小密度扰动'ρ仅在z 方向的运动方程中对浮力项' g ρρ 有意义,其与方程中均以c ρ代替ρ。这种近似叫做Bounssinesq 近似。 第五章 海流 1 海流、地转流、惯性流的定义。 答: 海流:海水沿一定途径相对稳定的大规模流动。 地转流:大尺度海水在压强梯度力和Coriolis 力平衡下的流动。这种流动基本上是近似水平的,也可近似认为是定常的。 惯性流:风力维持的漂流流出风力强制作用区域,变为自由流动。其运动的前支持度远小于

海洋基础知识

中国海洋 1、中国海域辽阔,海岛广布,大约有多少个面积大于500平方米的海岛?6500多个。 2、我国面积最大的三个海岛的名字就是什么? 台湾岛、海南岛与崇明岛。 3、我国以海岛组成的省级行政建制有几个? 我国以海岛组成的省级行政建制有2个,就是台湾省与海南省。 4、我国各海区海岛最多的、最少的分别就是哪个海区? 我国各海区海岛数最多的就是东海海区,海岛数最少的就是渤海海区。 5、我国已探明海洋石油天然气储备量最大的海区就是哪个海区?南海海区。 6、我国近海各海区按面积如何排序? 面积最大的就是南海,其次就是东海与黄海,面积最小的就是渤海。 7、我国近海各海区中平均水深最浅与最深的分别就是哪个海区? 平均水深最浅的就是渤海海区,最深的就是南海海区。 8、我国海岛最多的省份就是哪个省份?浙江省。 9、我国哪个海区潮汐能最为丰富?浙闽沿海。 10、我国最大的产盐省份就是?山东 11、我国鱼种最多的海区就是哪个?南海海区 12、我国面积最大的珊瑚岛就是哪个岛?最大的群岛就是哪个岛? 我国面积最大的珊瑚岛就是位于西沙群岛西部的永兴岛,面积为1、85平方千米。面积最大的群岛就是舟山群岛。 13、我国沿海有哪些重要的港口? 到2004年底,沿海港口共有中级以上泊位2500多个,其中万吨级泊位650多个;全年完成集装箱吞吐量6150万标准箱,跃居世界第一位。一些大港口年总吞吐量超过亿吨,上海港、深圳港、青岛港、天津港、广州港、厦门港、宁波港、大连港八个港口已进入集装箱港口世界50强。

14、我国年吞吐量最大的就是哪个港口?上海港。 15、郑与几次出使西洋? 郑与于1405-1433年的28年中七次出使西洋,经东南亚、印度洋到达红海与非洲,遍及亚洲、非洲30多个国家与地区。最远到达赤道以南的非洲东海岸与马达加斯加岛。 16、《南京条约》中,我国被迫开放的通商口岸有哪几个? 《南京条约》,旧称《江宁条约》于1842年8月29日在南京签订,我国被迫开放广州、福州、厦门、宁波、上海五个通商口岸。 17、我国的内海就是哪个海? 渤海就是我国的内海,面积为7、7万平方千米。 18、我国的黄河与长江最终分别流入哪个海区? 黄河最终流入我国的渤海海区;长江最终流入我国的东海海区。 19、我国大陆海岸线、岛屿岸线总长度分别约为多少千米? 我国大陆海岸线总长度约为18000千米;我国岛屿岸线总长度约千米。 20、我国目前已经建立了多少个国家级海洋自然保护区?30个。 21、我国目前已经命名了获得国际SC(A)R组织承认的南极地名大约有多少个?300个。 22、我国最北面的出海口在哪里?图门江。 23、《中华人民共与国专属经济区与大陆架法》对我国大陆架就是如何规定的? 《中华人民共与国专属经济区与大陆架法》规定我国的大陆架为领海以外依陆地领土的全部自然延伸,扩展到大陆外边缘的海底区域的海床与底土。 24、我国法律关于内水的权益就是如何阐述的? 《中华人民共与国领海及毗连区法》规定:我国的领海基线向内陆一侧的水域为我国的内水。内水属于国家领土的一部分,完全受国家的主权管辖;所有外国船舶非经许可不得在一国的内水航行;外国渔船不得进入内水从事捕鱼活动。 25、我国政府关于领海宽度就是如何主张的?

相关主题
文本预览
相关文档 最新文档