当前位置:文档之家› 锅炉温度控制系统的设计

锅炉温度控制系统的设计

锅炉温度控制系统的设计
锅炉温度控制系统的设计

综述

锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。

本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。

一.系统总体设计

1.1 系统总体设计方案

设计框图如下所示:

图1-1系统框图

1.2 单元电路方案的论证与选择

硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。

1.2.1 温度信号采集电路的论证与选择

采用温度传感器DS18B20

美国DALLAS公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。

DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。

1.2.1输入输出通道及其接口设计

1)温度检测模拟输入通道设计

图1-2 输入通道原理图

设V /F 变换器的额定输出频率为F ,计数器对输出脉冲的计数时间为Ts ,A /D 转换结果的分辨率为i ,则有:

s

i

s F T 2

取Ts =1s ,则在V /F 的输出频率范围0~10kHz 内,可以得到13位的A /D 转换结果。 2) 晶闸管数字触发输出通道设计

晶闸管的工作方式有:调压方式; 调功方式

调压方式:是通过利用移相触发脉冲调节晶闸管的导通角,使输入到电加热元件的电压改变,达到调节用电器的输入功率,来实现控制目的 。

图1-3 调压方式原理图

图1-4 波形图

调功方式:触发电路采用的是过零触发方式,外加正弦电压过零时控制信号才使晶闸管的触发导通,则负载上得到的电压是一个正弦波。

调功方式输入电炉的平均功率为:

R

U N n P 2

P ——输入电炉的功率;R ——负载有效电阻;U ——电网电压 ;n ——允许导通的波头数;N ——设定的波头数。

当 n =0时,电炉的输入功率为零;

n =N 时,电炉的输入功率为满功率。 由以上分析可得晶闸管数字触发输出通道设计

图1-4 过零检测同步脉冲电路

图1-5 波形图 3) 拨码盘给定输入通道

拨码盘作为数字量的输入设备,设定和修改码盘值可作为控制系统的给定值。输入非数字信息时,需要事先将非数字信息转换为数字代码,再由拨码盘输入。

4) 数码显示输出通道 包括: 数字量输出接口电路;锁存译码驱动电路;七段数码管显示器。

5) 打印机输出通道 包括: 系统配置了通用打印机接口电路; 打印内容包括表头、制表、采样数据和采样时间。

二.系统框图

2.1系统原理图

T1

2.2系统框图

由系统原理图可画出系统的结构框图为

z)

闭环控制系统是指控制器与被控对象之间既有顺向控制又有反向联系的控制系统。

闭环控制系统优点----不管任何扰动引起被控变量偏离设定值,都会产生控制作用去克服被控变量与设定值的偏差。因此闭环控制系统有较高的控制精度和较好的适应能力,其应用范围非常广泛。

缺点---闭环控制系统的控制作用只有在偏差出现后才产生,当系统的惯性滞后和纯滞后较大时,控制作用对扰动的克服不及时,从而使其控制质量大大降低。

在闭环控制系统中,根据设定值的不同形式,又可分为定值控制系统,随动控制系统和程序控制系统

3.温度系统控制器的设计

由以上分析可知,锅炉的温度控制系统可以近似为二阶系统,可表示为)

1(1)(+=s s s G o ,

以大林算法设计数字控制器D (z)。设采样周期T=0.5s 。

3.1计算广义对象的脉冲传递函数

)

1)(1(])1()1[()

1)(1()1)(1()1(1111)1(1111)1()1(1)1()1(1

1)(11111

1

2

1

1

1

1

1121

1

21

21

)

1()

1(11z e z z e e e

z z e z

z z

e z

z

e z

z e z z z z

s z s z e T T T T T

T

T

T Ts T T T

T s s Z s Z s s s Z z G -----------------------------+-+=

--

+--

--=???

?????-+--?-=??

?

?

????++-?-

=??

??????+?-=??

?

?????+?-=----

把T=0.5s 、 607.05.0==--e e T 代入得

)

607.01)(1()832.01(107

.0)(1

1

1

1z z z z z G ------+=

3.2 )(z Φ的计算

由于 )

1()1()(1

//1

z

e e z

T T N z -------=

Φτ

τ

此处N=0、T=0.5s ,τ是整个系统(包括数字控制器和被控对象)的时间常数,代入上式得

)

1()1()(1

//1

z

e e z

T T z ------=

Φτ

τ

由于 )

(1)(z z G e

Φ-=

所以 )

1()(1)(1

/1

1z e z G T e z z ----=Φ-=-τ

3.3数字控制器的设计

由数字控制器的公式

)

()()()(Z z G z z D G e Φ=

把式(3)中的)()(z z G e 和Φ代入式(4)得数字控制器

z z e T z D 1

1/832.01)607.01)1(934.0)(---+--=

(τ

3.4消除振铃现象

由于直接用大林算法构成的闭环控制系统时,数字控制器的输出U (z )会以1/2的采样频率大幅度上下摆动,我们把这种现象叫做振铃现象。振铃现象与被空对象的特性、闭环时间常数、采样周期、纯滞后时间的大小等有关,振铃现象中的震荡是衰减的,并且由于被控对象中惯性环节的低通特性,使得这种震荡对系统输出几乎无任何影响,但是振铃现象却会增加执行机构的磨损。所以要想尽办法消除振铃现象。

由于令z=-1附近的极点会引起振铃现象,为消除振铃令现象,令z=-1附近的极点的z=1,代入上式得

)607

.01)1(510.0)(1

/z

e T z D ----=(τ

4.硬件设计

本控制系统原理框图如图1所示,它由以下几个模块构成:信号转换及调理电路、数据采集模块、数据显示模块、脉宽调制控制及驱动电路和执行机构。

图4-1系统硬件电路

4. 1.信号转换及调理电路

信号转换调理就是将温度信号转化为电信号,然后调理为可采集的电压信号。具体电路参见图。

图4-2信号转换及调理电路

4.2 数据采集模块

通过A/D转换器将输入的模拟电压量转换为数字量,并通过并行接口芯片将数字

量送给计算机。本控制系统A/D转换器采用高精度的MC14433,图为MC14433的典型电路图。

MC14433是三位半十进制(即11位二进制数)的双积分式模数转换器,转换速率为4-10Hz,它无控制启停信号,一旦上电,就不断地转换。转换结果采用BCD码动态扫描输出,它的千位、百位、十位、个位的BCD码输出为分别与DS1、DS2、DS3、DS4输出高电平是相对应,由于它们无三态特性,不可与PC机直接相连,因此要通过并行接口芯片相连接。又因为MC14433无内部参考电压源,因此利用低温漂的集成化的精密电源MC1403来产生稳定的参考电压。

图4-3数据采集电路

4.3数据显示模块

PC机将采集到的温度值经处理后送往LED数码管上显示,并在屏幕上打印出控制曲线。这部分可利用PC微机总线接口实验装置上的现有资源,在实验装置上本模块提供了六个LED数码管,CPU通过两个端口来驱动LED数码管,分别为段输出选通端和位选通端。数据的输出显示采用动态扫描方式,利用眼睛的视觉惯性来实现稳定的数字显示。

4. 4.脉宽调制控制及驱动电路

脉宽调制控制及驱动部分的原理图(图中包括执行机构部分)如下:

图 4-4 脉宽调制控制及驱动电路

本电路用于完成反馈控制的功能,利用PC机输出的经PID控制算法处理后的误差信号去控制产生具有一定占空比的脉冲,并送往驱动电路进行脉冲放大。改变占空比的调节方法有脉宽调制(PWM)和脉频调制(PFM)。由原理图可知本系统采用PWM方式,即工作频率不变,通过改变后级电路的导通与截止比来改变占空比。图上所示各点的波形具体体现了本电路的工作过程。

4.5.执行机构

这部分电路比较简单,由双向可控硅(晶闸管)及电路组成,见图所示。晶闸管一旦触发,管子就导通,把控制信号减少甚至完全去掉,它仍然导通,只有当阳极电流减少到维持电流以下,管子才会截止。不过双向可控硅则无所谓阴、阳极。本电路可控硅采用BT138 600E,见图,其中T1:主端子 T2:主端子 G:门极

5软件设计

系统控制程序的任务:

a)系统初始化。

b)多路模拟转换开关的切换控制。

c)温度反馈信号采样和数字滤波、线性化处理。

d)读给定输入值,且将BCD码转换为二进制码。

e)完成系统的控制算法和控制输出。

f)定点或巡回显示温度值和网带速度值。

g)定时打印时间、温度和网带运行速度。按控制功能将程序分成三个程序模块:

5.1系统初始化程序模块

系统初始化包括:

a)设置堆栈;

b)清除动态数据缓冲区;

c)初始化打印缓冲区;

d)设置计数器的控制字和计数初始值;

e)设置时钟系统的初始值;

f)设置控制算法程序的初始值;

g)系统中断控制初始化等。

5.2外部中断服务程序模块

中断服务程序的任务:

1)读取A/D转换结果,以BCD码的形式送到数码管中显示。

2)读取温度给定值并将BCD码转换为二进制码。

3)外部中断产生ls钟内,将多路模拟转换开关切换到下一个通道。

5.3定时打印程序模块

实现任务:

1)实时时钟程序

2)根据设定时间完成打印控制

图5-2 定时打印程序模块流程图

6.系统仿真

分别进行给定值变化和干扰变化仿真,并与PID控制的变化加以比较,整理得下

图6-1 燃烧系统的内模控制与PID控制的阶跃响应曲线由图6-1可以看出,内模控制比普通PID控制更能获得良好的动态效应,稳定速度快,超调量减小,抗干扰能力强。

系统投入运行之后,满足了系统的控制要求。该系统操作简便,使用维护

方便,性能可靠;采用微机控制,提高了产品质量;改善了劳动条件,消除了人为因素;易于现代化管理和产品质量分析。

结论

本文针对锅炉燃烧系统具有大时滞的特点,采用一阶纯滞后模型作为实际过程对象的模型,并根据内模控制的原理设计了控制器进行仿真,并与普通PID 控制进行比较。仿真控制效果表明,内模控制比PID控制超调小,提高了稳定速度及抗干扰能力,且兼顾了鲁棒性和稳定性。因为实际工业中普遍存在大时滞系统,且内模控制器设计方便,因此这种控制方法不仅用于锅炉燃烧系统,还可推广用于其他具有大时滞的过程中。

课程设计体会

通过这次计算机控制技术课程设计使我对所学的计算机控制技术理论知识有了深层次的理解和掌握,增强了自己对所学计算机控制技术理论知识的灵活运用,增强了自己的独立思考和创新综合素质能力,尤其是运用理论知识解决实际问题的能力。通过本次课程设计把自己所学的计算机控制技术分散理论知识联系起来,使自己所学的计算机控制技术理论知识形成了一个体系。

这次课程设计,也让我更加清楚的认识到理论与实践的关系-----只有把理论与实践紧密结合起来,理论知识才能变成有应用价值的灵活知识。认识到理论知识只有运用于实践才能产生巨大的经济利润和社会价值,而实践只有在科学正确理论指导下才能取得成功和硕果。科学正确的理论知识是推动人类实践活动前进的强大精神武器,而实践活动是检验理论正确与否的唯一标准也是理论产生的源泉。理论与实践紧密联系,相互依存。

同时这次课程设计,更是增强了自己的实践动手能力,尤其遇到问题而深入实际生活加深了对理论的认识,对实际生活的体会有助于以后专业知识的学习和

研究,明白了科学理论的重要性。

当然在这次课程设计,也发现了自己的很多不足之处,比如对所学计算机控制技术原理掌握的还不够牢固,知识应用不够灵活,不能触类旁通举一反三等。在以后的学习中一定要脚踏实地、一丝不苟的对待所学专业知识,认真学习、精益求精为将来的学习、研究和工作奠定坚实的理论基础,在以后的学习中多参与实际生活问题的思考,多参加实践活动!

姓名:刘向明

学号:0506040118

日期:2008.6.22

参考文献

[1] 姜学军主编.计算机控制技术. 清华大学出版社,2005

[2]潘永湘,杨延西,赵跃编著.过程控制与自动化仪表.机械工业出版社,2007

[3] 张明达主编.电力拖动控制系统. 北京:冶金工业出版社,1983

[4] 孙虎章主编.自动控制系统. 北京:中央广播电视大学出版社,1984

[5] 黄柯棣主编.系统仿真技术. 长沙:国防科技大学出版社,1998

[6]钟禕勍,李克鹏,钟录生,李兆生编著.基于MATLAB的内模控制器的简单设计实现[J].可编程控制器与工厂自动化(PLC FA),2004

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

锅炉温度串级控制系统的设计说明书

1 前言 (1) 2 控制系统的总体方案 (2) 2.1 概述 (2) 2.2 控制方式的确定 (2) 2.3检测元件和执行机构的选择 (3) 2.4微型计算机的选择 (4) 2.5输入输出通道及外围设备的选择 (6) 2.6系统的原理框图 (6) 3 控制算法的选择和参数计算 (8) 3.1 控制算法的选择 (8) 3.2 参数的计算 (8) 4系统硬件设计 (16) 4.1概述 (16) 4.2 系统的硬件设计 (16) 4.3系统电气原理图 (33) 4.4 元器件明细表 (34) 5 软件程序的编制 (35) 5.1概述 (35) 5.2程序流程图 (35) 5.3 地址分配 (40) 5.4程序设计 (40) 6 控制系统的调试与实验 (42) 6.1单元电路调试 (42) 6.2 程序调试 (42) 6.3 系统调试 (43) 6.4 系统实验和结果分析 (43) 7 设计总结 (44) 7.1 系统具备的主要功能 (44) 7.2 系统的测量精度 (44) 7.3 存在的问题及改进措施 (44) 参考文献 (46) 致谢 (47)

1 前言 随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。而锅炉温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常必要的。而锅炉系统是一个具有时变和时滞的比较复杂的系统,因此,对锅炉温度进行控制是工业过程控制中一个重要而且困难的问题。由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果[1]。 由于PLC具有高可靠性、易于实现等优点,在工业控制领域中得到了广泛的应用。进入21世纪以来,PLC已经由原来的逻辑控制器发展成具有较强的数据处理能力、通讯能力的标准工控设备,用其进行各种算法的实现是工控领域的发展趋势。 本设计以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID 算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制[2]。 本文对锅炉温度控制系统的硬件和软件都进行了介绍,全文主要有5个部分。 第1部分是对锅炉温度控制系统的总体方案的介绍。控制总体方案的设计是系统设计的核心。若设计方案设计不正确,则无论选用何种先进的过程控制仪表或计算机系统,其安装如何细心,都不可能使系统在工业生产过程中发挥良好的作用,甚至系统不能运行。 第2部分是对锅炉温度控制系统控制算法的选择和参数的设置进行了介绍。采用合适的控制算法能更好地对整个系统进行控制。 第3部分是锅炉液位控制系统硬件的设计,对选择的仪表、设备等的性能、使用方法和接口要求等进行了介绍。 第4部分是对锅炉液位控制系统软件程序的编制,主要是采用PLC梯形图编程语言进行编程,并写出相应的流程图和地址分配。 第5部分是对锅炉温度控制系统的调试与实验。其中包括单元电路调试、程序调试、系统调试、系统试验和结果分析。

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式 版

蒸汽过热器(锅炉)爆管剖析——调节 蒸汽温度正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2 面式减温器与省煤器进水示意图注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉

工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。

51单片机的热水锅炉温度控制系统设计

0 基于单片机热 水锅炉炉温控制系统设计

东北大学秦皇岛分校基于单片机的热水锅炉温度控制系统设计dennis 基于单片机热水锅炉炉温控制系统设计 作者:陈明 单位:东北大学秦皇岛 【摘要】本系统是基于单片机的锅炉温度控制,在设计中主要有温度检测、按键控制、水温控制、循环控制、显示部分、故障报警等几部分组成来实现温度控制。主要用数字温度传感器DS18B20来检测水温,用五个控制按键来实现按健控制,用液晶显示屏LCD1602来完成显示部分。并且通过模数转换把这些信号送入单片机中。把这些信号与单片机中内部设定的值相比,以判断单片机是否需要进行相应的操作,即是否需要打开或者关闭温度加热的操作,从而实现单片机自动控制的目的。本设计用单片机控制易于实现锅炉供暖、而且有造价低、程序易于调试、一部分出现故障不会影响其他部分的工作、维修方便。 【关键词】单片机(AT89C51),传感器DS18B20,扬声器,继电器 引言 自从20世纪90年代以来,单片机已经进入了一个高速发展的阶段,世界上著名的半导体厂商都注重新型单片机的研制、生产和推广。单片机的应用已经深入到来各个国家的国民经济当中。例如国内外目前知名的企业:atmel公司的avr单片机,motorola单片机,MICROCHIP单片机,东芝单片机,intel的8051单片机,宏晶STC单片机等等。 温度自动控制系统主要是有温度采集系统、液晶显示系统、扬声器报警系统和继电器控制系统四部分组成。本次设计主要是以温度采集到的温度为参考。如果温度在设定值内部,则系统正常工作,本系统的温度正常范围为0-50摄氏度,如果超出温度范围,则系统发出警报并控制系统负载停止工作。温度控制系统的编程软件为keil,仿真软件为proteus。 1. 热水锅炉温度控制系统设计 1.1方案极其论证 方案一: 用PLC做主要的设计技术,通过用其中的相关部件的开关控制达到锅炉水温的控制目的。但是由于对PLC相关配套的设备和仿真软件的限制,因此放弃了PLC方案。

锅炉内胆温度控制系统设计

锅炉内胆温度控制系统设计 一.引言 过程控制是自动化的重要分支,其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、建材、核能、环境等许多领域,在国民经济中占有极其重要的地位。无论是在现代复杂工业生产过程中还是在传统生产过程的技术改造中,过程控制技术对于提高劳动生产率、保证产品质量、改善劳动条件以及保护生态环境、优化技术经济指标等方面都起着非常重要的作用。 过程控制的主要任务是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度、PH值和物性等)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,是连续型生产过程自动的进行下去。实际的生产过程千变万化,要解决生产过程的各种控制问题必须采用有针对性的特殊方法与途径。这就是过程控制要研究和解决的问题。二.任务和要求 任务:设计锅炉内胆温度控制系统,选择合适的传感器、控制器和执行器,使其满足一定的控制要求。 要求:本系统的控制对象为锅炉内胆的水温,要求锅炉内胆的温度的稳定值等于给定值,误差保持在 5%的误差带以内。 三.总体方案 系统组成:本实验装置由被控对象和控制仪表两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。1.原理框图 图1

2.简要原理 单闭环锅炉水温定值控制系统的结构示意如课程设计指导书所示,图1为其结构框图。其中锅炉内胆为动态循环水,磁力泵、电动调节阀、锅炉内胆组成循环供水系统。而控制参数为锅炉内胆的水温,即要求锅炉内胆的水温等于设定值。先通过变频器-磁力泵动力支路给锅炉内胆打满水,然后关闭锅炉内胆的进水阀。待系统投入运行后,再打开锅炉内胆的进水阀,允许变频器-磁力泵以固定的小流量使锅炉内胆的水处于循环状态。在锅炉内胆水温的控制过程中,由于锅炉内胆由循环水,因此锅炉内胆循环水水温控制相比于内胆静态水温控制时更充分,因而控制速度有较大的改善。 在结构原理框图中可以清楚的看出,我们给定温度的设定值,将温度传感器的值与设定值相比较,把偏差值送入PID调节器,PID调节器的输出信号送入可控硅调压装置,经调压装置输出的电压信号来控制加热装置的阻值,从而控制锅炉内胆的水温。此控制系统为单闭环反馈系统,只要PID参数设置的合理,就能够使系统达到稳定。 3.优缺点分析 优点:单闭环系统结构简单,稳定性好、可靠性高,在工业控制中得到广泛的应用。 缺点:对动态特性复杂、存在多种扰动或扰动幅度很大,控制质量要求高的生产过程,简单控制系统难以满足要求 四.元器件的选择与参数整定 1.元器件的选择: (1)被控对象 由不诱钢储水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒构成)、冷热水交换盘管和敷朔不锈钢管道组成。 模拟锅炉:本装置采用模拟锅炉进行温度实验,此锅炉采用不锈钢精制而成,设计巧妙。 管道:整个系统管道采用不诱钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀步打开直接将水排出。 (2)检测装置 变送器:采用工业用的扩散硅压力变送器,含不诱钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。经过调节器的温度变送器,可将温度信号转换成4~20mA DC电流信

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

锅炉温度控制系统的设计

综述 锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。 本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。 一.系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择

硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS 公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU 连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM 存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。 1.2.1输入输出通道及其接口设计 1)温度检测模拟输入通道设计 图1-2 输入通道原理图 设V /F 变换器的额定输出频率为F ,计数器对输出脉冲的计数时间为Ts ,A /D 转换结果的分辨率为i ,则有: s i s F T 2 取Ts =1s ,则在V /F 的输出频率范围0~10kHz 内,可以得到13位的A /D 转换结果。

锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计 一、摘要 这次课程设计任务是对锅炉过热蒸汽温度控制系统进行设计与分析。在控制系统的设计与分析中,分别对串级控制系统和单回路控制系统进行了分析与阐述,通过分析比较发现,采用串级控制系统控制效果更好,可以使系统更能适应不通环境,从而达到更好的控制效果。通过使用该控制系统,可以使锅炉过热器出口蒸汽温度在允许的范围内变化,并保证过热器壁温度不超过工作允许的温度,使其能够正常工作。 二、锅炉设备的介绍及设计任务的分析 1、锅炉设备介绍 锅炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 锅炉设备根据用途、燃料性质、压力高低等有多种类型和名称,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。

过热蒸汽送负荷设备 热空气汽包 炉膛 烟气排出 冷空气送入 水送入 热空气送往炉膛过热器 减温器 空气预热器 图1锅炉设备主要工艺流程图 锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。为达到这些控制要求,锅炉设备将有多个不同的控制系统,如下: 锅炉汽包水位控制系统,要求保证汽包水位平稳; 锅炉过热蒸汽温度控制系统,要求保证过热蒸汽温度稳定; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现逻辑提量和逻辑减量; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现燃烧过程的经济运行; 锅炉炉膛负压控制系统,要求保证炉膛负压在一定范围内,以保证锅炉的安全运行。 锅炉安全连锁控制系统,以防止回火和脱火。 本设计根据任务要求主要对锅炉过热蒸汽温度控制系统进行设计与分析。 2、任务分析与设计思路 锅炉过热蒸汽温度控制系统则是锅炉系统安全正常运行,确保蒸汽质量的重要部分。这个设计我们的任务是锅炉过热蒸汽温度控制系统的设计与分析。 蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是使过热器

管式加热炉温度-温度串级控制系统的设计

课程设计任务书 学生姓名:方诗豪专业班级:自动化0804 指导教师:傅剑工作单位:自动化学院 题目: 管式加热炉温度-温度串级控制系统的设计 初始条件: 管式加热炉是石油工业中重要的设备之一,它的任务是把原油加热到一定的温度,以保证下一道工序的顺利进行。加热炉的工艺过程为:燃料油经雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管后,就被加热到出口温度。试以温度-温度串级控制控制策略设计过程控制系统,使得管式加热炉出口温度为为70℃,稳态误差±2℃。 要求完成的主要任务: 1、了解管式加热炉工艺设备及其工作流程 2、基于对象特点分析,绘制控制系统方案图 3、确定系统所需检测元件、执行元件、控制器技术参数 4、撰写系统调节原理及调节过程说明书 5、总结课程设计的经验和收获 时间安排 12月19日选题、理解课题任务、要求 12月20日方案设计 12月21~28日参数计算、撰写说明书 12月29日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 前言 (2) 1设计的目的及意义 (3) 1.1管式加热炉简介 (3) 1.2 设计目的及意义 (4) 2 管式加热炉温度控系统工作原理及控制要求 (4) 3 总体设计方案 (5) 3.1 温度—温度串级控制系统 (5) 3.2 方案特点 (6) 4 串级控制系统分析 (6) 4.1 主回路设计 (6) 4.2 副回路选择 (7) 4.3 主、副调节器规律选择 (7) 4.4 主、副调节器正反作用方式确定 (7) 4.5 控制器软件设计 (7) 4.6数字PID控制器参数整定 (9) 5 各仪表的选取及元器件清单 (10) 5.1 温度检测元件 (10) 5.2 温度变送器 (12) 5.3 调节阀 (13) 5.4 联锁保护 (13) 6 感受和体会 (14)

组态软件课程设计锅炉温度监控系统设计

河南机电高等专科学校自动控制系 《组态软件及应用》课程设计报告 题目:锅炉温度监控系统设计 系部: 自动控制系 专业: 电气自动化技术 班级: ccc 姓名: XXX 学号: 1XXXX 指导老师: xxx 成绩: 二零一五年十二月二十五日 目录 前言................................................................................ 错误!未定义书签。第1章设计任务和目的............................................................. 错误!未定义书签。第2章总体方案设计 ............................................................... 错误!未定义书签。第3章硬件和软件................................................................. 错误!未定义书签。 3.1PC系统............................................ 错误!未定义书签。 3.2PLC .............................................. 错误!未定义书签。 3.3传感器............................................ 错误!未定义书签。 3.4液位计、压力计...................................... 错误!未定义书签。 3.5泵、阀............................................ 错误!未定义书签。 3.6报警器............................................ 错误!未定义书签。 3.7软件.............................................. 错误!未定义书签。

锅炉过热蒸汽温度控制系统

锅炉过热蒸汽温度控制系统 在燃煤锅炉运行中,过热蒸汽温度是一个很重要的控制参数。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度较高,可能造成过热器蒸汽管道损坏;过热蒸汽温度过低,会降低内功率。所以在锅炉运行中,必须保持过热蒸汽温度稳定在规定值附近。 本文介绍模糊控制在中小型燃煤锅炉过热蒸汽温度中的应用,采用模糊控制系统的思路,并用此方法控制燃煤锅炉的过热蒸汽温度,使得锅炉过热蒸汽温度即使在扰动幅度较大的情况下仍能保持平稳。模糊控制的控制算法不依赖于对象的数学模型,算法简单,易于实现,且对干扰和对象模型时变具有较强的适应性,它能根据输出偏差的大小进行自动调节,使输出达到给定值。能提高国内锅炉的燃烧效率、燃料适应性、负荷调节性能、污染、灰渣等众多独特优点而受到越来越广泛的重视,在电力、供热、工厂蒸汽生产中得到越来越广泛的应用。 以某600MW汽轮发电机组的汽包锅炉为例,其过热蒸汽生产流程简图和流程图如下图所示: 过热蒸汽流程图

1. 1 过热蒸汽温度控制的任务 过热蒸汽温度控制的主要任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全;过热蒸汽温度偏低,则会降低发电机组能量转换效率。据分析,气温每降低5℃,热经济性将下降 1 %;且汽温偏低会使汽轮机尾部蒸汽湿度增大,甚至使之带水,严重影响汽轮机的安全运行。该机组要求控制过热蒸汽温在5 3 8~ 5 4 8℃的范围内。 2 .2 影响过热蒸汽温度的主要因素 2 .2. 1 燃料、给水比(煤水比) 只要燃料、给水比的值不变,过热汽温就不变。只要保持适当的煤水比,在任何负荷和工况下,直流锅炉都能维持一定的过热汽温。 2.2. 2 给水温度 正常情况下,给水温度一般不会有大的变动;但当高压加热器因故障退出运行时,给水温度就会降低。对于直流锅炉,若燃料不变,由于给水温度降低时,加热段会加长、过热段缩短,因而过热汽温会随之降低,负荷也会降低。 2.2. 3 过剩空气系数 过剩空气系数的变化直接影响锅炉的排烟损失。影响对流受热面与辐射受热面的吸热比例。当过剩空气系数增大时,除排烟损失增加、锅炉效率降低外炉膛水冷壁吸热减少,造成过热器进口温度降低、屏式过热器出口温度降低;虽然对流过热器吸热量有所增加,但在煤水比不变的情况下,末级过热器出口汽温会有所下降。过剩空气系数减小时的结果与增加时的相反。若要保持过热汽温不变,则需重新调整煤水比。 2.2. 4 火焰中心高度 火焰中心高度变化造成的影响与过剩空气系数变化的影响相似。在煤水比不变的情况下,火焰中心上移类似于过剩空气系数增加,过热汽温略有下降;反之,过热汽温略有上升。若要保持过热温不变,亦需重新调整煤水比。 2.2. 5 受热面结渣 煤水比不变的调节下,炉膛水冷壁结渣时,过热汽温会有所降低;过热器结渣或积灰时,过热汽温下降较明显。前者情况发生时,调整煤水比就可;后者情况发生时,不可随便调整煤水比,必须在保证水冷壁温度不超限的前提下调整煤水比。对于直流锅炉,在水冷壁温度不超限的条件下,后四种影响过热汽温因素都可以通过调整煤水比来消除;所以,只要控制、调节好煤水比,在相当大的负荷范围内,直流锅炉的过热汽温可保持在额定值。此优点是汽包锅炉无法比拟的;但煤水比的调整,只有自动控制才能可靠完成。

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

火电厂燃煤锅炉温度控制系统

火电厂锅炉温度控制系统 锅炉温度的控制效果直接影响着产品的质量,温度低于或高于要求时要么不能达到生产质量指标有时甚至会发生生产事故。采用双交叉燃烧控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变 量设计火电厂锅炉温度控制系统,以达到精度在5 ℃范围内。 工程控制是工业自动化的重要分支。几十年来,工业过程控制获得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及能源的节约都起着重要的作用。 生产过程是指物料经过若干加工步骤而成为产品的过程。该过程中通常会发生物理化学反应、生化反应、物质能量的转换与传递等等,或者说生产过程表现为物流过变化的过程,伴随物流变化的信息包括物流性质的信息和操作条件的信息。 生产过程的总目标,应该是在可能获得的原料和能源条件下,以最经济的途径,将原物料加工成预期的合格产品。为了打到目标,必须对生产过程进行监视和控制。因此,过程控制的任务是在了解生产过程的工艺流程和动静态特性的基础上,应用理论对系统进行分析与综合,以生产过程中物流变化信息量作为被控量,选用适宜的技术手段。实现生产过程的控制目标。 生产过程总目标具体表现为生产过程的安全性、稳定性和经济性。 (1)安全性在整个生产过程中,确保人身和设备的安全是最重要和最基本的要求。在过程控制系统中采用越限报警、事故报警和连锁保护等措施来保证生产过程的安全性。另外,在线故障预测与诊断、容错控制等可以进一步提高生产过程的安全性。 (2)稳定性指系统抑制外部干扰、保持生产过程运行稳定的能力。变化的工业运行环境、原料成分的变化、能源系统的波动等均有可能影响生产过程的稳定运行。在外部干扰下,过程控制系统应该使生产过程参数与状态产生的变化尽可能小,以消除或者减少外部干扰可能造成的不良影响。 (3)经济性在满足以上两个基本要求的基础上,低成本高效益是过程控制的另外一个重要目标。为了打到这个目标,不进需要对过程控制系统进行优化设计,还需要管控一体化,即一经济效益为目标的整体优化。 工业过程控制可以分为连续过程工业、离散过程工业和间隙过程工业。其中,连续过程工业占的比重最大,涉及石油、化工、冶金、电力、轻工、纺织、医药、建材、食品等工业部门,连续过程工业的发展对我国国民经济意义最大。过程控制主要指的就是连续过程工业的过程控制。 锅炉是工业生产中不可缺少的动力设备,它多产生的蒸汽不仅能够为蒸馏、化学反应、干燥、蒸发等过程提供热源,而且,还可以作为风机,压缩机、泵类驱动透平的动力源。随着石油化学工业规模的

基于力控组态软件的锅炉监控系统设计报告

东北大学秦皇岛分校自动化工程系自动控制系统课程设计 基于力控组态软件的锅炉监控系统设计 专业名称自动化 班级学号 学生姓名 指导教师 设计时间2011.6.27~2011.7.8

东北大学秦皇岛分校自动化工程系 《自动控制系统》课程设计任务书 专业自动化班级姓名 设计题目:基于力控组态软件的锅炉监控系统设计 一、设计实验条件 地点:自动化系实验室 实验设备:PC机 二、设计任务 1、根据题目要求进行资料收集及监控方案的设计。 2、利用力控组态软件,完成控制系统软件组态,包括:建立实时数据库;绘制控制主界面;包括数据采集、显示(界面动画等)、报警组态、数据保存、历史数据查询、报表打印等功能。 3、撰写课程设计说明书 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间:6月27日~7月8日 2、设计时间安排: 熟悉课题、收集资料:3天(6月27日~6月29日) 具体设计(含上机实验):6天(6月30日~7月5日) 编写课程设计说明书:2天(7月6日~7月7日) 答辩:1天(7月8日)

前言 随着工业自动化水平的迅速提高和计算机在工业领域的广泛应用,人们对工业自动化的要求越来越高,种类多的控制设备和过程监控装置在工业领域的应用,使得传统的工业控制软件已无法满足用户的各种要求。通用工业自动化组态软件的出现为解决上述实际工程问题提供了一种崭新的方法,因为它能够很好的解决传统工业控制软件存在的种种问题,使用户能根据自己的控制对象和控制目的任意组态,完成最终的自动化控制工程。目前世界上组态软件品种繁多,国外产品有美国Wonderware公司的InTouch、美国Intellution公司的iFIX等,国内产品有三维力控、组态王、MCGS等。 一般的组态软件都由下列组件构成:图形界面系统、实时数据库系统、第三方程序接口组件、控制功能组件。 力控组态软件主要解决的问题:如何与采样、控制设备间进行数据交换;使来自设备的数据与计算机图形画面上的各元素关联起来;处理数据报警及系统报警;存储历史数据并支持历史数据查询;各类报表的生成和打印输出;为使用者提供灵活、多变的组态工具,可以适应不同应用领域的需求;最终生成的应用系统运行稳定可靠;具有与第三方程序的接口,方便数据共享。 本文以锅炉对象为例,利用三维力控PCAuto组态软件开发了一个小型的监控系统。 1.力控组态软件PCAuto 1.1软件的认识 力控监控组态软件PCAuto是对现场生产数据进行采集与过程控制的专用软件,是在自动控制系统监控层一级的软件平台,它能同时和国内外各种工业控制厂家的设备进行网络通讯,它可以与高可靠的工控计算机和网络系统结合,便可以达到集中管理和监控的目的,同时还可以方便地向控制层和管理层提供软、硬件的全部接口,来实现与“第三方”的软、硬件系统进行集成。 力控监控组态软件PCAuto最大的特点是能以灵活多样的“组态方式”进行系统集成,它提供了良好的用户开发界面和简捷的工程实践方法,用户只要将其预设置的各种软件模块进行简单的“组态”,便可以非常容易地实现和完成监控层的各项功能,缩短了自动化工程师的系统集成的时间,大大地提高了集成效

锅炉温度控制系统设计方案

锅炉温度控制系统设计方案 第1章绪论 1.1课题背景及研究的意义 锅炉是工业生产中最常用的能量转换设备之一,它通过转化燃料中的化学能或利用电能转化为能,成为人们广为依赖的采暖工具。在电锅炉中,利用电阻在通电流状态下发热的原理,通过对电流的大小的控制对温度的控制。由于电流易控制的特点,电锅炉在小型锅炉和精密控温的到使用者的青睐。但是,在大部分城市中,由于国家实行“西气东输”计划,燃气价格为普通人家所接受,经数据统计和计算,燃气锅炉更便宜,比电锅炉应用更受欢迎。 锅炉温度的稳定是锅炉性能的一项重要指标,温度过高和温度过低都会给锅炉的稳定运行和生产造成重大的的影响,甚至发生安全事故。温度过高,导致锅炉金属材料和相关部件的超温过热,加速管材金属氧化,降低锅炉和相关部件的使用寿命;温度过低,假定在保持锅炉蒸发量不变的情况下,锅炉的损耗将大幅上升,能源利用率因此下降,而且负荷也将受到限制。所以,限定锅炉在安全温度成为每一个温度控制系统的核心部分。 随着科技发展,人们对采暖方式和热水方式渐渐发生变化,家用燃气锅炉进入寻常百姓家,但是国燃气锅炉的开发与应用还处于较落后的阶段,市场上的大多数此类商品还是以国外为主,所以燃气锅炉依然有广大市场与研究价值。 本设计以家用燃气锅炉为研究目标,使用AT89C51单片机为控制核心组成温度控制系统,采用热电阻感应温度的变化,单片机实现收集数据、处理数据、发送控制命令的功能,从各方面详细的说明单片机在温度控制的应用。 1.2 温度传感技术 自工业时代以来,随着大型机械的出现和广泛应用,温度对机械工作性能的影响越来越被人们所重视,对温度的未知可能造成机械损坏或发生重大事故。于是温度传感器便应运而生。温度传感器用在生活的方方面面,从冶金行业到每一个人身边中的一部分,它已经随着时代的步伐在进步。 目前使用的较为先进的温度传感器是数字传感器。数字传感器的优点是不需要像传统方式一样加入转换部分,利用当今成熟的集成技术,在其部已经集成了感应温度系统和温度转换系统,尤其是它单端数据输出的功能,极大减少对主控

加热炉温度串级控制系统设计

加热炉温度串级控制系统设计 摘要:温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。加热炉温度控制在许多领域中得到广泛的应用。生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。传统的单回路控制系统很难使系统完全抗干扰。串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中。结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性。 关键词:干扰串级控制主回路副回路 Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade control system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLAB-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stability Keywords:Cascade control, interference, the main circuit, the Deputy loop

相关主题
文本预览
相关文档 最新文档