当前位置:文档之家› 移动荷载模型的动力响应对比分析

移动荷载模型的动力响应对比分析

移动荷载模型的动力响应对比分析
移动荷载模型的动力响应对比分析

第8-1章 移动荷载列作用下的桥梁动力分析

第三章 简支梁在移动荷载作用下动力响应分析 3.1 简支梁在匀速移动力作用下的位移响应 简支梁在移动力作用下的振动分析:如果移动荷载的质量与梁的质量相比小得多,就可以不考虑荷载的质量惯性力而简化成为图3-1所示的分析模型,相当于仅考虑移动荷载的重力作用,用一个移动的力P(t)来表示。 图3-1 移动力P (t )作用下的简支梁模型 假设简支梁为等截面(EI 为常数),恒载质量均匀分布(单位长度梁的质量m 为常数),阻尼为粘滞阻尼(即阻尼力与结构的振动速度成正比),阻尼效应和质量及刚度性质成正比,荷载P (t )以匀速V 在梁上通过,梁的运动满足小变形理论并在弹性范围内,按照图3-1所示的坐标系,梁的强迫振动微分方程可表示为: ()()2424 ,,(,)()(y x t y x t y x t m c EI x Vt t t x δ???++=????)p t (3-1) 对于简支梁,边界条件为:(0,)0,(,)0y t y L t ==。上式中c 为阻尼系数。 对式(3-1)的求解,其方法与之前求解偏微分方程的方法相同,即用振型分解法(数学上称分离变量法 )。这一变换的表达式如(2-38)所示,为。 式中为广义振型坐标,是时间t 的函数;1(,)()()i i i y x t x q t φ∞ ==∑()i q t ()i x φ为主振型函数。这个式子说明:结构的任一合理位移都可以由此结构具有相应振幅的各个振型的叠加表示。 结构任一变形的振型分量均可由振型的正交特性得到。对于本章讨论的具有均匀截

面特性的梁,为了计算第n 阶振型对位移的贡献,把(2-38)式的两端都乘以()n x φ并进行积分,结果为 1 ()(,)()()()L L n i n n i x y x t dx q t x x dx φφ∞ ==∑∫ ∫φi (3-2) 由于振型的正交性,当时,等式的右边的积分为0,最终,无穷级数就只剩下一项。于是得到剩下的第n 项的振幅表达式为 n ≠ 2 ()(,)()()L n n L n x y x t dx q t x dx φφ=∫∫ (3-3) 按上述原理对简支梁的振动方程进行分解。将(2-38)式代入(3-1)式,得 2424 111 ()()() ()()()()()n n n n n n n n n d q t dq t d x m x c x EI q t x Vt p dt dt dx φφφδ∞ ∞∞ ===++=?∑∑∑t (3-4) 将上式的每一项都乘以第i 个振型函数()i x φ,并沿梁的全长积分,并考虑振型的正交性(根据前面的假定,结构的质量、刚度和阻尼均满足正交条件),第i 个振型的广义坐标运动方程为 2422240000 ()()() ()()()() ()()()L L L i n i i i i L i d q t dq t d x m x dx c x dx EIq t x dt dt dx x Vt p t x dx φφφφδφ++=?∫∫∫∫i (3-5) 对于等截面简支梁,振型函数可假定为三角函数,由于式中的下标均表示任意阶, 为方便叙述,用n 替代(3-5)中的i 表示,这时 ()sin n n x x L πφ= (3-6) 由于2 0sin 2 L n x L dx L π=∫ 0 ()()sin ()sin L n x n Vt x Vt p t dx P t L L ππδ?=∫ 则将(3-6)式代入(3-5)式,并积分,得到 24424 ()()()()sin 222n n n d q t dq t mL cL L n n Vt EIq t P t dt dt L L ππ++= (3-7)

移动荷载作用下主梁绝对最大弯矩的计算

移动荷载作用下主梁绝对最大弯矩的计算 摘要:在设计起重机梁等承受移动荷载的结构时,利用内力包络图可以求的在横荷载和移动活荷载共同作用下各杆件、各截面可能出现的最大内力、最小内力。其中弯矩包络图表示各截面的最大弯矩值,其中弯矩最大者称为绝对最大弯矩。我们已经学习了简支梁绝对最大弯矩的求法,那么主梁在移动荷载作用下绝对最大弯矩的求法是怎样的呢?本文根据简支梁绝对最大弯矩的求法,给出了一组平行荷载直接沿着纵梁移动时,主梁承受结点荷载作用下绝对最大弯矩的计算方法。 关键词:结点荷载,绝对最大弯矩,主梁,影响线 桥梁或房屋建筑中的某些主梁,是通过一些次梁(纵梁和横梁)将荷载传递到主梁上的。主梁这些荷载的传递点称为主梁的结点。从移动荷载来说,不论是荷载作用在次梁的哪些位置,其作用都是通过这些固定的结点传递到主梁上。如下图所示: 本文研究的主要问题是一组平行荷载直接沿着纵梁移动时怎样判断主梁绝对最大弯矩的发生的截面位置和计算主梁的绝对最大弯矩(假定相邻两横梁间的距离、节间距是相等的)。 1.主梁绝对最大弯矩的发生截面位置 回想我们学过的简支梁,有两种计算方法。一种是近似计算,划分30个以上等分截面,画出梁的弯矩包络图,采取电算的方法。另一种是精确计算,也是最常用的方法。它的求法是:由于荷载在任一位置时,梁的弯矩图顶点永远发生在集中荷载下。因此可以断定,绝对最大弯矩必定发生在某一集中何在的作用点。 取一集中荷载F pcr ,它的弯矩为: F R 为梁上实际荷载的合力,M cr 为F Pcr 以左梁上实际荷载对F Pcr 作用点的力矩,a 为F R 与 F Pcr 作用线之间的距离。经分析可得,F pcr 作用点弯矩最大时,梁的中线正好平分F pcr 与F R 之间的距离。如下图所cr R cr yA M x L a x L F M x F M ---=-=

移动荷载作用下路面结构的动力响应

移动荷载作用下路面结构的动力响应 摘要 现实情况中车辆总是以一定速度行驶在路面上的,因此研究沥青路面在车辆移动荷载作用下的动态响应是掌握路面结构行为的必要条件。建立刚性基层沥青路面的三维有限元模型,分析移动荷载作用下路面结构的动力响应。分析得出了荷载正下方不同深度处节点竖向剪应力he各结构层底弯拉应力的时间历程曲线。结果表明,在移动荷载作用下,路面结构的动力响应具有明显的波动性质,与静荷载作用有明显区别。 绪论 目前国内现有的道路设计方法通常将车辆荷载简化为双圆均布荷载静荷载,以双轮单轴BZZ-100(100kN)为标准轴载,以设计弯沉值作为路面整体刚度的控制指标,对沥青混凝土面层和基层、底基层进行层底弯拉应力的验算[1],经过大量的使用实验证明,现有规范设计模型具有很大的局限性。这是因为现实中车辆都是以一定的速度行驶在路面上,属于是移动荷载,路面结构在移动荷载作用下的力学响应与静力响应明显不同。因此研究移动荷载作用下路面结构的动力响应更具有实际意义。大量国内外学者对弹性层状体系在动荷载作用下的力学响应作了理论研究。Siddharthan[2][3]结合弹性力学原理,建立层状体系动力学模型,研究了材料粘弹性对路面结构动力响应的影响。Lv[4]采用Green函数、Laplace 积分变换和Fourier变换等方法求解出Kevlin地基上的无限大板在移动荷载作用下动态响应的数值求解。 钟阳、孙林[5]等利用Laplace-Hankel联合积分变换和传递矩阵相结合的方法推导出了轴对称半空间层状弹性体系动态反应的理论解,为进行路面结构的动态反应分析和路面材料参数的动态反算提供了一种行之有效的方法。董泽蛟、曹丽萍[6]等采用ADINA建立了移动荷载作用下多层线弹性的三维沥青路面有限元分析模型,模拟分析了移动荷载作用下路面结构的三向应变动力响应。 鉴于理论解都涉及到较复杂的积分变换和无穷积分,最终只能采用数值方法求解。本文采用Abaqus建立移动荷载作用下三维沥青路面动力响应分析的有限元模型,分析移动荷载作用下路面结构的竖向剪应力和层底弯拉应力。以应力分析研究移动荷载作用下路面结构的动力动力响应,以便为路面结构设计和路面养护提供一定参考。 1 动力学有限元计算原理 根据沥青路面层状弹性体系结构的基本假定以及弹性动力学的Hamilton变分原理,可以建立路面系统在移动荷载作用于下的有限元动力方程: (1)

移动荷载作用下主梁绝对大弯矩的计算结构力学

移动荷载作用下主梁绝对大弯矩的计算结构力学

————————————————————————————————作者:————————————————————————————————日期:

移动荷载作用下主梁绝对最大弯矩的计算 摘要:在设计起重机梁等承受移动荷载的结构时,利用内力包络图可以求的在横荷载和移动活荷载共同作用下各杆件、各截面可能出现的最大内力、最小内力。其中弯矩包络图表示各截面的最大弯矩值,其中弯矩最大者称为绝对最大弯矩。我们已经学习了简支梁绝对最大弯矩的求法,那么主梁在移动荷载作用下绝对最大弯矩的求法是怎样的呢?本文根据简支梁绝对最大弯矩的求法,给出了一组平行荷载直接沿着纵梁移动时,主梁承受结点荷载作用下绝对最大弯矩的计算方法。 关键词:结点荷载,绝对最大弯矩,主梁,影响线 桥梁或房屋建筑中的某些主梁,是通过一些次梁(纵梁和横梁)将荷载传递到主梁上的。主梁这些荷载的传递点称为主梁的结点。从移动荷载来说,不论是荷载作用在次梁的哪些位置,其作用都是通过这些固定的结点传递到主梁上。如下图所示: 本文研究的主要问题是一组平行荷载直接沿着纵梁移动时怎样判断主梁绝对最大弯矩的发生的截面位置和计算主梁的绝对最大弯矩(假定相邻两横梁间的距离、节间距是相等的)。 1.主梁绝对最大弯矩的发生截面位置

回想我们学过的简支梁,有两种计算方法。一种是近似计算,划分30个以上等分截面,画出梁的弯矩包络图,采取电算的方法。另一种是精确计算,也是最常用的方法。它的求法是:由于荷载在任一位置时,梁的弯矩图顶点永远发生在集中荷载下。因此可以断定,绝对最大弯矩必定发生在某一集中何在的作用点。 取一集中荷载Fpcr ,它的弯矩为: FR 为梁上实际荷载的合力,Mcr 为FPcr 以左梁上实际荷载对FPcr 作用点的力矩,a 为FR 与 FPcr 作用线之间的距离。经分析可得,Fpcr 作用点弯矩最大时,梁的中线正好平分Fpcr 与FR 之间的距离。如下图所示: 比较各个荷载作用点的最大弯矩,选择其中最大的一个,就是绝对最大弯矩。 与简支梁类似,当一组平行荷载直接沿着纵梁移动时,主梁在任意时刻的弯矩图总是呈折线图形,弯矩图的顶点永远位于集中荷载作用点,也就是各结点截面。因此,主梁绝对最大弯矩将发生在某结点截面,发生绝对最大弯矩的移动荷载位置就是该结点截面弯矩最大值对应的最不利荷载位置。 简支梁的绝对最大弯矩通常发生在梁的跨中截面附近,因此设计计算中可以用跨中截面的最大弯矩近似代替绝对最大弯矩,一般误差在 5℅ 以内。所以可以用以下方法快速判别绝对最大弯矩发生截面位置:当荷载数目较多时(多于4个),首先判别跨中截面发生最大弯矩时的荷载位置,然后稍稍移动该荷载位置, cr R cr yA M x L a x L F M x F M ---=-=

Midas 移动荷载 设置流程

midas Civil 技术资料 ----移动荷载设置流程 目录 midas Civil 技术资料 1 ----移动荷载设置流程 1 一、定义车道线(车道面) 2 二、定义车辆荷载 5 三、定义移动荷载工况 7 四、移动荷载分析控制 9 五、运行并查看分析结果 12 参考文献 14 北京迈达斯技术有限公司 桥梁部 2013/05/17

本章主要结合中国规范JTG D60-2004[1]进行纵向(顺桥向)移动荷载分析介绍,移动荷载分析主要是计算移动荷载(车道、车辆或人群荷载)在指定路径上(车道线、车道面)移动时产生的各种效应(反力、内力、位移、应力)的包络结果,具体分析过程如下:(1)定义车道线/面; (2)定义车辆荷载--车道荷载、车辆荷载、人群荷载等活荷载; (3)定义移动荷载工况; (4)定义移动荷载分析控制; (5)运行分析并查看结果。 一、定义车道线(车道面) 荷载>移动荷载>移动荷载规范-china,定义车道线或车道面,确定移动荷载路径,程序提供车道单元和横向联系梁两种方法,其中,车道单元法是将作用在车道中心线上的荷载换算到车道单元上(换算为集中力和扭矩),单梁模型中常用;而横向联系梁法是将移 图1-1车道单元法及横向联系梁法示意图 动荷载作用在横梁上,然后由横梁按比例传递到临近的纵梁单元上,梁格模型中常用,此时需要将横梁定义成为一个结构组,传力示意如图1-1所示。 随后即可进行车道线定义,首先是“斜交角”设置,对于斜桥梁格模型可以输入起点和终点的斜交角度,此设置需跟横向联系梁法配合使用,车道单元法不需要设置此项。 “车辆移动方向”,对于直桥,选择三者无差别;如果是斜桥,则车辆移动方向不同,分析结果也不同,故要选择“往返”。

钢板组合梁桥移动荷载动力响应分析

YANJ IUYUTANSUO 698一?工程与建设?一2019年第33卷第5期收稿日期:2019G04G22;修改日期:2019G06G12作者简介:严一瑾(1993-),男,安徽太湖人,硕士研究生在读;廖海飞(1992-) ,男,安徽肥西人,硕士研究生在读.钢板组合梁桥移动荷载动力响应分析 严一瑾,一廖海飞(合肥工业大学土木与水利工程学院,安徽合肥一230009 )摘一要:本文以老屋村钢板组合梁桥为研究对象,利用大型有限元软件A N S Y S 进行实桥建模分析.考虑到桥梁建成后主要 承受车辆动荷载作用,分析了不同车重,不同车速作用下钢板组合梁的内力,主梁挠度,速度,加速度的变化特征.研究表明, 在车速较小时,车速对钢板组合梁的影响较小;当车速大于220k m /h ,车速的影响急剧增大;同时车重对钢板组合梁的影响呈现线性规律. 关键词:钢板组合梁;移动荷载;动力响应 中图分类号:U 441+.2一一一文献标识码:A一一一文章编号:1673G5781(2019)04G0698G03一一桥梁修建好之后其上的荷载基本都是动荷载, 英国工程师W i l l i s [1]发现,桥梁在移动荷载作用下会产生振动,其产生的内力及变形相比静荷载作用下要大.通过一系列的研究发现,移动荷载的这种动力作用是不可忽视的,其将会对桥梁的使用寿命,行车安全产生直接的影响,同时若荷载处于最不利的静力作用位置的同时又满足共振条件,由此将会发生更大的动力响应,严重的可能导致桥梁的破坏.本文从不同行车速度及移动 车辆质量对钢板组合梁的影响进行研究分析. 1一工程背景 老屋村大桥为钢板双工字钢板组合梁桥,全长448m , 桥跨布置为(4?40+4?40+3?40)m ,桥梁半幅为12.5m 宽,全宽25.5m .钢主梁标准间距6.7m ,钢主梁高度为2.1m ,混凝土桥面板和钢主梁采用集束式焊钉连接;主梁间采用拴接横梁加强 横向联系,跨内小横梁间距为8.0m ,支点位置加密至4.0m . 本文取4?40m 标准跨建立A N S Y S 有限元模型,全桥共划分为139326个单元,180860个节点,混凝土主梁采用实体单元S o l i d 45模拟,钢梁单元采用S h e l l 63单元模拟(图1).图1一钢板组合梁简化模型3D 图 2一移动荷载动力响应分析 2.1一行车速度影响分析 将车辆荷载简化成匀速常力,车辆质量取为20t ,计算了速度由80k m /h 到360k m /h 作用下钢板组合梁桥的动态响 应,通过对比不同车速作用下工字钢主梁及混凝土主梁关键位 置的挠度二速度及加速度的变化,研究车速对钢板组合梁移动 荷载响应的影响(图2). 896

载荷移动,重量增减,载荷悬挂对稳性的影响及计算

第三节载荷移动,重量增减和载荷悬挂对稳性的影响及计算 1.某轮有一票重为100t的货物由底舱移至二层舱(垂向移动距离z=12m),船舶排水量Δ=15000t,由此票货物移动对船舶初稳性高度值的影响为()。A.减小0.08 m B.增加0.08 m C.减小0.15 m D.增加0.15 m 2.假定KM不变,少量卸货时的货物重心低于船舶的重心时,则卸货后船舶的初稳性高度值将()。 A.减小 B.不变 C.增大 D.变化趋势不定 3.少量卸货时,忽略KM变化,则当货物的重心高于船舶的重心时,卸货后船舶的初稳性高度值将()。 A.减小 B.不变 C.增大 D.变化趋势不定

4.假定KM不变,则少量装卸货物后船舶的GM将()。A.增加 B.减小 C.不变 D.变化趋势不定 5.加压载水可使船舶的GM值()。 A.增加 B.减小 C.不变 D.A、B、C均有可能 6.下列关于倾斜试验的说法中哪项是错误的:()。 A.倾斜试验的目的是求空船重心距基线的高度 B.倾斜试验的原理是根据船内重物作垂直移动的关系式求出的C.倾斜试验在新造船舶交船前进行 D.做倾斜试验时要求船内无其他重物移动 7.以下()应进行倾斜试验。 A.新建船舶 B.进坞修理后的船舶

C.经重大改建的船舶 D.A、C 8.根据经验,船舶进行倾斜试验时的横倾角一般应为()。A.1° B.4°~5° C.5°~6° D.2°~4° 9.船舶倾斜试验的目的是()。 A.测量船舶半载时的重心高度 B.测量船舶空船时的重心高度 C.测量船舶满载时的重心高度 D.测量船舶任一载重时的重心高度 10.船内重物水平横移使船舶产生横倾角与()成正比。A.初稳性高度 B.移动重量 C.排水量 D.A和C 11.船内重物水平横移使船舶产生横倾角与()成正比。

桥梁移动荷载分析

13. 移动荷载分析 概述 在3跨连续梁施加移动荷载 (标准车辆荷载) 时,根据影响线估算出各截面的最大截面力, 查看产生最大截面力的移动荷载的位置。 材料 混凝土设计标准抗压强度 : 270 kgf/cm2 截面 形状 : 实腹长方形截面 形状 : B x H = 3000 x 1000mm 荷载 1. 标准移动荷载 : QC-20 2.支座沉降:1.0cm 图 13.1 分析模型(单位m)

设定基本环境 打开新文件以‘活荷载.mgb’为名保存。单位体系为设置为‘m’和‘tonf’。 文件/ 新文件 文件/ 保存( 活荷载 ) 工具 /单位体系 长度 > m ; 力 > tonf 图 13.2 设定单位体系

设定结构类型为X-Z平面。 模型 / 结构类型 结构类型 > X-Z 平面? 定义材料以及截面 连续梁的材料选择混凝土 (设计标准抗压强度 270 kgf/cm2),输入截面数据。 模型 / 特性 / 材料 材料号( 1 ) ; 类型 >混凝土 规范 > GB-Civil(RC) ; 数据库 >30? 模型 / 特性 / 截面 数据/用户 截面号( 1 ) ; 名称( 长方形 ) 截面形状> 实腹长方形截面 ; 用户 H ( 1 ) ; B ( 3 ) ? 图 13.3 定义材料图 13.4 定义截面

建立单元 首先输入节点, 然后用扩展单元功能建立连续梁。 正面, 捕捉点 (关) 捕捉轴线 (关) 捕捉节点 (开) 捕捉单元 (开) 自动对齐(开) 节点号 (开) 模型 / 节点 / 建立节点 坐标( 0, 0, 0 ) ? 模型 / 单元 / 扩展单元 全选 扩展类型 > 节点 线单元 单元属性 > 单元类型 >梁单元 材料 > 1:30 ; 截面 > 1:长方形 ; Beta 角( 0 ) 一般类型 > 复制和移动 ; 移动和复制> 等间距 dx, dy, dz ( 35/14, 0, 0 ) ; 复制次数( 14 )? 图 13.5 建立连续梁

例题移动荷载

例题,梁上移动荷载的瞬态分析 匀速移动常量力作用下的梁的振动分析中,忽略了移动荷载的质量,使得分析过程相对简单,适用于移动荷载质量与结构质量小很多时的情况,例如大跨公路桥梁在行驶车辆作用下的振动分析等。本算例以简支梁为例,设梁体材料的弹性模量为210GP a,密度为7800kg/m3,移动速度为60km/h,以上参数均可根据需要更改。利用ANSYS软件进行该问题分析的命令流如下:0.6秒移出Finish$/clear$/config,nres,2000$/prep7 !设置子步结果限值 lb=10$ne=50$ nn=ne+1 !梁长10m,单元数50个,节点数51个 p=10000$v=60*1e3/3600 !荷载值10kN,移动速度60km/h deltl=lb/ne$deltt=deltl/v !计算单元长度、移动一个单元所需时间 em=2.1e11$area=0.18$im=0.0054 !设置弹性模量、面积及惯性距 deng=7800$gra=9.8 !设置质量密度及重力加速度 f1=acos(-1)/2/lb/lb*sqrt(em*im/(area*deng)) !计算自振频率 et,1,beam3 !定义单元 mp,ex,1,em$mp,nuxy,1,0.2 !定义材料属性 mp,dens,1,deng$r,1,area,im,1.0 !定义密度及实常数 *do,i,1,nn$n,i,(i-1)*deltl$*enddo !创建节点 *do,i,1,ne$e,i,i+1$*enddo !创建单元 d,1,ux,,,,,uy$d,nn,uy$finish !定义约束并退出前处理 /solu$antype,trans$sstif,on !定义瞬态动力分析 timint,off$time,1e-5$acel,,gra !关闭时间积分效应进行静力分析、施加加速度nsubst,2$kbc,1$solve !定义时间、荷载步、荷载作用方式,求解timint,on !打开时间积分效应 outres,all,all$deltim,deltt/10 !定义输出控制、时间步长 kbc,1$autots,on !定义荷载作用方式、打开自动时间步 *do,i,1,nn !循环定义移动荷载位置并求解 time,i*deltt !定义时间点 fdele,all,all$f,i,fy,-p !删除以前的作用力,添加新作用力 solve !求解 *enddo !循环加载结束 !荷载移出后的瞬态分析 fdele,all,all !删除所有的作用力,荷载移出

移动荷载作用下主梁绝对最大弯矩的计算-结构力学

移动荷载作用下主梁绝对最大弯矩的计算 摘要:在设计起重机梁等承受移动荷载的结构时,利用内力包络图可以求的在横荷载和移动活荷载共同作用下各杆件、各截面可能出现的最大内力、最小内力。其中弯矩包络图表示各截面的最大弯矩值,其中弯矩最大者称为绝对最大弯矩。我们已经学习了简支梁绝对最大弯矩的求法,那么主梁在移动荷载作用下绝对最大弯矩的求法是怎样的呢?本文根据简支梁绝对最大弯矩的求法,给出了一组平行荷载直接沿着纵梁移动时,主梁承受结点荷载作用下绝对最大弯矩的计算方法。 关键词:结点荷载,绝对最大弯矩,主梁,影响线 桥梁或房屋建筑中的某些主梁,是通过一些次梁(纵梁和横梁)将荷载传递到主梁上的。主梁这些荷载的传递点称为主梁的结点。从移动荷载来说,不论是荷载作用在次梁的哪些位置,其作用都是通过这些固定的结点传递到主梁上。如下图所示: 本文研究的主要问题是一组平行荷载直接沿着纵梁移动时怎样判断主梁绝对最大弯矩的发生的截面位置和计算主梁的绝对最大弯矩(假定相邻两横梁间的距离、节间距是相等的)。 1.主梁绝对最大弯矩的发生截面位置 回想我们学过的简支梁,有两种计算方法。一种是近似计算,划分30个以上等分截面,画出梁的弯矩包络图,采取电算的方法。另一种是精确计算,也是最常用的方法。它的求法是:由于荷载在任一位置时,梁的弯矩图顶点永远发生在集中荷载下。因此可以断定,绝对最大弯矩必定发生在某一集中何在的作用点。取一集中荷载Fpcr,它的弯矩为: FR为梁上实际荷载的合力,Mcr为FPcr 以左梁上实际荷载对FPcr作用点的力矩,a为FR 与FPcr 作用线之间的距离。经分析可得,Fpcr作用点弯矩最大时,梁的中线正好平分Fpcr与FR之间的距离。如下图所示: 比较各个荷载作用点的最大弯矩,选择其中最大的一个,就是绝对最大弯矩。与简支梁类似,当一组平行荷载直接沿着纵梁移动时,主梁在任意时刻的弯矩图总是呈折线图形,弯矩图的顶点永远位于集中荷载作用点,也就是各结点截面。

midas移动荷载定义

《midas移动荷载定义》 移动荷载定义分四个步骤: 1. 定义车道(适用于梁单元)或车道面(适用于板单元); 2. 定义车辆类型; 3. 定义移动荷载工况; 4. 定义移动荷载分析控制——选择移动荷载分析输出选项、冲击系数计算方法和计算参数。 (一)、车道及车道面定义 移动荷载的施加方法,对于不同的结构形式有不同的定义方法。对于梁单元,移动荷载定义采用的是车道加载;对于板单元,移动荷载定义采用的是车道面加载。对梁单元这里又分为单梁结构和有横向联系梁的梁结构,对于单梁结构移动荷载定义采用的是车道单元加载的方式,对于有横向联系梁的结构移动荷载定义采用的是横向联系梁加载的方式。对于单梁结构的移动荷载定义在PSC设计里边已经讲过了,这里介绍的是有横向联系梁结构的移动荷载定义以及板单元移动荷载定义。 横向联系梁加载车道定义:在定义车道之前首先要定义横向联系梁组,选择横向联系梁,将其定义为一个结构组。车道定义中移动荷载布载方式选择横向联系梁布载(图1),然后选择车道分配单元、偏心距离、桥梁跨度后添加即可完成车道的定义。 车道面定义(图2):对于板单元建立的模型进行移动荷载分析时,首先需要建立车道面。输入车道宽度、车道偏心、桥梁跨度、车道面分配节点后添加即可完成车道面定义。(二)、车辆类型选择 无论是梁单元还是板单元在进行移动荷载分析时,定义了车道或车道面后,需要选择车辆类型,车辆类型包括标准车辆和用户自定义车辆两种定义方式(图3)。 (三)、移动荷载工况定义 定义了车道和车辆荷载后,将车道与车辆荷载联系起来就是移动荷载定义。在移动荷载子工况中选择车辆类型和相应的车道,对于多个移动荷载子工况在移动荷载工况定义中选择作用方式(组合或单独),对于横向车道折减系数程序会自动考虑(图4)。 (四)移动荷载分析控制 在移动荷载分析控制选项中选择移动荷载加载位置、计算内容、桥梁等级、冲击系数计算方法及计算参数(图5)。 注意事项总结: 1、车道面只能针对板单元定义,否则会提示“影响面数据错误”。 2、车道定义中,当为多跨桥梁时,对应下面的车道单元应输入不同的桥梁跨度。该功能主要为了对不同跨度的桥梁段赋予不同的冲击系数。 3、移动荷载工况定义中当考虑各子荷载工况的组合效果时,组合系数在各子荷载工况定义中的系数中定义。 4、移动荷载分析控制选项中影响线加载点的数量越多在移动荷载追踪时荷载布置位置越精

相关主题
文本预览
相关文档 最新文档