当前位置:文档之家› 专题13 圆锥曲线的定义、性质、方程(教师版)

专题13 圆锥曲线的定义、性质、方程(教师版)

专题13 圆锥曲线的定义、性质、方程(教师版)
专题13 圆锥曲线的定义、性质、方程(教师版)

解析几何-- 圆锥曲线的概念及性质

4.2 解析几何-- 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2 -2y 2 =1,则它的右焦点坐标为 ( ) A. ????22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为????6 2 ,0. 答案:C 2.(2010·天津)已知双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2 =24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2 108-y 2 36=1 D.x 2 27-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴PA∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4, ∴F A=8,∴P A=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为() A.圆B.椭圆C.双曲线D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆 顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,BA P A DC PC ,从而 PC=2P A.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2),则A(-5,0),C(5,0),设P(x,y),得(x-5)2+y2=2(x+5)2+y2 化简得x2+y2+50 3 x+25=0,显然,P点的轨迹为圆.

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

最新圆锥曲线的概念及性质

圆锥曲线的概念及性 质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一 个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴ b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|= () A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4,

高中数学复习:圆锥曲线的方程与性质

高中数学复习:圆锥曲线的方程与性质 1.已知A 为抛物线C :y 2 =2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A.2 B.3 C.6 D.9 解析 设A (x ,y ),由抛物线的定义知,点A 到准线的距离为12,即x +p 2=12. 又因为点A 到y 轴的距离为9,即x =9, 所以9+p 2=12,解得p =6.故选C. 答案 C 2.设O 为坐标原点,直线x =2与抛物线C :y 2 =2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.? ????14,0 B.? ?? ??12,0 C.(1,0) D.(2,0) 解析 将x =2与抛物线方程y 2 =2px 联立, 可得y =±2p , 不妨设D (2,2p ),E (2,-2p ), 由OD ⊥OE ,可得OD →·OE → =4-4p =0,解得p =1, 所以抛物线C 的方程为y 2 =2x .其焦点坐标为? ?? ??12,0.故选B. 答案 B 3.设F 1,F 2是双曲线C :x 2 -y 2 3 =1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△ PF 1F 2的面积为( ) A.72 B.3 C.52 D.2 解析 法一 由题知a =1,b =3,c =2,F 1(-2,0),F 2(2,0), 如图,因为|OF 1|=|OF 2|=|OP |=2,所以点P 在以F 1F 2为直径的圆上,故PF 1⊥PF 2,则|PF 1|2 +|PF 2|2 =(2c )2 =16.

由双曲线的定义知||PF 1|-|PF 2||=2a =2,所以|PF 1|2 +|PF 2|2 -2|PF 1||PF 2|=4,所以|PF 1||PF 2|=6, 所以△PF 1F 2的面积为1 2 |PF 1||PF 2|=3.故选B. 法二 由双曲线的方程可知,双曲线的焦点F 1,F 2在x 轴上,且|F 1F 2|=21+3=4.设点P 的坐标为(x 0,y 0),则?????x 20-y 2 03=1,x 20+y 20 =2,解得|y 0|=32. 所以△PF 1F 2的面积为12|F 1F 2|·|y 0|=12×4×3 2=3.故选B. 答案 B 4.已知椭圆C 1:x 2a 2+y 2 b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点 重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=4 3|AB |. (1)求C 1的离心率; (2)设M 是C 1与C 2的公共点.若|MF |=5,求C 1与C 2的标准方程. 解 (1)由已知可设C 2的方程为y 2 =4cx ,其中c =a 2 -b 2 . 不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2 a ;C ,D 的纵坐标分别为2c , -2c ,故|AB |=2b 2 a ,|CD |=4c . 由|CD |=43|AB |得4c =8b 2 3a ,即3×c a =2-2? ?? ??c a 2 . 解得c a =-2(舍去)或c a =1 2 . 所以C 1的离心率为12 . (2)由(1)知a =2c ,b =3c ,故C 1:x 24c 2+y 2 3c 2=1. 设M (x 0,y 0),则x 204c 2+y 203c 2=1,y 2 0=4cx 0, 故x 20 4c 2+4x 03c =1.①

圆锥曲线定义的运用

圆锥曲线定义的运用》案例分析 双鸭山31 中郭秀涛 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修)?数学》(人教版)高二(上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性, 它是无数次实践后的高度抽象. 恰当地利用定义解题, 许多时候能以简驭繁. 因此, 在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义, 熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05 年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象, 难以理解. 如果离开感性认识, 容易使学生陷入困境,降低学习热情. 在教学时, 我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题, 进行点评, 强调“双主作用”的发挥. 借助多媒体动画, 引导学生主动发现问题、解决问题, 主动参与教学,在轻松愉快的环境中发现、获取新知, 提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性, 提高空间想象力及分析、解决问题的能力;通过对问题的不断引申, 精心设问, 引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学, 激发学习数学的兴趣. 在民主、开放的课堂氛围中, 培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点

圆锥曲线知识点总结版

圆锥 曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为: 22 221x y a b +=(0a b >>)(焦点在x 轴上)或 122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位 置,只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原

点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b , a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中, 2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a =叫椭圆的离心率。∵0a c >>,∴ 01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念 平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PF PF a -=)。 注意:①式中是差的绝对值,在1202||a F F <<条件下;12||||2PF PF a -=时为双曲线的一支; 21||||2PF PF a -=时为双曲线的另一支(含1F 的一支);②当122||a F F =时,12||||||2PF PF a -=表示两条射线; ③当122||a F F >时,12||||||2PF PF a -=不表示任何图形;④两定点12,F F 叫做双曲线的焦点,12||F F 叫做焦距。 (2)双曲线的性质

圆锥曲线中的定点定值问题(教师版)

第四讲 圆锥曲线中的定点定值问题 一、直线恒过定点问题 例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2 :4C x y =的切线,EA EB , 切点为 A 、 B , 求证:直线AB 恒过一定点,并求出该定点的坐标; 解:设),2,(-a E )4,(),4,(2 22211x x B x x A ,x y x y 2 1 4'2=∴= , )(21 41121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(2 1 421121x a x x -=--∴整理得:082121=--ax x 同理可得:2 22280x ax --= 8 ,2082,2121221-=?=+∴=--∴x x a x x ax x x x 的两根是方程 )2 4,(2+a a AB 中点为可得,又22 12 121212124442 AB x x y y x x a k x x x x - -+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2 a y x AB =+∴即过定点0,2. 例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012 x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒 过一定点G ,求点G 的坐标。 解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n 则0000001 212022x n m y x n m y x y ?=-?+??-??--=??,解得3200020432 0000 2002344424482(4)x x x m x x x x x n y x ?+--=?-??+--?=?-? ∴ 直线PN 的斜率为4320000032 00004288 2(34) n y x x x x k m x y x x -++--==---+

圆锥曲线的定义及其应用

圆锥曲线的定义及其应用 一、教学目标: 1.进一步明确圆锥曲线定义,并用定义解决有关问题; 2.通过发散思维和创新思维的训练,培养学生的探究能力; 3.培养学生用运动变化的观点分析和解决问题. 二、教学重点、难点:圆锥曲线定义的灵活应用. 三、教学方法:教师引导启发与学生自主探索相结合. 四、教学过程: (一)引入: 问题1:平面内到定点12(3,0),(3,0)F F -的距离之和为8的点P 的轨迹是什么? 121286PF PF F F +=>= ∴P 的轨迹是以12(3,0),(3,0)F F -为焦点的椭圆,方程是22 1167 x y + = 问:(1)若到两定点距离之和为改为6,则点P 的轨迹是什么? ( 以12,F F 为端点的线段) (2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以12,F F 为焦点的双曲线的一支) (3)若改为到两定点距离之差为6,则P 点的轨迹是什么? (以12,F F 为端点的射线) (通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件) 由学生总结椭圆和双曲线的定义 问题2:已知定点F (1,0),定直线:1l x =-,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点的轨迹是什么? (F l ?,∴P 点的轨迹是以F (1,0)为焦点,以直线:1l x =-为准线的抛物线。) 问:(1)若点F 改为(-1,0),则点P 的轨迹是什么? (2)当 PF d 为何值时,所求轨迹是椭圆? (3)当PF d 为何值时,所求轨迹是双曲线? (通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别) 由学生总结圆锥曲线的统一定义,。

高考数学 考前30天冲刺押题系列 专题05 圆锥曲线(下)理(教师版)

【名师备考建议】 鉴于圆锥问题具有综合性强、区分度高的特点,名师给出以下四点备考建议: 1、主观形成圆锥的知识结构;椭圆、双曲线、抛物线,在这三类曲线身上是有很多的基本性质具 有相关性,因此,在复习备考的过程中,应当主观的形成对三类圆锥曲线方程以及性质的认识,形成一张深刻记忆的知识列表;同时对基本的题型也要有一定的把握; 2、认真研究三年高考的各种题型;由于圆锥曲线的难度系数较高,不易把握,但仍然有理可循; 复习备考的过程中,无论是老师还是学生都应当认真研究近三年文理科的出题方向,至于从何研究,可以从近三年的质检卷、名校卷以及高考卷中得到启示,努力理清每一道问题的思路、做法,这样可以有效的培养解题意识; 3、熟练掌握部分题型的解题模式;三轮复习中,由于做题的经验得到一定的积累,多多少少对题 目的解题方法和手段有了一定的认识,比如,直线与圆锥曲线的问题,大部分是必须联立直线与圆锥曲线的方程进行解题,这是一种模式;再比如,圆锥曲线的探究性问题,可以先采用一些特殊值进行计算,得到结论以后加以证明;这都是必须熟练掌握的解题模式; 4、调整对待圆锥曲线的心理状态;由于圆锥曲线问题的综合性较强,并且经常作为倒二题出现, 这就要求学生合理的分配自己的时间;如果实在无法求解,无须在此问题上进行逗留,以免失去了做压轴题和检查的时间;对于优等生来说,必须精益求精;对于中等生来说,只需尽其所能;对于差等生来说,一定不必强求. 【高考冲刺押题】 e=,椭圆上的点到焦点【押题6】已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率 2 M m,且与椭圆C交于相异两点,A B,且的最短距离为2,直线l经过y轴上一点(0,) =. 3 AM MB

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

智行数学-圆锥曲线(带答案,教师专用)

智行数学-圆锥曲线(带答案,教师专用) 一、单选题(注释) 1、已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D. 2、F1,F2是双曲线的左、右焦点,过左焦点F1的直线 与双曲线C的左、右两支分别交于A,B两点,若,则双曲线的离心率是() A.B.C.2 D. 3、在平面直角坐标系中,直线与圆相交于两点,则弦的长等于( ) A.B.C.D. 4、已知圆M经过双曲线的两个顶点,且与直线相切,则圆M方程为() A.B. C.D. 5、已知椭圆的焦点,,是椭圆上一点,且是, 的等差中项,则椭圆的方程是() A.B. C.D. 6、以的顶点为焦点,长半轴长为4的椭圆方程为 A.B.C.D. 7、若 k 可以取任意实数,则方程 x 2 + k y 2 =" 1" 所表示的曲线不可能是()A.直线B.圆C.椭圆或双曲线D.抛物线 8、方程的两个根可分别作为的离心率。 A.椭圆和双曲线B.两条抛物线C.椭圆和抛物线D.两个椭圆

评卷人得分 二、填空题(注释) 10、若一条抛物线以原点为顶点,准线为,则此抛物线的方程为 . 11、双曲线的渐近线方程是_▲____ 13、中心在坐标原点,焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为 . 14、椭圆的左焦点为,直线与椭圆相交于点、,当 的周长最大时,的面积是. 17、若点是以为焦点的双曲线上一点,满足,且 ,则此双曲线的离心率为▲ . 评卷人得分 三、解答题() 与直线相切,是 抛物线上两个动点,为抛物线的焦点,的垂直平分线与轴交于点,且. (1)求的值; (2)求点的坐标; (3)求直线的斜率的取值范围. 19、已知抛物线,为抛物线的焦点,椭圆;(1)若是与在第一象限的交点,且,求实数的值; (2)设直线与抛物线交于两个不同的点,与椭圆交于两个 不同点,中点为,中点为,若在以为直径的圆上,且 ,求实数 的取值范围. 20、(本小题满分12分) 已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍。(1)求动点P的轨迹方程,并讨论它表示什么曲线; (2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C

2011年高考数学二轮考点专题突破:圆锥曲线的概念及性质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9=1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形.

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线定义的运用(精)

圆锥曲线定义的运用 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修) 数学》(人教版)高二 (上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义,熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,难以理解.如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题,进行点评,强调“双主作用”的发挥.借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性,提高空间想象力及分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学,激发学习数学的兴趣.在民主、开放的课堂氛围中,培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点:

圆锥曲线中离心率及其范围地求解专题(教师版)

圆锥曲线中离心率及其围的求解专题 【高考要求】 1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。 2.掌握解析几何中有关离心率及其围等问题的求解策略; 3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。 【热点透析】 与圆锥曲线离心率及其围有关的问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化围; (3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解围等问题; (6)构造一个二次方程,利用判别式?≥0。 2.解题时所使用的数学思想方法。 (1)数形结合的思想方法。一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。 (2)转化的思想方汉。如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。 (3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。 (4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。 【题型分析】 1. 已知双曲线22 122:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点, 准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离 心率为( ) A . B C D . 解:由已知可得抛物线的准线为直线2 a x c =- ,∴ 方程为2 2 4a y x c =;

怎样学好圆锥曲线知识讲解

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0). 定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 【例题1】某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点。 已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m. 建立坐标系并写出该双曲线方程。

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

圆锥曲线定义及其应用

圆锥曲线定义及其应用 授课人:杨海芳 一、教学目标 1、 知识目标:能掌握圆锥曲线的二种定义及熟练灵活地应用定义求轨迹方程,距离,最值等问题。 2、 能力目标:能够准确地运用圆锥曲线的定义来解决实际问题,培养学生应用意识,提高分析,解决问题的能力。 二.、难点 圆锥曲线定义的灵活应用 三、教具 多媒体教学课件 四、教学过程 第一环节:经典回顾 圆锥曲线的定义:第一定义。第二定义。 第二环节:定义的应用 1.距离问题 例1、椭圆 上一点P 到右焦点F2的距离为7,求P 到左焦点的距离 思考: 变式1:求点P 到左准线的距离? 变式2:求点P 到右准线的距离? 2.坐标问题 例2.求抛物线y2=12x 上与焦点的距离等于9的点的坐标 由例2请大家在椭圆或双曲线上设计一道题目??? 注意:1、涉及椭圆双曲线上的点与两个焦点构成的三角形问题,常用第一定义来解决; 116252 2=+y x y F2 P X O F1 L1 L2 P2 P1 · · F M l N x o y

2、涉及焦点、准线、离心率、圆锥曲线上的点中的三者,常用统一定义解决问题. 第三环节:探究引申 1.轨迹问题 例3、已知动圆A 和圆B :(x+3)2+y2=81内切,并和圆C :(x-3)2+y2=1外切,求动圆圆心A 的轨迹方程。 分析:圆内外切时圆心与切点有何关系? 变式1:求三角形ABC 面积的最大值; 2.最值问题 变式2已知椭圆 中B 、C 分 别为其 左、右焦点和点M (2,2) ,试在椭圆上找一点A ,使: (1) 取得最小值; 点评: 1、在求轨迹方程时先利用定义判断曲线形状,可避免繁琐的计算; 2、一般,设A 为曲线含焦点F 的区域内一点在曲线上求一点P ,使|PF|+1/e|PA| 的值最小,都可以过点A 作与焦点F 相应准线的垂线,则垂线段与曲线的交点即为所求之点。 四、小结反思: 1、本节的重点是掌握圆锥曲线的定义在解题中的应用,要注意两个定义的区别和联系。 2、利用圆锥曲线的定义解题时,要注意曲线之间的共性和个性 3、利用圆锥曲线的定义解题时,要用数形结合、化归思想,以得到解题的最佳途径 4、有些最值问题要灵活地利用圆锥曲线的定义将折线段和的问题化归为平面几何中的直线段最短来解决。 y B C O x A AB AM 35+1162522=+y x 变式3:已知椭圆 中B 、C 分别为其 左、右焦点;又点 M ,试在椭圆上找一点 A,使: 取得最小值. 1162522=+y x )2,2(AC AM +

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

相关主题
文本预览
相关文档 最新文档