当前位置:文档之家› 高等代数教案

高等代数教案

高等代数教案
高等代数教案

《高等代数》课程教学总体安排

一、课程名称:高等代数

二、课程性质与类型:专业必修课,理论课

三、课程总学时及学分:150学时,学分

四、教学目的与要求:

教学目的:高等代数是数学与应用数学专业必修基础课,也是一门重要主干课程,是中学代数的提高,也是近代数学的基础。通过本课程的教学,使学生掌握高等代数的基本知识,基本方法,基本思路,适当地了解代数的一些历史,一些背景,以加深对中学数学的理解,获得独立分析和解决有关的理论和实际问题的能力,并为进一步学习其他后继课程:近世代数、微分方程、泛函分析等,以及将来从事教学,科研及其他实际工作打下基础。

教学基本要求:基本掌握全书的基本概念;能独立处理书后的绝大部分习

题;通过本书抽象理论的学习,提高自学能力,数学思维,专业素质,以便阅读较深的文献。

五、教材及参考书目

教材:张禾瑞,郝炳新著,高等代数,高等教育出版社,2007年6月第四版,ISBN:7-04-021465-9,

主要参考书:

[1] 北京大学数学系,高等代数,高等教育出版社,2003年7月第三版ISBN:7-04-011915-3

[2] 李师正等编,高等代数解题方法与技巧,高等教育出版社,2004 年2月版ISBN:7-04-012942-6

[3] 徐仲,陆全,张凯院,高等代数考研教案,西北工业大学出版社,2006年6月出版,ISBN:7-5612-2088-X

六、考核方式及成绩计算方法

期末进行闭卷考试,综合平时学习态度、课堂表现、平时作业确定学生学习成绩。具体计算方法为:学科成绩=期末考试成绩×90%+平时成绩×10%

七、课程教学日历

第一章基本概念

教学安排说明

章节题目:§1.5数环数域

学时分配:2学时。教学时数为2学时

本章教学目的与要求:掌握数环和数域概念,判别方法,理解有理数域的最小性。其它:本章以自学为主,只讲授第五节

课堂教学方案

§1.5数环数域

课程名称:§1.5数环数域

授课时数:2学时

授课类型:理论课

教学方法与手段:讲授法

教学目的与要求:掌握数环和数域概念,判别方法,理解有理数域的最小性。

教学重点、难点:数域的基本概念;判定数的集合是否是一个数域

教学内容

§5 数环和数域

关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.

定义1 设S是由一些复数组成的集合,其中包括0与1.如果S中任意两个数的和、差、积仍然是S中的数,那么S就称为一个数环.

显然整数集、全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数环。这四个数环分别用字母Z、Q、R、C来代表。

例1取定一个数a,{}

=∈是一个数环

S na n Z

定义2 设F是一个数环,如果:

(1)F含有一个不等于0的数

(2) 如果,,0,a b

a b F b F ∈≠∈则 那么就称F 是一个数域

又可定义为:设F 是由一些复数组成的集合,其中包括0与1.如果F 中任意两个数的和、差、积、商(除数不为零)仍然是F 中的数,那么F 就称为一个数域.

显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来代表.全体整数组成的集合就不是数域.

如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.

例2 所有可以表成形式

m

m n n b b b a a a ππππ++++++ΛΛ1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ΛΛ==是整数.

例3 所有具有形式

2b a +

的数(其中b a ,是任何有理数),构成一个数域.通常用)2(Q 来表示这个数域.

例4 所有奇数组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的. 定理:所有的数域都包含有理数域Q.

课后作业:P28 2,4,5

第二章多项式

教学安排说明

章节题目:§2.1 一元多项式的定义及运算,§2.2多项式整除性,§2.3 最大公因式,§2.4 多项式因式分解,§2.5重因式,§2.6 多项式函数与根,§2.7 C、R上的多项式,§2.8有理数域上多项式

学时分配:30学时。

§1一元多项式(2学时);

§2 整除(2学时);

§3 最大公因式(4学时);

§4 因式分解(3学时);

§5 重因式(2学时);

§6多项式函数(4学时);

§7复数域、实数域上多项式(3学时);

§8 有理系数多项式(3学时);

习题课及讨论(7学时)

本章教学目的与要求:

1).掌握一元多项式的定义及运算律;理解并掌握多项式的次数及次数定理;

2).理解并掌握多项式的整除概念和性质,掌握带余除法及其应用;

3).理解最大公因式的存在性,掌握其求法及表示法;

4).掌握多项式的互素概念及性质;

5).掌握不可约多项式的概念、性质及唯一分解定理,了解标准分解式及应用;

6).理解多项式导数的定义,求法及重因式概念,掌握多项式重因式的判别法;

7).掌握多项式函数余式定理,理解多项式相等与多项式函数相等的关系;

8).掌握复数域、实数域上多项式因式分解定理及不可约多项式的类型。

9).掌握有理数域上多项式的可约性及有理根的求法,掌握高斯引理的应用。

课 堂 教 学 方 案

§1一元多项式

课程名称: §1一元多项式

授课时数:2学时

授课类型:理论课

教学方法与手段:讲授法

教学目的与要求:掌握一元多项式的定义,运算及运算律;理解并掌握多项式的次数及次数定理;

教学重点、难点:多项式的形式定义

教学内容

§1 一元多项式的定义和运算

我们将在一个数环R 上来讨论多项式

一、 一元多项式的定义

定义1 设n 是一非负整数,形式表达式

0111a x a x a x a n n n n ++++--Λ (1)

其中n a a a ,,,10Λ全属于数域R ,称为系数在数域R 中的一元多项式,或者简称为数域R 上的一元多项式.

在多项式(1)中,i i x a 称为i 次项,i a 称为i 次项的系数.以后用Λ),(),(x g x f 或Λ,,g f 等来表示多项式.

注意:这里定义的多项式是符号或文字的形式表达式.

定义2 如果在多项式)(x f 与)(x g 中,除去系数为零的项外,同次项的系数全相等,那么)(x f 与)(x g 就称为相等,记为)()(x g x f =.

系数全为零的多项式称为零多项式,记为0.

在(1)中,如果0≠n a ,那么n n x a 称为多项式(1)的首项,n a 称为首项系

数,n 称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式)(x f 的次数记为0(())f x ?.

二、多项式的运算

0111)(a x a x a x a x f n n n n ++++=--Λ

0111)(b x b x b x b x g m m m m ++++=--Λ

是数域R 上两个多项式,那么可以写成

∑==n i i

i x a x f 0)( ∑==m

j j j x b x g 0)( 在表示多项式)(x f 与)(x g 的和时,如m n ≥,为了方便起见,在)(x g 中令011====+-m n n b b b Λ,那么)(x f 与)(x g 的和为

∑=---+=++++++++=+n i i

i i n n n n n n x b a b a x b a x b a x b a x g x f 00011111)()

()()()()()(Λ

而)(x f 与)(x g 的乘积为

001001111)()()()(b a x b a b a x b a b a x b a x g x f m n m n m n m n m n ++++++=-+--+Λ

其中s 次项的系数是

∑=+--=

++++s j i j i s s s s b a b a b a b a b a 011110Λ

所以)(x f )(x g 可表成 s m

n s s j i j i x b a x g x f )()()(0∑∑+==+=.

显然,数域R 上的两个多项式经过加、减、乘运算后,所得结果仍然是数域R 上的多项式.

多项式的运算满足以下的一些规律:

1. 加法交换律:)()()()(x f x g x g x f +=+.

2. 加法结合律:))()(()()())()((x h x g x f x h x g x f ++=++

3. 乘法交换律:. )()()()(x f x g x g x f =

4. 乘法结合律:))()()(()())()((x h x g x f x h x g x f =

5. 乘法对加法的分配律:)()()()())()()((x h x f x g x f x h x g x f +=+

6. 乘法消去律:若)()()()(x h x f x g x f =且0)(≠x f ,则)()(x h x g =.

定理2.1.1

(1)对于多项式的加减法,当()()0f x g x +≠时,有

000(()())max((()),(()))f x g x f x g x ?+≤??.

(2)对于多项式的乘法,若0)(,0)(≠≠x g x f ,则0)()(≠x g x f ,并且

000(()())(())(())f x g x f x g x ?=?+?

由以上证明看出,多项式乘积的首项系数就等于因子首项系数的乘积.

显然上面的结果都可以推广到多个多项式的情形.

推论2.1.2 ()()0f x g x =当且仅当()f x 和()g x 至少有一个是零多项式

推论2.1.3 若是()()()()f x g x f x h x =,且()0f x ≠,那么()()g x h x =

定义 所有系数在数域R 中的一元多项式的全体,称为数域R 上的一元多项式环,记为[]R x ,R 称为[]R x 的系数域.

课后作业:P31 1,3

课 堂 教 学 方 案

课程名称: §2 多项式的整除性

授课时数:2学时

授课类型:理论课

教学方法与手段:讲授法

教学目的与要求:理解并掌握多项式的整除概念和性质,掌握带余除法及其应用; 教学重点、难点:带余除法

教学内容

§2 多项式的整除

在一元多项式环中,可以作加、减、乘三种运算,但是乘法的逆运算—除法并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系.

以下限于讨论一个数域F 上一元多项式的整除性

设F 是一个数域,[]F x 是F 上的一元多项式环

一、整除的概念

定义 数域F 上的多项式)(x f 称为整除)(x g ,如果有数域F 上的多项式)(x h 使等式

()()()g x f x h x =

成立.用“()|()f x g x ”表示)(x f 整除)(x g ,用“()|()f x g x /”表示)(x f 不能整除)(x g .

当()|()f x g x 时,)(x f 就称为)(x g 的因式,)(x g 称为)(x f 的倍式.

二、整除的性质

1. 任一多项式)(x f 一定整除它自身.

2. 任一多项式)(x f 都能整除零多项式0.

3. 零次多项式,即非零常数,能整除任一个多项式.

4. 若)(|)(),(|)(x f x g x g x f ,则)()(x cg x f =,其中c 为非零常数.

5. 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f (整除的传递性).

6. 若r i x g x f i ,,2,1),(|)(Λ=,则

))()()()()()((|)(2211x g x u x g x u x g x u x f r r +++Λ,

其中)(x u i 是数域P 上任意的多项式.

通常,)()()()()()(2211x g x u x g x u x g x u r r +++Λ称为)(,),(),(21x g x g x g r Λ的一个组合.

由以上性质可以看出,)(x f 与它的任一个非零常数倍)0)((≠c x cf 有相同的因式,也有相同的倍式.因之,在多项式整除性的讨论中,)(x f 常常可以用)(x cf 来代替.

定理 2.1.1(带余除法) 对于[]F x 中任意两个多项式)(x f 与)(x g ,其中0)(≠x g ,一定有[]F x 中的多项式)(),(x r x q 存在,使

)()()()(x r x g x q x f += (1)

成立,其中00(())(())r x g x ?

带余除法中所得的)(x q 通常称为)(x g 除)(x f 的商,

)(x r 称为)(x g 除)(x f 的余式.

当()0f x ≠时,带余除法给出了整除性的一个判别条件.

定理 2.1.2对于数域F P 上的任意两个多项式)(x f ,)(x g ,其中0)(≠x g ,)(|)(x f x g 的充要条件是)(x g 除)(x f 的余式为零.

带余除法中)(x g 必须不为零.但)(|)(x f x g 中,)(x g 可以为零.这时0)(0)()()(=?=?=x h x h x g x f .

当)(|)(x f x g 时,如0)(≠x g ,)(x g 除)(x f 的商)(x q 有时也用

)

()(x g x f 来表示.

例1 证明若)()(|)(),()(|)(2121x f x f x g x f x f x g -+,则

12()|()()|()g x f x g x f x

例2 求l k ,,使1|32++++kx x l x x .

例3 若)(|)(),(|)(x h x g x f x g /,则)()(|)(x h x f x g +/.

最后,两个多项式之间的整除关系不因系数域的扩大而改变.即若)(x f ,)(x g 是[]F x 中两个多项式,F 是包含F 的一个较大的数域.当然,)(x f ,)(x g 也可以看成是[]F x 中的多项式.从带余除法可以看出,不论把)(x f ,)(x g 看成是[]F x 中或者是[]F x 中的多项式,用)(x g 去除)(x f 所得的商式及余式都是一样的.因此,若在[]F x 中)(x g 不能整除)(x f ,则在[]F x 中,)(x g 也不能整除)(x f .

课 堂 教 学 方 案

课程名称: §3 多项式的最大公因式

授课时数:4学时

授课类型:理论课

教学方法与手段:讲授法

教学目的与要求:理解最大公因式的存在性,掌握其求法及表示法,掌握多项式的互素概念及性质

教学重点、难点:最大公因式的存在性及其求法,多项式的互素概念及性质 教学内容

§3 多项式的最大公因式

设F 是一个数域,[]F x 是F 上的一元多项式环

一 、多项式的最大公因式

定义1 如果多项式()h x 既是)(x f 的因式,又是)(x g 的因式,那么()h x 就称为)(x f 与)(x g 的一个公因式.

定义2 设)(x f 与)(x g 是[]F x 中两个多项式. []F x 中多项式)(x d 称为)(x f ,)(x g 的一个最大公因式,如果它满足下面两个条件:

1))(x d 是)(x f 与)(x g 的公因式;

2))(x f ,)(x g 的公因式全是)(x d 的因式.

例如,对于任意多项式)(x f ,)(x f 就是)(x f 与0的一个最大公因式.特别地,根据定义,两个零多项式的最大公因式就是0.

引理 如果有等式

)()()()(x r x g x q x f += (1)

成立,那么)(x f ,)(x g 和)(x g ,)(x r 有相同的公因式.

由最大公因式的定义不难看出,如果)(),(21x d x d 是)(x f ,)(x g 的两个最大公因式,那么一定有)(|)(21x d x d 与)(|)(12x d x d ,也就是说0),()(21≠=c x cd x d .这就是说,两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的.两个不全为零的多项式的最大公因式总是一个非零多项式.

因此有:

定理2.3.1 []F x 的任意两个多项式)(x f ,)(x g 一定有最大公因式,除一次因式外,)(x f ,)(x g 的最大公因式是唯一的,这就是说,若)(x d 是)(x f 与)(x g 的公因式,且若)(x f ,)(x g 不全是零多项式时,只有形如()0,c cd x ≠的多项式才是)(x f ,)(x g 的最大公因式。

在这个情形,我们约定,用

()(x f ,)(x g )

来表示首项系数是1的那个最大公因式.

定理2.3.2 对于[]F x 的任意两个多项式)(x f ,)(x g ,设)(x d 为)(x f ,)(x g 在[]F x 的一个最大公因式,那么,在[]F x 里可以求得多项式)(),(x v x u 使:

)()()()()(x g x v x f x u x d +=. (2)

定理证明中用来求最大公因式的方法通常称为辗转相除法(division algorithm).

例 设

343)(234---+=x x x x x f

32103)(23-++=x x x x g

求()(x f ,)(x g ),并求)(),(x v x u 使

)()()()()(x g x v x f x u x d +=.

注:定理2的逆不成立.例如令

1)(,)(+==x x g x x f ,

122)1)(1()2(2-+=-+++x x x x x x .

但1222-+x x 显然不是)(x f 与)(x g 的最大公因式.

但是当(2)式成立,而)(x d 是)(x f 与)(x g 的一个公因式,则)(x d 一定是)(x f 与)(x g 的一个最大公因式.

二、多项式互素

定义3 []F x 中两个多项式)(x f ,)(x g 称为互素(也称为互质)的,如果

1))(),((=x g x f

显然,两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.

定理3 []F x 中两个多项式)(x f ,)(x g 互素的充要条件是有[]F x 中多项式)(),(x v x u 使

1)()()()(=+x g x v x f x u .

关于互素多项式有以下事实成立

(甲) 如果1))(),((1=x g x f ,1))(),((2=x g x f ,那么1))(),()((21=x g x f x f (已) 如果1))(),((=x g x f ,且)()(|)(x h x g x f ,那么

)(|)(x h x f .

(丙)如果)(|)(),(|)(21x g x f x g x f ,且1))(),((21=x f x f ,那么

)(|)()(21x g x f x f .

推广:对于任意多个多项式)2)((,),(),(21≥s x f x f x f s Λ,)(x d 称为

)2)((,),(),(21≥s x f x f x f s Λ的一个最大公因式,如果)(x d 具有下面的性质:

1)s i x f x d i ,,2,1),(|)(Λ=;

2)如果s i x f x i ,,2,1),(|)(Λ=?,那么)(|)(x d x ?.

我们仍用))(,),(),((21x f x f x f s Λ符号来表示首项系数为1的最大公因式.不难证明)(,),(),(21x f x f x f s Λ的最大公因式存在,而且当)(,),(),(21x f x f x f s Λ全不为零时,

))()),(,),(),(((121x f x f x f x f s s -Λ

就是)(,),(),(21x f x f x f s Λ的最大公因式,即

))(,),(),((21x f x f x f s Λ=))()),(,),(),(((121x f x f x f x f s s -Λ

同样,利用以上这个关系可以证明,存在多项式s i x u i ,,2,1),(Λ=,使

))(,),(),(()()()()()()(212211x f x f x f x f x u x f x u x f x u s s s ΛΛ=+++

如果1))(,),(),((21=x f x f x f s Λ,那么)(,),(),(21x f x f x f s Λ就称为互素的.同样有类似定理3的结论.

注意 1)当一个多项式整除两个多项式之积时,若没有互素的条件,这个多项

式一般不能整除积的因式之一.例如222)1()1(|1-+-x x x ,但22)1(|1+/

-x x ,且22)1(|1-/-x x .

2) 推论1中没有互素的条件,则不成立.如1)(2-=x x g ,1)(1+=x x f ,

)1)(1()(2-+=x x x f ,则)(|)(),(|)(21x g x f x g x f ,但)(|)()(21x g x f x f .

注意:s )2(≥s 个多项式)(,),(),(21x f x f x f s Λ互素时,它们并不一定两两互素.例如,多项式

34)(,65)(,23)(232221+-=+-=+-=x x x f x x x f x x x f

是互素的,但2))(),((21-=x x f x f . 令F 是含F 的一个数域, )(x d 是[]F x 的多项式)(x f 与)(x g 在[]F x 中的首项系数为1的最大公因式,而)(x d 是)(x f 与)(x g 在[]F x 中首项系数为1的最大公因式,那么)()(x d x d =.

即从数域F 过渡到数域F 时, )(x f 与)(x g 的最大公因式本质上没有改变. 互素多项式的性质可以推广到多个多项式的情形:

1)若多项式),()()(|)(21x f x f x f x h s Λ)(x h 与)(,),(),(,),(111x f x f x f x f s i i ΛΛ+- 互素,则)1)((|)(s i x f x h i ≤≤.

2) 若多项式)(,),(),(21x f x f x f s Λ都整除)(x h ,且)(,),(),(21x f x f x f s Λ两两互素,则)(|)()()(21x h x f x f x f s Λ.

3) 若多项式)(,),(),(21x f x f x f s Λ都与)(x h 互素,则

1))(),()()((21=x h x f x f x f s Λ.

课后作业:P48 1(1),2,4,7,8,10,12

课 堂 教 学 方 案

课程名称: §4 多项式的分解

授课时数:3学时

授课类型:理论课

教学方法与手段:讲授法

教学目的与要求:掌握不可约多项式的概念、性质及唯一分解定理,了解标准分解式及应用;

教学重点、难点:唯一分解定理

教学内容

§4 多项式的分解

一、不可约多项式

C

on i x i x x x R on x x x Q on x x x )2)(2)(2)(2()

2)(2)(2()

2)(2(42224+-+-=++-=+-=-. 定义 ,()c cf x 都是()f x 的因式,这样的因式称为()f x 的平凡因式。 定义 )(x f 为[]F x 的一个次数大于0的多项式,若()f x 只有平凡因式,()f x 就说是在数域F 上不可约,多项式()f x 称为数域F 上的不可约多项式(irreducible polynomical),显然,这时它不能表成数域F 上的两个次数比()f x 的次数低的多项式的乘积.

根据定义,一次多项式总是不可约多项式.

一个多项式是否可约依赖于数域F .

显然,不可约多项式()f x 的因式只有非零常数与它自身的非零常数倍()(0)cf x c ≠这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.由此可知,不可约多项式()f x 与任一多项式()g x 之间只可能有两种关

系,或者()|()f x g x 或者((),())1g x f x =.

不可约多项式的性质:

(a )如果)(x p 是不可约多项式,(),0cp x c ≠也是不可约多项式

(b )不可约多项式)(x p 与任一多项式()f x 之间只可能有两种关系,或者()|()p x f x 或者((),())1p x f x =.

(c ) 如果)(x p 是不可约多项式,那么对于任意的两个多项式)(),(x g x f ,由)()(|)(x g x f x p 一定推出)(|)(x f x p 或者)(|)(x g x p .

推广:如果不可约多项式)(x p 整除一些多项式)(,),(),(21x f x f x f s Λ的乘积)()()(21x f x f x f s Λ,那么)(x p 一定整除这些多项式之中的一个.

二、因式分解定理

定理2.4.1:数域()F x 的次数1≥的多项式)(x f 都可以分解成数域()F x 的一些不可约多项式的乘积.

定理2.4.2(因式分解及唯一性定理) 数域F 上次数1≥的多项式)(x f 都可以唯一地分解成数域F 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式

)()()()()()()(2121x q x q x q x p x p x p x f t s ΛΛ==,

那么必有t s =,并且适当排列因式的次序后有

s i x q c x p i i i ,,2,1,)()(Λ==.

其中),,2,1(s i c i Λ=是一些非零常数.

应该指出,因式分解定理虽然在理论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法.实际上,对于一般的情形,普遍可行的分解多项式的方法是不存在的.

在多项式)(x f 的分解式中,可以把每一个不可约因式的首项系数提出来,使它们成为首项系数为1的多项式,再把相同的不可约因式合并.于是)(x f 的分解式成为

)()()()(2121x p x p x cp x f s r s r r Λ=,

其中c 是)(x f 的首项系数,)(,),(),(21x p x p x p s Λ是不同的首项系数为1的不可约多项式,而s r r r ,,,21Λ是正整数.这种分解式称为标准分解式.

如果已经有了两个多项式的标准分解,就可以直接写出两个多项式的最大公因式.多项式)(x f 与)(x g 的最大公因式)(x d 就是那些同时在)(x f 与)(x g 的标准分解式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在)(x f 与)(x g 中所带的方幂中较小的一个.

由以上讨论可以看出,带余除法是一元多项式因式分解理论的基础.

若)(x f 与)(x g 的标准分解式中没有共同的不可约多项式,则)(x f 与)(x g 互素.

注意:上述求最大公因式的方法不能代替辗转相除法,因为在一般情况下,没有实际分解多项式为不可约多项式的乘积的方法,即使要判断数域F 上一个多项式是否可约一般都是很困难的.

例 在有理数域上分解多项式22)(23--+=x x x x f 为不可约多项式的乘积. 课后作业:P56 1(1)(2),3,4

教学大纲-厦门大学高等代数

教学大纲 一.课程的教学目的和要求 通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。 要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。 二.课程的主要内容: 代数学是研究代数对象的结构理论与表示方法的一门学科。代数对象是在一个集合上定义若干运算,且满足若干公理所构成的代数系统,线性空间则是数学类专业本科生所接触和学习的第一个代数对象。本课程力求突出代数学的思想和方法。 《高等代数》分为两个部分主要内容。一部分是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容,以初等变换为灵魂的矩阵理论是这部分内容的核心。另外一部分是研究线性空间的结构,这是研究代数结构的起点和模型,也是《高等代数》有别于《线性代数》之所在。《高等代数》从三个角度进行研究。从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间的运算和直和分解;从线性空间之间的关系来研究线性空间结构,就是线性映射,线性变换,线性映射的像与核,Jordan 标准形对应的空间分解。而欧氏空间则是具体的研究空间的例子。在研究线性空间中,始终贯穿着几何直观和矩阵方法的有机结合,矩阵的相似标准形和对应的线性空间分解则是这种有机结合的生动体现和提升,因而是本课程的精华内容。 本课程力求突出几何直观和矩阵方法的对应和互动。我们强调矩阵理论,把握简洁和直观的代数方法,同时重视线性空间和线性映射(变换)的主导地位和分量,从几何观点理解和把握课程内容。 三.课程教材和参考书: 教材:林亚南编著,高等代数,高等教育出版社,第一版 参考书:1. 姚慕生编著,高等代数(指导丛书),复旦大学出版社,第二版 2. 北京大学数学系编,高等代数,高等教育出版社,北京(1987) 3. 张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)

高等代数北大版课程教案-第5章二次型

第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 n n n x x a x x a x a x x x f 11211221112122),,,( n n x x a x a 2222222 (2) n nn x a (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0 ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

令 ji ij a a ,j i 由于 i j j i x x x x ,那么二次型(3)就可以写为 n n n x x a x x a x a x x x f 112112211121),,,( n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n 矩阵 nn n n n n a a a a a a a a a A 21 22221 112 11 它称为二次型(5)的矩阵.因为ji ij a a ,n j i ,,2,1, ,所以 A A . 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令 n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, n x x x AX X 2 1 nn n n n n a a a a a a a a a 21 22221 11211 n x x x 21 n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 21121211121 n i n j j i ij x x a 11. 故 AX X x x x f n ),,,(21 .

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

高等代数北大版教案-第5章二次型

高等代数北大版教案- 第5章二次型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

49 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21 ()? ??? ??? ??+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 2112121112 1 ∑∑===n i n j j i ij x x a 11.

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

数学系《高等代数》课程教学大纲

数学系《高等代数》课程教学大纲 学时:153学时学分:9 适用专业:数学与应用数学 执笔人:储茂权审定人:殷晓斌 说明: 1、课程的性质、地位和任务 本课程是高等师范院校以及综合性大学数学和应用数学专业的一门重要基础课程,它的任务是使学生初步掌握基本的、系统的代数知识和抽象的、严格的代数方法,以加深对初等数学的理解,并为进一步学习打下基础,要求学生掌握数域上一元多项式的因式分解理论以及多元多项式和对称多项式的基本知识;掌握行列式,矩阵和线性方程组中的基本理论和方法,掌握实二次型、线性空间、线性变换的基本理论和常用的数学方法。 2、课程教学的基本要求 (1)掌握数域和一元多项式的概念、整除的概念。对数域上一元多项式的因式分解及唯一定理及证明的思想有较深刻的认识。熟练掌握一元多项 式的带余除法和辗转相除法;多项式函数和重因式的基本知识;掌握有 关复数域、实数域和有理数域上的一元多项式的基本结果和基本方法; 掌握多元多项式的基本知识并能将对称多项式表为初等对称多项式的多 项式。 (2)掌握行列式的基本性质和计算;线性方程组的基本理论;矩阵的概念、运算、分块矩阵的初等变换和初等矩阵;二次型和标准形、规范形和正定性,掌握 -矩阵的基本知识,矩阵相似的条件,矩阵的Jordan标准形的基本知识;线性空间中向量的线性相关性,线性空间的维数、基和向量的坐标,基变换和坐标变换,线性子空间的基本知识;掌握欧氏空间的基本知识;熟练掌握线性变换的定义、运算和线性变换的矩阵;掌握线性变换的特征值和特征向量,值域和核、不变子空间等基本知识。 3、课程教学改革 (1)注重能力的培养 本课程教学中,在讲授有关内容的基本概念、基本理论和基本方法的同时,应注重培养学生的运算能力,运用获取的基本知识和基本技能去分析问题和解决问题的能力,同时注意培养抽象思维能力和逻辑推理能力,逐步提高自学和创新能力。 (2)注重本课程与其它课程的联系 《高等代数》是数学系的重要基础课程之一,它的基础地位不仅表现在它

高等代数(张禾瑞版)教案-第5章矩阵

高等代数(张禾瑞版) 教案-第5章矩阵 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五章 矩 阵 教学目的: 1. 掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。 2. 了解几种特殊矩阵的性质。 教学内容: 5.1 矩阵的运算 1 矩阵相等 我们将在一个数域上来讨论。令F 是一个数域。用F 的元素a ij 作成的一个m 行n 列矩阵 A= ?????? ? ??a a a a a a a a a mn m m n n 2 1 222 2111211 叫做F 上一个矩阵。A 也简记作(a ij )。为了指明 A 的行数和列数,有时也把它记作A mn 或 (a ij )mn 。 一个 m 行n 列矩阵简称为一个m*n 矩阵。特别,把一个n*n 矩阵叫做一个 n 阶正方阵,或n 阶矩阵。 F 上两个矩阵,只有在它们有相同的行数和列数,并且对应位置上的 元素都相等时,才认为上相等的。 以下提到矩阵时,都指的是数域F 上的矩阵。 我们将引进三种运算:数与矩阵的乘法,矩阵的加法以及矩阵的乘法。 先引入前两种运算。 2 矩阵的线性运算 定义 1 数域F 的数 a 与F 上一个m*n 矩阵A=(a ij ) 的乘法aA 指的是m*n 矩阵(aa ij ) 定义 2 两个m*n 矩阵A=(a ij ),B=(b ij ) 的和A+B 指的是m*n 矩阵(a ij +b ij )。 注意 ,我们只能把行数相同,列数相同的两个矩阵相加。 以上两种运算的一个重要特例是数列的运算。 现在回到一般的矩阵。我们把元素全是零的矩阵叫做零矩阵,记作0。如果矩阵 A=(a ij ), 我们就把矩阵(- a ij ),叫做A 的负矩阵,记作—A 。 3 矩阵线性运输的规律 A+B=B+A ; (A+B)+C=A+(B+C); 0+A=A ; A+(-A)=0; a(A+B)=Aa+Ab ; (a+b)A=Aa+Ba ; a(bA)=(ab)A ; 这里A,B 和 C 表示任意m*n 矩阵,而a 和 b 表示 F 中的任意数。 利用负矩阵,我们如下定义矩阵的减法: A —B=A+(— B )。 于是有 A+B=C ?A=C —B 。 由于数列是矩阵的特例,以上运算规律对于数列也成立。 4 乘法

(完整word版)高等代数教案北大版第六章.doc

授课内容教学时数教学目标教学重点教学难点 教学方法与 手段 教 学 过 程 第六章线性空间第一讲集合映射 2授课类型讲授通过本节的学习, 掌握集合映射的有关定义、运算, 求和号与乘积号的定义 集合映射的有关定义 集合映射的有关定义 讲授法启发式 1.集合的运算 , 集合的映射 ( 像与原像、单射、满射、双射 ) 的概念 定义 : ( 集合的交、并、差 ) 设S是集合 , A与B的公共元素所组成的集合 成为 A 与 B 的交集,记作A B ;把 A 和B中的元素合并在一起组成的集合成 为 A 与 B 的并集,记做 A B ;从集合 A中去掉属于 B 的那些元素之后剩下的元素组成的集合成为 A 与B的差集,记做A B . 定义 : ( 集合的映射 ) 设 A B 为集合 . 如果存在法则 f , 使得 A 中任意元素 、 a 在法则f下对应B中唯一确定的元素( 记做f (a) ), 则称f是A到B的一个映射 , 记为 f : A B, a f (a). 如果 f (a) b B , 则 b 称为a在 f 下的像,a称为 b 在 f 下的原像. A 的所有元素在 f 下的像构成的 B 的子集称为 A 在 f 下的像,记做 f ( A) ,即f ( A) f ( a) | a A . 若 a a' A, 都有 f (a) f (a'), 则称 f 为单射.若 b B, 都存在a A , 使得f (a) b ,则称 f 为满射 . 如果f既是单射又是满射, 则称f为双射 , 或称一一对应 . 2.求和号与求积号 (1)求和号与乘积号的定义

为了把加法和乘法表达得更简练 , 我们引进求和号和乘积号 . 设给定某个数域 K 上 n 个数 a 1, a 2 , , a n , 我们使用如下记号 : n n a 1 a 2 a n a i , a 1a 2 a n a i . i 1 i 1 当然也可以写成 a 1 a 2 a n a i , a 1 a 2 a n a i . 1 i n 1 i n (2) 求和号的性质 容易证明 , n n n n n n m m n a i a i , (a i b i ) a i b i , a ij a ij . i 1 i 1 i 1 i 1 i 1 i 1 j 1 j 1 i 1 事实上 , 最后一条性质的证明只需要把各个元素排成如下形状 : a 11 a 12 a 1 m a 21 a 22 a 2 m a n1 a n2 a nm 分别先按行和列求和 , 再求总和即可 . 讨论、练习与 作业 课后反思

高等代数课程的基本内容与主要方法

2010年第2期 牡丹江教育学院学报 No 12,2010 (总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO N Serial N o 1120[收稿日期]2009-10-25 [作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。 [基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。 高等代数课程的基本内容与主要方法 戴立辉 林大华 吴霖芳 陈 翔 (闽江学院,福建 福州 350108) [摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。 [关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A [文章编号]1009-2323(2010)02-0146-03 高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。 通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。 一、多项式 一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。其中整除性是基础,因式分解是核心。 (一)基本内容 1.整除性理论)))整除,最大公因式,互素。 2.因式分解理论)))不可约多项式,典型分解式,重因式。 3.根的理论)))多项式函数,根的个数,根与系数的关系。 (二)主要方法 1.多项式除多项式的带余除法。 2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。 3.两多项式互素的判别法。 4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。 5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。 6.多项式根的判别法,多项式重根的判别法。 7.整系数多项式有理根的求法,艾森斯坦判断法。二、行列式 行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。 (一)基本内容 n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。 (二)主要方法 1.求一个排列的逆序数的方法。 2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。 3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。 4.克莱姆规则。三、线性方程组 /线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。 (一)基本内容 1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。 2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。 3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。 4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数北大版教案-第5章二次型教学内容

高等代数北大版教案-第5章二次型

仅供学习与交流,如有侵权请联系网站删除 谢谢48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)

仅供学习与交流,如有侵权请联系网站删除 谢谢49 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示: 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数教学改革研究

龙源期刊网 https://www.doczj.com/doc/d615373542.html, 高等代数教学改革研究 作者:陈林 来源:《科技视界》2012年第26期 【摘要】高等代数是高等院校数学专业的主干课程,该门课程的教学改革对整个数学专业学生的教学质量的提高以及培养目标的完成都起着主导作用。本文在分析目前高等代数课程教与学的基础上,为高等代数的课程内容、教学方法、指导思想和教育观念进行改革。 【关键词】高等代数;教学内容;教学方法;改革 0 引言 高等代数这门课程是各高等院校数学专业学生的必修课,它不仅仅是中学数学理论的延续,而且还是整个现代数学大厦的基石。通过对这门课程的系统的学习,有助于学生养成严谨的处事习惯,增强学生逻辑推理能力,培养学生的数学抽象思维能力。绝大多数大中专院校将高等代数课程列为研究生入学考试的必考科目之一。 但是,目前高等代数的主要内容,在文革之前就已经确定了,还基本上是沿用前苏联的高等代数内容体系。近年来,国内许多学者对高代的内容进行大量的革新尝试,但其中几道丝线基本内容变动不大,仍然难以适应日新月异的科学技术发展的趋势,难以发挥高等代数作为自然科学原动力的作用,不能适应目前教学、科研的诸多需求。况且,近30年来,数学的理论分支发展迅猛,新思想、新知识、新研究方法不断涌现,更加强调理论的适应性,即如何提高生产力和更多的创造经济价值。但现行的高等代数教材的内容过分强调数学的纯理论性,往往是直接突兀的给出一个定义或一个定理,而没有关于这个定义或定理形成过程的介绍,同时缺乏讨论这些数学理论的发展和应用。在传统的高等代数课程教学中,往往只注重向学生灌输知识,课堂教学基本上还是“教材+粉笔+黑板”模式。从而难以提高学生的学习积极性,学生很难在认识上有所突破。 总之,为了应对数学理论日益迅猛的发展形势,为了紧跟时代发展的脚步,为了遵循我国教育发展的规律,为了提高办学质量、培养新时代的创新型人才,必须对高等代数课程的指导思想、内容以及教学方法进行改革。 1 指导原则 1.1 突出师范特色 大部分师范院校学生毕业后是进中学和小学参加教书。许多师范院校的毕业生工作以后感到大学里学到的东西在中学里用不到。因此,作为师范院校高等代数课程的内容要坚持师范性与学术性的统一,重点要突出师范性。必须将该课程的教学内容由学术型向教育学术型转化,

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数教学大纲

中国海洋大学本科生课程大纲 课程属性:学科基础 课程性质:必修 一、课程介绍 1.课程描述: 高等代数是数学科学学院各专业的重要专业必修基础课,是学习其它数学课程的主要先修课之一。高等代数的内容主要包含两个模块:第一模块,方程和方程组的求解问题,主要内容有:多项式、行列式、线性方程组、矩阵、二次型;第二模块,线性空间相关理论,主要内容有:线性空间、线性变换、λ-矩阵、欧几里得空间。高等代数内容包含理工科所开设的线性代数的主要内容。 2.设计思路: 开设高等代数课程的目的是:一方面,使数学院本科生在中学所学初等代数的基础上继续学习更加高深的代数学知识,使其掌握系统的经典代数内容,为学习其它数学课程(如数值代数、近世代数、计算方法等等)提供坚实的代数基础知识;另一方面,通过本课程的学习,逐步培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生在数学思想、数学方法方面的修养。 19世纪以前的代数研究内容主要是解方程和方程组以及由此产生的相关理论,称为经典代数;19世纪以后的代数主要研究一些抽象代数结构,如群、环、域、模等,称为抽象代数或近世代数。高等代数课程的内容主要是经典代数内容,涵盖学习其它数学课程所要求的基本的代数基础知识。 - 2 -

高等代数的内容基本按照经典代数的发展编排的,主要有两条主线:第一,方程和方程组求解问题,第二,线性空间相关理论。第一条主线的主要内容有:多项式理论——对应高次方程,其求解需要降次,需研究多项式的因式分解;行列式理论——求解线性方程组的主要工具之一;线性方程组理论——解的判定与求法;矩阵理论——解线性方程组时用到的矩阵运算与性质;二次型理论——二次齐次方程的化简与对称矩阵。第二条主线的主要内容多是解析几何中内容的推广,主要有:线性空间——几何空间的推广与抽象;线性变换——线性空间中点的运动的描述;λ-矩阵——证明线性变换的矩阵与其标准形相似;欧几里得空间——带有长度、夹角与距离等度量性质的线性空间,是几何空间的推广。 3.课程与其他课程的关系: 先修课程:无; 并行课程:数学分析、空间解析几何; 后置课程:近世代数。高等代数与近世代数内容恰好实现对接,完整体现了代数学的基本内容,联系密切。 二、课程目标 本课程目标是:一方面使学生系统地掌握经典代数的内容,包括多项式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等,为学习其它数学课程打下坚实的代数知识基础;另一方面,通过本课程的学习,培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生运用数学思想、数学方法分析问题、解决问题的能力。 到课程结束时,学生应达到以下几方面要求: (1)知识掌握良好。会判断多项式的可约性,能计算两多项式的最大公因式;会计算行列式;会判定线性方程组是否可解,掌握线性方程组解的结构;熟练掌握矩阵的各种运算;可将二次型化为标准形;掌握线性空间基底理论以及子空间的运算;会写线性变换的矩阵,会判定矩阵是否对角化、准对角化,并能求出其相应对角形与准 - 2 -

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高等代数《高等代数》教学大纲

《高等代数》课程教学大纲 Advanced Algebra 执笔人:颜昌元编写日期:2012.7 一、课程基本信息 1.课程编号: 07010112,07010113 2.课程性质/类别:专业基础课/ 必修课 3.学时/学分:160 学时/ 10 学分 4.适用专业:数学与应用数学、信息与计算科学、统计学 二、课程教学目标及学生应达到的能力 《高等代数》是大学数学专业三门重要基础课程之一。因其内容的抽象性和理论的结构化及应用之广泛,既是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。 该课程的教学目标是使学生掌握代数基本知识和理论,逐步培养学生的抽象思维能力和逻辑推理能力,使学生获得较熟练的演算技能与初步的应用能力,为后续专业课程的学习打下基础,适当了解代数的一些历史与背景。 该课程应突出传授数学思想和数学方法,突出高等代数中等价分类、结构分解、同构对应的思想,揭示课程内部本质的有机联系。 在教学过程中根据具体教学内容,帮助学生体会人类认识客观世界的一般规律:从具体个例提升到抽象本质再应用到一般情形,及本课程中体现的唯物主义辩证法;帮助学生体会本课程统一性、简单性、对称性、整齐性、不变性、奇异性等数学的内在美。 三、课程教学内容与基本要求 本课程开课时间:第一学年(共两学期),共160 学时;其中,第一学期,每周5学时,共80学时;第二学期,每周5学时,共 80学时。 (一)多项式 (20 学时) 1.主要内容: (1)数域 (2)一元多项式 (3)整除的概念 (4)最大公因式 (5)因式分解定理 (6)重因式 (7)多项式函数 (8)复系数与实系数多项式的因式分解 (9)有理系数多项式

相关主题
文本预览
相关文档 最新文档