当前位置:文档之家› 嵌入式实验四:串口传输实验

嵌入式实验四:串口传输实验

嵌入式实验四:串口传输实验
嵌入式实验四:串口传输实验

实验报告

课程名称嵌入式系统设计

实验仪器清华同方辰源嵌入式系统实验箱

实验名称实验四:串口传输实验

系别计算机学院

专业计算机科学与技术

班级/学号

学生姓名

实验日期

成绩

指导教师

实验四:串口传输实验

一、实验问题回答

(1)本实验引入了Send和Receive两个变量表示上传或下传数据,用状态机怎么实现?

答:switch(oledkey[0])

{

case 'F':

state=1;

//Receive = 1;

//Send = 0;

break;

case 'E':

state=2;

//Send = 1;

//Receive = 0;

break;

switch(state)

{

case 0:

break;

case 1:

recive();

break;

case 2:

send();

break;

(2)了解串口通讯原理。

答:串口按位(bit)发送和接收字节,串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通信的端口,这些参数必须匹配。

1、51系列单片机的串口有4个模式,可分别用作串并转换、并串转换、异步串行通信(2种模式)。异步串行通信中,有1+8+1和1+8+1+1两种帧格式,多机通信是特殊的通信方式。

2、基本原理是两组移位寄存器。将并行通信转换成串行通信模式(发送部分),或反之(接收部分)。可全双工运行。

3、速度通过移位脉冲决定。具体一般通过定时器1的自动装载模式产生的溢出脉冲给出。

4、电平上采用的是CMOS逻辑。

5、以上是物理层和数据链路层的单片机串口模块的约定,其他层需要软件人员根据需要自行把握。另外,电平需要根据实际通信环境做变换,如232、485或红外等。

(3)了解在上位机(PC端)端,C程序中如何调用串口?

答:#include

#include

HANDLE hCom;

int main(void)

{

hCom=CreateFile(TEXT("COM3"),//COM1口

GENERIC_READ|GENERIC_WRITE, //允许读和写

0, //独占方式

NULL,

OPEN_EXISTING, //打开而不是创建

0, //同步方式

NULL);

if(hCom==(HANDLE)-1)

{

printf("打开COM失败!\n");

return FALSE;

}

else

{

printf("COM打开成功!\n");

}

SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024

COMMTIMEOUTS TimeOuts;

//设定读超时

TimeOuts.ReadIntervalTimeout=1000;

TimeOuts.ReadTotalTimeoutMultiplier=500;

TimeOuts.ReadTotalTimeoutConstant=5000;

//设定写超时

TimeOuts.WriteTotalTimeoutMultiplier=500;

TimeOuts.WriteTotalTimeoutConstant=2000;

SetCommTimeouts(hCom,&TimeOuts); //设置超时

DCB dcb;

GetCommState(hCom,&dcb);

dcb.BaudRate=9600; //波特率为9600

dcb.ByteSize=8; //每个字节有8位

dcb.Parity=NOPARITY; //无奇偶校验位

dcb.StopBits=ONE5STOPBITS; //两个停止位

SetCommState(hCom,&dcb);

DWORD wCount;//读取的字节数

BOOL bReadStat;

while(1)

{

PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR); //清空缓冲区

char str[9]={0};

printf("%s\n",str);

bReadStat=ReadFile(hCom,str,9,&wCount,NULL);

if(!bReadStat)

{

printf("读串口失败!");

return FALSE;

}

else

{

str[8]='\0';

printf("%s\n",str);

}

Sleep(100);

}

}

(4)了解在上位机(PC端)端,JAVA程序中如何调用串口?

答:public static void process() {

try {

Enumeration portList = CommPortIdentifier.getPortIdentifiers();

while (portList.hasMoreElements())

{

CommPortIdentifier portId = (CommPortIdentifier) portList.nextElement();

if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL)//如果端口类型是串口则判断名称

{

if(portId.getName().equals("COM1")){//如果是COM1端口则退出循

break;

}else{

portId=null;

}

}

}

SerialPort serialPort = (SerialPort)portId.open("Serial_Communication", 1000);//打开串口的超时时间为1000ms

serialPort.setSerialPortParams(9600,SerialPort.DA TABITS_8,SerialPort.STOPBITS

_1,SerialPort.PARITY_NONE);//设置串口速率为9600,数据位8位,停止位1

们,奇偶校验无

InputStream in = serialPort.getInputStream();//得到输入流

OutputStream out = serialPort.getOutputStream();//得到输出流

//进行输入输出操作

//操作结束后

in.close();

out.close();

serialPort.close();//关闭串口

} catch (PortInUseException e) {

e.printStackTrace();

} catch (UnsupportedCommOperationException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

二、实验目的和效果

实验目的:

(1)学习、理解、掌握利用串口实现上位机和下位机之间的通讯(数据上传和控制)。

达到实验要求,拓展二未实现。

实验效果:

三、实验内容和步骤

实验内容:

(1)默认在在OLED屏幕上分行显示串口号、波特率、数据位、校验位、停止位、“E”键发送模式、“F”键接收模式。

思路:E键发送模式设置send=1 receive=0 F键接受模式设置 send=0 receive=1 (2)按下小键盘的“E”键,表示下位机(实验箱)往上位机(PC)发送数据,上位机开启“超级终端”,下位机循环往上位机发送“0”“1”“2”。。。“9”字符,上位机在“超级终端”中可以看到。

思路:定义一个全局变量字符数组,char rxchar[2];

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,GPIO_PIN_0);

SysCtlDelay(2000000);

UARTSend((unsigned char *)&rxchar, 1);

SysCtlDelay(2000000);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,0);

rxchar[0]值不断由0x30-0x39之间进行变化。

if((rxchar[0] >= 0x39) || (rxchar[0] < 0x30))

rxchar[0] = 0x30;

else

rxchar[0]++;

(3)按下小键盘的“F”键,表示上位机(PC)往下位机(实验箱)发送数据,上位机开启“超级终端”,输入“A”、“B”、“C”、“D”等,下位机接受数据,和小键盘输入一样进行相应显示。

思路:if(UARTCharsAvail(UART0_BASE))

{

rxchar[0] = UARTCharGet(UART0_BASE); // 等待接收字符

rxchar[1] = '\0';

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,GPIO_PIN_0);

RIT128x96x4StringDraw("Receive: ", 12,80, 15);

RIT128x96x4StringDraw(rxchar, 66,80,15);

RIT128x96x4StringDraw("", 72,80,15);

SysCtlDelay(1000000);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,0);

}

(4)扩展:按照状态机模式修改程序。

思路:根据按键的不同判断状态,三种状态,空闲,接收,发送。根据状态的不同调用相应的方法。

(5)扩展:在另外一片CPU LM3S 2110上实现串口通信,接实验箱第二个串口接口,因为这一片CPU不带显示器,可以只实现下位机(实验箱)往上位机(PC)发送数据,上位机开启“超级终端”,下位机循环往上位机发送“0”“1”“2”。。。“9”字符,上位机在“超级终端”中可以看到。

思路:理论上在创建项目时选择cpu LM3S 2110,改变实验箱上连线,连接UART2的串口即可实现。但实际操作中并未实现。

实验步骤:

(1)加载必要程序

(2)串口启动配置(main)

(3)增加串口相关函数(main.c中)

(4)修改主函数,实现本次实验要求的功能

(5)编译、连接,生成可执行程序文件

(6)反复(3)--(5)步骤,直到完成

(7)硬件连接,连接标志UART1的串口

(8)联调

四、实验总结与收获

实验代码

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include "rit128x96x4.h"

//#include "utility.h"

#define MAX_SIZE 40 // 缓冲区最大限制长度

#define UARTCharGetNB UARTCharGetNonBlocking

char RxBuf[1 + MAX_SIZE]; // 接收缓冲区

int BufP = 0; // 缓冲区位置变量

tBoolean RxEndFlag = false; // 接收结束标志unsigned int Event=0,Event_key=0,Send=0,Receive=0; int type=0;

int ki=0;

char oledkey[2];

int state=0;

unsigned char ucValue=0x00;

long time=0;

int Speed,count=0;

unsigned char rxchar[10];

void timerset(void);

void UARTSend(const unsigned char *pucBuffer, unsigned long ulCount); void recive(){

if(UARTCharsAvail(UART0_BASE))

{

rxchar[0] = UARTCharGet(UART0_BASE); // 等待接收字符

rxchar[1] = '\0';

GPIOPinWrite(GPIO_PORTF_BASE,

GPIO_PIN_0,GPIO_PIN_0);

RIT128x96x4StringDraw("Receive: ", 30,80, 15);

RIT128x96x4StringDraw(rxchar, 66,80,15);

RIT128x96x4StringDraw("", 72,80,15);

SysCtlDelay(100000);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,0);

}

}

void send(){

RIT128x96x4StringDraw("sending1",0,60,15);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,GPIO_PIN_0);

SysCtlDelay(200000);

//RIT128x96x4StringDraw("sending2",20,1,15);

UARTSend((unsigned char *)&rxchar, 1);

SysCtlDelay(200000);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,0);

if((rxchar[0] >= 0x39) || (rxchar[0] < 0x30))

rxchar[0] = 0x30;

else

rxchar[0]++;

RIT128x96x4StringDraw("sended ",1,1,15);

}

int main(){

//声明部分

rxchar[0]=0x30;

rxchar[1]='\0';

//初始化

/* Set the clocking to run from PLL at 50 MHz */

SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

RIT128x96x4Init(1000000);

RIT128x96x4Clear();

//设置时钟中断 1

SysTickPeriodSet(SysCtlClockGet()/100);

SysTickEnable();

SysTickIntEnable();

//******************************

//设置键盘中断

/*使能外设GPIO */

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

/*设置GPIO 为输入*/

GPIOPinTypeGPIOInput(GPIO_PORTD_BASE, GPIO_PIN_7);

GPIOPinTypeGPIOInput(GPIO_PORTC_BASE, GPIO_PIN_4);

/*配置GPIO 端口为输出

// 7segd1(PB6);7segd2(PB4);7segd3(PB5)

GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6);

// bitcode0(PC5);bitcode1(PC6);bitcode2(PC7)

GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);

// 7segd0(PD4);7segdot(PD5);rst(PD6)

GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6);*/

/*使能中断*/

IntEnable(INT_GPIOD);

IntMasterEnable();

GPIOPinIntEnable(GPIO_PORTD_BASE, GPIO_PIN_7);

GPIOIntTypeSet(GPIO_PORTD_BASE, GPIO_PIN_7, GPIO_RISING_EDGE);

//*************************************

GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);

GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

// Configure the UART for 115,200, 8‐N‐1 operation.

UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200, (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG_PAR_NONE));

UARTFIFOLevelSet(UART0_BASE, // 设置发送和接收FIFO 深度UART_FIFO_TX4_8,

UART_FIFO_RX6_8);

IntEnable(INT_UART0);

UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);

timerset();//计时器初始化

timerset();//计时器初始化

RIT128x96x4StringDraw("com1", 0, 0, 15);//显示串口号RIT128x96x4StringDraw("115200", 0, 20, 15);//显示波特率

/*unsigned char a= *pulConfig;

char d[30];

char b[30];

d=*a+1;

b=*a+2;*/

RIT128x96x4StringDraw("8", 0, 40, 15);//显示数据位

//unsigned long parity=UARTParityModeGet(UART0_BASE);

//sprintf(p,"%d",parity );

RIT128x96x4StringDraw("wu", 0, 60, 15);//显示校验位RIT128x96x4StringDraw("1", 0, 80, 15);//显示停止位RIT128x96x4StringDraw("E:send",1,31,15);

RIT128x96x4StringDraw("F:receiave",1,41,15);

while(1)

{

if(Event)

{

Event = 0;

}

if(Event_key)

{

Event_key = 0;

switch(oledkey[0])

{

/* case '0':

Draw_Char_H(0);

break;

case '1':

Reset_Counter_Speed(128);

Speed = 128;

break;

*/ case 'F':

state=1;

//Receive = 1;

//Send = 0;

break;

case 'E':

state=2;

//Send = 1;

//Receive = 0;

break;

default:

state=0;

break;

}

}

switch(state)

{

case 0:

break;

case 1:

recive();

break;

case 2:

send();

break;

default:

//state=0;

break;

}

/* if(Send)

{

RIT128x96x4StringDraw("sending1",0,60,15);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,GPIO_PIN_0);

SysCtlDelay(200000);

//RIT128x96x4StringDraw("sending2",20,1,15);

UARTSend((unsigned char *)&rxchar, 1);

SysCtlDelay(200000);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,0);

if((rxchar[0] >= 0x39) || (rxchar[0] < 0x30))

rxchar[0] = 0x30;

else

rxchar[0]++;

RIT128x96x4StringDraw("sended ",1,1,15);

}

if(Receive)

{

if(UARTCharsAvail(UART0_BASE))

{

rxchar[0] = UARTCharGet(UART0_BASE); // 等待接收字符

rxchar[1] = '\0';

GPIOPinWrite(GPIO_PORTF_BASE,

GPIO_PIN_0,GPIO_PIN_0);

RIT128x96x4StringDraw("Receive: ", 30,80, 15);

RIT128x96x4StringDraw(rxchar, 66,80,15);

RIT128x96x4StringDraw("", 72,80,15);

SysCtlDelay(100000);

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0,0);

}

} */

}

// return 0;

}

//中断处理

void SysTick_Handler (void) {

Event = 1;

}

/*中断服务函数ISR*/

void GPIO_PORT_D_ISR(void)

{

unsigned char ucKey;

unsigned long ulStatus;

ulStatus = GPIOPinIntStatus(GPIO_PORTD_BASE, true);

GPIOPinIntClear(GPIO_PORTD_BASE, ulStatus);

if(ulStatus & GPIO_PIN_7)

{

ucKey = GPIOPinRead(GPIO_PORTC_BASE, GPIO_PIN_4);

ucKey = ucKey>>1;

ucValue = ucValue + ucKey;

ucValue = ucValue<<1;

ki++;

if(ki==4)

{

ki=0;

oledkey[1]='\0';

if((ucValue>>4)<10)

oledkey[0] = (ucValue>>4) + 48;

else

oledkey[0] = (ucValue>>4) - 10 + 'A';

Event_key = 1;

}

}

}

void timerset()

{

SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);

TimerLoadSet(TIMER0_BASE, TIMER_A, SysCtlClockGet()/100); // 不除以100 则1 秒中断一次

IntEnable(INT_TIMER0A);

TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

}

void Timer0IntHandler(void)

2020年嵌入式串口通信设计参照模板

***************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2013年春季学期 嵌入式系统开发技术课程设计 题目:嵌入式串口通信设计 专业班级:通信工程四班 姓名: 学号: 指导教师: 成绩:

嵌入式是以应用为中心,以计算机技术为基础,软件硬件可剪裁,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。随着嵌入式系统的发展和大规模应用,为了提升系统的整体性能,必须实现PC机和嵌入式计算机之间的通信。在实际开发应用中,串口通信是不可缺少的部分。 目前嵌入式系统与PC机之间一种非常重要而且普遍应用的通信方式。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。通过与计算机串口间的接,实现在ARM 平台上,传输速率115200bps,接收来自串口(通过超级终端)的字符并将接收到的字符发送到超级终端,实现监测。与外部设备通信的基本功能。 关键字:嵌入式系统,串口通信,Linux系统

前言 ------------------------------------------------------------------------------------------- - 4 - 一、串口通信概述--------------------------------------------------------------------------- - 5 - 1.1 串口通信的原理 ------------------------------------------------------------------ - 5 - 1.2 串口通信的开发工具 ------------------------------------------------------------ - 5 - 1.2.1 2410F硬件平台简介---------------------------------------------------------- - 5 - 1.3 串口通信的基本任务 ------------------------------------------------------------ - 8 - 二、系统分析--------------------------------------------------------------------------------- - 9 - 三、串口驱动程序设计 ------------------------------------------------------------------- - 17 - 3.1 串口操作需要的头文件 -------------------------------------------------------- - 17 - 3.2 打开串口 -------------------------------------------------------------------------- - 17 - 3.3 串口设置 -------------------------------------------------------------------------- - 18 - 3.4 串口读写 -------------------------------------------------------------------------- - 20 - 3.5 关闭串口 -------------------------------------------------------------------------- - 22 - 四、总结-------------------------------------------------------------------------------------- - 23 - 参考文献-------------------------------------------------------------------------------------- - 24 - 附录----------------------------------------------------------------------------------------- - 25 -

实验四-串口通信实验

姓名:彭嘉乔 学号:3130104084 日期:2015.05 地点: ___________ 指导老师:弓 ________________ 成绩: 实验类型: 同组学生姓名:吴越 、实验内容和原理(必 填) 四、操作方法和实验步骤 六、实验结果与分析(必 填) 七、讨论、心得 一、实验目的 1、掌握80C51串行口工作方式选择、理解串行口四种通讯模式的区别、波特率发生器的作用及通讯过程屮的时 序关系。 2、 掌握串口初始化的设置方法和串行通信编程的能力。 3、 了解PC 机通讯的基本要求,掌握上位机和下位机的通讯方法。 4、 编写简单的通信协议(如串行口工作方式、波特率、校验方式、出错处理等) 二、 实验器材 1、 Micetek 仿真器一台。 2、 实验板一块。 3、 PC 机电脑一台。 4、 九针串口线一条。 別f 尹丿占实验报告 课程名称:彳 — 实验名称:实验四 串口通信实验 、实验目的和要求(必 填) 三、主要仪器设备(必 填) 五、实验数据记录和处理

三、实验原理 串口通讯对单片机而言意义重大,不但可以实现将单片机(下位机)的数据传输到PC端(上位机),

便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是 RS232电平的,而单片机的 串口是TTL 电平的,两者Z 间必须有一个电平转换电路,本实验采用专用芯片 也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。 3. 1 RS232九针串口基本功能简介 九针串口即RS-232接口,是个人计算机上的通讯接口之一,由电子工业协会 Industries Association , EIA)所制定的异步传输标准接口。通常RS-232接口以9个引脚(DB-9)或是25个引脚(DB-25) 的型态出现,一般个人计算机上会有两组 RS-232接口,分别称为COM1和COM2。该接口分 为公头子和母头子。九针串口(母头)的功能如下,请见图 1 : 9 / \ 6 Ov 3v Ov Ov 图1 RS232九针串口母头功能说明 分别为1 :载波检测 (DCD) ; 2 :接收数据(RXD) ; 3 :发送数据(TXD) : 4 :数据终端准备 好(DTR) ; 5 :信号地(GND) ; 6 :数据准备好(DSR) ; 7 :发送请求(RTS) ; 8 :发送清除(CTS) ; 9 :振铃 指示(RI)接法。 本实验采用三线制连接串口,也就是说和电脑的 9针串口只需连接其屮的3根线:第5脚的GND 、 第2脚的RXD 、第3脚的TXD 。这是最简单的连接方法, 但是已满足本实验硬件需求, 电路如图2所示, MAX232的第11脚和单片机的11脚连接,通过MAX232芯片的电平转换,将T1OUT 输出连接板子上9针串口(母头)MAX232进行转换,虽然 (Electronic

嵌入式实验报告

课题:按键控制流水灯 专业:物联网工程 班级:01 学号:14154951 姓名:李政 指导教师:何建军 设计日期:2016.12.21—2016.12.30 成绩: 重庆大学城市科技学院电气学院

嵌入式设计报告 一、设计目的作用 通过编程实现对LED灯项目的改变,加深对stm32芯片的理解,对keil软件的熟悉掌握,工程的搭建以及头文件的使用。掌握外部设备的接入以及外部中断的实现。 二、设计要求 用四个按键控制8个流水灯的流水显示 (1).按键A按下时候流水灯按从左往右的流水显示。 (2).按键B按下时候流水灯按从右往左的流水显示。 (3).按键C按下时候流水灯按中心开花的方式流水显示:从中间向两边流水显示 (4).按键D按下时候流水灯按从两边到中心移动的方式流水显示。(5).(选做)引入时针中断: 默认的流水方式: (1)对时钟中断的次数进行计数 (2)当时钟中断的次数除以4的余数为0时:按从左到右的顺序流水显示(3)当时钟中断的次数除以4的余数为1时:按从右到左的顺序流水显示(4)当时钟中断的次数除以4的余数为2时:按中心开花的方式流水显示(5)当时钟中断的次数除以4的余数为3时:从两边到中心移动的方式流水显示。 系统启动时按默认的流水方式显示,当按下A、B、C、D四个按键时,按指定的方式流水显示,当按下按键E时恢复按默认的流水方式。 三、设计的具体实现 1、设计原理 这次使用的是stm32f103系列芯片,芯片引脚如下图

Stm32内部资源

GPIO原理及应用: 有7个16位并行I/O口:PA、PB、PC、PD、 PE、PF、PG 都是复用的,最少有2种 功能,最多有6种功能

嵌入式系统实验报告-串行通信实验

《嵌入式系统实验报告》 串行通信实验 南昌航空大学自动化学院050822XX 张某某 一、实验目的: 掌握μC/OS-II操作系统的信号量的概念。 二、实验设备: 硬件:PC机1台;MagicARM2410教学实验开发平台台。 软件:Windows 98/2000/XP操作系统;ADS 1.2集成开发环境。 三、实验内容: 实验通过信号量控制2个任务共享串口0打印字符串。为了使每个任务的字符串信息(句子)不被打断,因此必须引入互斥信号量的概念,即每个任务输出时必须独占串口0,直到完整输出字符串信息才释放串口0。 四、实验步骤: (1)为ADS1.2增加DeviceARM2410专用工程模板(若已增加过,此步省略)。 (2)连接EasyJTAG-H仿真器和MagicARM2410实验箱,然后安装EasyJTAG-H仿真器(若已经安装过,此步省略),短接蜂鸣器跳线JP9。 (3)启动ADS 1.2,使用ARM Executable Image for DeviceARM2410(uCOSII)工程模板建立一个工程UART0_uCOSII。(本范例在ADS文件夹中操作) (4)在ADS文件夹中新建arm、Arm_Pc、SOURCE文件夹。将μC/OS 2.52源代码添加到SOURCE文件夹,将移植代码添加到arm文件夹,将移植的PC服务代码添加到Arm_Pc文件夹。 (5)在src组中的main.c中编写主程序代码。 (6)选用DebugRel生成目标,然后编译链接工程。 (7)将MagicARM2410实验箱上的UART0连接跳线JP1短接,使用串口延长线把MagicARM2410实验箱的CZ11与PC机的COM1连接。 注意:CZ11安装在MagicARM2410实验箱的机箱右侧。 (8)PC机上运行“超级终端”程序(在Windows操作系统的【开始】->【程序】->【附件】->【通讯】->【超级终端】),新建一个连接,设置串口波持率为115200,具体设置参考图3.5,确定后即进入通信状态。 (9)选择【Project】->【Debug】,启动AXD进行JTAG仿真调试。 (10)全速运行程序,程序将会在main.c的主函数中停止(因为main函数起始处默认设置有断点)。 (11)可以单步运行程序,可以设置/取消断点,或者全速运行程序,停止程序运行,在超级终端上观察任务0和任务1的打印结果。 五、实验结论与思考题(手写,打印无效): 1、如果任务0删除语句“OSSemPost(UART0_Sem);”,那么程序还能完全正常无误运行么?如果发生异常会出现什么现象?

嵌入式实验报告

嵌入式技术 实验报告 系别:计算机与科学技术系 班级:计12-1班 姓名:刘杰 学号:12101020128 总成绩: 评语: 日期:

2.在弹出的对话框中依次选择“cedevice emulator emulator kdstub”。 3.选择“Build OS”菜单的“sysgen”开始构建平台。 1.1.4连接,下载和运行平台 1.选择“Target”菜单下的“Connection option”菜单项。 2.在新的对话框中,配置连接关系 3.选择“Target”菜单下的“attach”菜单项,开始下载。 ?实验结果 操作系统定制成功,能正常运行。 ?结果截图 ?问题总结 由于对实验平台了解不够,致使操作过程中添加和删除组件时不知道该如何下手,影响整个实验进度。 实验1.2: 1.打开Platform Builder,并且打开实验1的工程,在实验1的工程基础上做本实验。

进程显示 IE信息查看

报文监测 实验1.3使用Platform Builder开发应用程序 简单实验步骤 1.打开Platform Builder。 2.选择“File”菜单下的“Open Workspace…”,然后打开实验1中创建的平台,本实验要基于 上面的实验的基础上做。 3.选择“File”菜单下的“New Project or File…”,打开“New Project or File”对话框。 4.在“Projects”选项页中选择“WCE Application”;在“Project Name”中输入项目的名字,例 如“MyApp”。 5.在“New Project Wizard – step 1 of 1”中选择“A typical Hello World Application”,点击“Finish” 按钮。 6.选择“Build”菜单中的“Build MyApp.exe”来编译应用程序。

实验四-串口通信实验

. 实验报告 课程名称:微机原理与接口技术 指导老师:张军明 成绩:__________________ 实验名称:实验四 串口通信实验 实验类型:________________同组学生姓名:吴越 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、掌握80C51串行口工作方式选择、理解串行口四种通讯模式的区别、波特率发生器的作用及通讯过程中的时序关系。 2、掌握串口初始化的设置方法和串行通信编程的能力。 3、了解PC 机通讯的基本要求,掌握上位机和下位机的通讯方法。 4、编写简单的通信协议(如串行口工作方式、波特率、校验方式、出错处理等)。 二、实验器材 1、Micetek 仿真器一台。 2、实验板一块。 3、PC 机电脑一台。 4、九针串口线一条。 三、实验原理 串口通讯对单片机而言意义重大,不但可以实现将单片机(下位机)的数据传输到PC 端(上位机), 专业:电子信息工程 姓名:彭嘉乔 学号:3130104084 日期:2015.05 地点:东3-409

而且也能实现PC对单片机的控制,51单片机有一个全双工的串行通讯口,所以单片机和PC之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,本实验采用专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。 3.1 RS232九针串口基本功能简介 九针串口即RS-232接口,是个人计算机上的通讯接口之一,由电子工业协会(Electronic Industries Association,EIA) 所制定的异步传输标准接口。通常RS-232 接口以9个引脚(DB-9) 或是25个引脚(DB-25) 的型态出现,一般个人计算机上会有两组RS-232接口,分别称为COM1和COM2。该接口分为公头子和母头子。九针串口(母头)的功能如下,请见图1: 图1 RS232九针串口母头功能说明 分别为1:载波检测(DCD);2:接收数据(RXD);3:发送数据(TXD);4:数据终端准备好(DTR);5:信号地(GND);6:数据准备好(DSR);7:发送请求(RTS);8:发送清除(CTS);9:振铃指示(RI)接法。 本实验采用三线制连接串口,也就是说和电脑的9针串口只需连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是已满足本实验硬件需求,电路如图2所示,MAX232的第11脚和单片机的11脚连接,通过MAX232芯片的电平转换,将T1OUT输出连接板子上9针串口(母头)第2脚的RXD;板子上9针串口(母头)第3脚的TXD与MAX232芯片的第13脚相连,通过RS232电平转换为TTL电平后,将MAX232芯片的第12脚和单片机的10脚连接,同时9针

嵌入式_USART 串口通讯

USART 串口通讯-存储池方式 【实验目的】 学习USART的特性及功能 学习USART 串口通讯的使用 【实验原理】 1. USART介绍 通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行 数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。它支持同步单向通信和半双工单线通信,也支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作。它还允许多处理器通信。使用多缓冲器配置的DMA方式,可以实现高速数据通信。 2. USART特性 全双工的,异步通信 标准格式 分数波特率发生器系统 ─发送和接收共用的可编程波特率,最高达 4.5Mbits/s 可编程数据字长度(8位或9位) 可配置的停止位-支持1或2个停止位 LIN主发送同步断开符的能力以及LIN从检测断开符的能力 ─当USART硬件配置成LIN时,生成13位断开符;检测10/11位断开符发送方为同步传输提供时钟 编码器解码器 ─在正常模式下支持3/16位的持续时间 智能卡模拟功能 ─智能卡接口支持ISO7816-3标准里定义的异步智能卡协议 ─智能卡用到的0.5和 1.5个停止位 单线半双工通信 可配置的使用DMA的多缓冲器通信 ─在SRAM里利用集中式DMA缓冲接收/发送字节 单独的发送器和接收器使能位 检测标志 ─接收缓冲器满 ─发送缓冲器空 ─传输结束标志 校验控制 ─发送校验位 ─对接收数据进行校验 四个错误检测标志 ─溢出错误通用同步异步收发器(USART) ─噪音错误 ─帧错误

嵌入式技术实验报告

《嵌入式技术》课程实验报告 记分及评价: 一、实验名称 实验1:计数显示器 二、实验目的 熟悉8051单片机的基本输入/输出应用,掌握Proteus软件ISIS模块的原理图绘图方法及单片机系统仿真运行方法。 三、实验任务 1、根据实验内容与要求完成实验1电路原理图的设计; 2、使用C51进行程序设计并生存hex文件,加载hex文件进行实验仿真、调试; 3、观察仿真结果,完成实验报告。 四、实验报告要求 实验报告应包括:叙述原理图主要绘制过程、绘制的原理图、仿真运行截图、实验体会、心得等(不少于300字)。 1、原理图主要绘制过程描述 首先应选取元件,如图A.1所示所需的元件为一个单片机A T89C51,2个共阴极的LED数码显示管,一个按钮BUT,一个排阻,一个电源。选取完元件之后再进行合理的摆放如图A.1所示,摆放完成之后将它们用导线或总线连接起来如图A.1。 2、最后形成的电原理图 图A.1

3、仿真运行效果图 图A.2 4、C51源程序 5、实验体会 通过这次的实验我得出的结论是:实验电路原理图如图A.1所示,图中含有2个分支电路;共阴极数码管LED1和LED2、P0口、P2口、上拉电阻RP1以及VCC组成的输出电路;由按钮开关BUT、P3.7和接地点组成的输入电路。 在编程软件的配合下该电路可实现如下计数显示功能:可统计按钮BUT的按压次数,并将按压结果以十进制数形式显示出来;当第一次按下按钮时最右边的数码管显示1,直到第十次按下按钮时最左边的数码管显示1,而最右边的数码管显示0,当显示值达到99后可自动从1开始,无限循环。

6、实验收获与心得 在这次的编程中我学会了计数统计原理与拆字显示原理;计数统计原理就是循环读取P3.7口电平若输入为0,计数器变量count加1;若判断计满100,则count清0。为避免按键在按压下期间连续计数,每次计数处理后都需查询P3.7口电平,直到P3.7为1时才能结束此次统计。然而拆字原理就是为使count的两位数值分别显示在两只数码管上,可将count用取模运算(count%10)拆出个位值,整除10运算(count/10)拆出十位值,提取字模后分别送相应显示端口即可。 这次的实验让我收获很多,让我学会了Proteus画图的软件,怎样画出符合要求的电路图,怎样合理布线。最后能完整的将电路图画出来并仿真成功就获得了很大的收获。

串口通信实验讲解

课程名称:Zigbee技术及应用实验项目:串口通信实验指导教师: 专业班级:姓名:学号:成绩: 一、实验目的: (1)认识串口通信的概念; (2)学习单片机串口通信的开发过程; (3)编写程序,使单片机与PC通过串口进行通信。 二、实验过程: (1)根据实验目的分析实验原理; (2)根据实验原理编写C程序; (3)编译下载C程序,并在实验箱上观察实验结果。 三、实验原理: 串行通信是将数据字节分成一位一位的形式在一条传输线上逐个地传送,此时只需要一条数据线,外加一条公共信号地线和若干条控制信号线。因为一次只能传送一位,所以对于一个字节的数据,至少要分8位才能传送完毕,如图3-1所示。 图2-1串行通信过程 串行通信制式: (1)单工制式 这种制式是指甲乙双方通信时只能单向传送数据,发送方和接收方固定。 (2)半双工制式 这种制式是指通信双方都具有发送器和接收器,即可发送也可接收,但不能同时接收和发送,发送时不能接收,接收时不能发送。

(3)全双工制式 这种制式是指通信双方均设有发送器和接收器,并且信道划分为发送信道和接收信道,因此全双工制式可实现甲乙双方同时发送和接收数据,发送时能接收,接收时能发送。 三种制式分别如图3-2所示 图3-2串行通信制式 3.1硬件设计原理 CC2530有两个串行通信接口USART0和USART1,两个USART具有同样的功能,可已分别运行于UART模式和同步SPI模式。 CC2530的两个串行通信接口引脚图分布如表3-1所示 表3-1 CC2530串行通信口引脚图分布 本实验CC2530模块使用的是USART1的位置2,P1_6和P1_7。

嵌入式系统实验报告

实验报告 课程名称:嵌入式系统 学院:信息工程 专业:电子信息工程 班级: 学生姓名: 学号: 指导教师: 开课时间:学年第一学期

实验名称:IO接口(跑马灯) 实验时间:11.16 实验成绩: 一、实验目的 1.掌握 STM32F4 基本IO口的使用。 2.使用STM32F4 IO口的推挽输出功能,利用GPIO_Set函数来设置完成对 IO 口的配置。 3.控制STM32F4的IO口输出,实现控制ALIENTEK 探索者STM32F4开发板上的两个LED实现一个类似跑马灯的效果。 二、实验原理 本次实验的关键在于如何控制STM32F4的IO口输出。IO主要由:MODER、OTYPER、OSPEEDR、PUPDR、ODR、IDR、AFRH和AFRL等8个寄存器的控制,并且本次实验主要用到IO口的推挽输出功能,利用GPIO_Set函数来设置,即可完成对IO口的配置。所以可以通过了开发板上的两个LED灯来实现一个类似跑马灯的效果。 三、实验资源 实验器材: 探索者STM32F4开发板 硬件资源: 1.DS0(连接在PF9) 2.DS1(连接在PF10) 四、实验内容及步骤 1.硬件设计 2.软件设计 (1)新建TEST工程,在该工程文件夹下面新建一个 HARDWARE文件夹,用来存储以后与硬件相关的代码。然后在 HARDWARE 文件夹下新建一个LED文件夹,用来存放与LED相关的代码。 (2)打开USER文件夹下的test.uvproj工程,新建一个文件,然后保存在 LED 文件夹下面,保存为 led.c,在led.c中输入相应的代码。

(3)采用 GPIO_Set 函数实现IO配置。LED_Init 调用 GPIO_Set 函数完成对 PF9 和 PF10 ALIENTEK 探索者 STM32F407 开发板教程 119 STM32F4 开发指南(寄存器版) 的模式配置,控制 LED0 和 LED1 输出 1(LED 灭),使两个 LED 的初始化。 (4)新建一个led.h文件,保存在 LED 文件夹下,在led.h中输入相应的代码。 3.下载验证 使用 flymcu 下载(也可以通过JLINK等仿真器下载),如图 1.2所示: 图1.2 运行结果如图1.3所示:

(完整版)2014完整ARM嵌入式系统实验报告

郑州航空工业管理学院 嵌入式系统实验报告 (修订版) 20 – 20第学期 赵成,张克新编著

院系: 姓名: 专业: 学号: 电子通信工程系 2014年3月制

实验一ARM体系结构与编程方法 一、实验目的 了解ARM9 S3C2410A嵌入式微处理器芯片的体系结构,熟悉ARM微处理器的工作模式、指令状态、寄存器组及异常中断的概念,掌握ARM指令系统,能在ADS1.2 IDE中进行ARM汇编语言程序设计。 二、实验内容 1.ADS1.2 IDE的安装、环境配置及工程项目的建立; 2.ARM汇编语言程序设计(参考附录A): (1)两个寄存器值相加; (2)LDR、STR指令操作; (3)使用多寄存器传送指令进行数据复制; (4)使用查表法实现程序跳转; (5)使用BX指令切换处理器状态; (6)微处理器工作模式切换; 三、预备知识 了解ARM嵌入式微处理器芯片的体系结构及指令体系;熟悉汇编语言及可编程微处理器的程序设计方法。 四、实验设备 1. 硬件环境配置 计算机:Intel(R) Pentium(R) 及以上; 内存:1GB及以上; 实验设备:UP-NETARM2410-S嵌入式开发平台,J-Link V8仿真器; 2. 软件环境配置

操作系统:Microsoft Windows XP Professional Service Pack 2; 集成开发环境:ARM Developer Suite (ADS) 1.2。 五、实验分析 1.安装的ADS1.2 IDE中包括和两个软件组件。在ADS1.2中建立类型的工程,工程目标配置为;接着,还需要对工程进行、及链接器设置;最后,配置仿真环境为仿真方式。 2.写出ARM汇编语言的最简程序结构,然后在代码段中实现两个寄存器值的加法运算,给出运算部分相应指令的注释。 ; 文件名:

嵌入式UART接口模块的设计

嵌入式UART接口模块的设计 引言 在计算机的数据通信中,外设一般不能与计算机直接相连,它们之间的信息交换主要存在以下问题: (1)速度不匹配。外设的工作速度和计算机的工作速度不一样,而且外设之间的工作速度差异也比较大。 (2)数据格式不匹配。不同的外设在进行信息存储和处理时的数据格式可能不同,例如最基本的数据格式可分为并行数据和串行数据。 (3)信息类型不匹配。不同的外设可能采用不同类型的型号,有些是模拟信号,有些是数字信号,因此采用的处理方式也不同。 为了解决外设和计算机之间的信息交换问题,即需要设计一个信息交换的中间环节接口。UART控制器是最常用的接口。 通用异步收发器(UniversalAsynchrONousReceiv2er/Transmitter,UART)是辅助计算机与串行设备之间的通信,作为RS232通信接口的一个重要的部分,目前大部分的处理器都集成了UART。 1 UART的数据格式 UART的数据传输格式。 图1 UART的数据传输格式 由于数字图像亚像素在计算机中是用8位二进制表示,因此UART传输的有效数据位为8位。传输线在空闲时为高电平,因此有效数据流的开始位设为0。 接着传输8位有效数据位,先从最低位开始传送。奇偶检验位可以设置为奇检验、偶校验或者不设置校验位,由于本系统使用的传输速率不高,为了加快开发进程,减少电路面积,因此没有设计奇偶检验模块,数据流中不设奇偶检验位。最后停止位为高电平。 2 UART的基本结构 设计的UART主要由UART内核、信号检测器、移位寄存器移位寄存器、波特率发生器和计数器组成,。 图2 UART基本结构 UART各个功能模块的功能如下文所述。 2.1 信号检测器模块 信号检测器用于对RS232的输入信号进行实时监测,一旦发现新的数据则立即通知UART 内核。信号检测器的仿真波形。 图3 信号检测器仿真波形图 其中,RxD第一次为低时,new_data信号阐述输出,之后RxD又变低,但由于信号检测器处于锁定状态,所以new_data信号并没有输出;最后,reset_n信号将信号检测器复位,RxD再次变低时,new_data又有输出。可见信号检测器的实现完全正确,其功能完全符合设计要求。 2.2 移位寄存器模块 移位寄存器模块的作用是存储输入或者输出数据。 当UART接收RS232输入时,移位寄存器在波特率模式下采集RS232输入信号,且保存结果;当进行RS232输出时,UART内核首先将数据加载到移位寄存器内,再使移位寄存器在波特率模式下将数据输出到RS232输出端口上。移位寄存器的仿真波形图。关键字:嵌入式嵌

串行口通信实验 单片机实验报告

实验六串行口通信实验 一、实验内容 实验板上有RS-232接口,将该接口与PC机的串口连接,可以实现单片机与PC机的串行通信,进行双向数据传输。本实验要求当PC机向实验板发送的数字在实验板上显示,按实验板键盘输入的数字在PC机上显示,并用串口助手工具软件进行调试。 二、实验目的 掌握单片机串行口工作原理,单片机串行口与PC机的通信工作原理及编程方法。 三、实验原理 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通信。进行串行通讯信要满足一定的条件,比如电脑的串口是RS232电平(-5~-15V为1,+5~+15V为0),而单片机的串口是TTL电平(大于+2.4V为1,小于- 0.7V为0),两者之间必须有一个电平转换电路实现RS232电平与TTL电平的相互转换。 为了能够在PC机上看到单片机发出的数据,我们必须借助一个Windows软件进行观察,这里我们可以使用免费的串口调试程序SSCOM32或Windows的超级终端。 单片机串行接口有两个控制寄存器:SCON和PCON。串行口工作在方式0时,可通过外接移位寄存器实现串并行转换。在这种方式下,数据为8位,只能从RXD端输入输出,TXD端用于输出移位同步时钟信号,其波特率固定为振荡频率的1/12。由软件置位串行控制寄存器(SCON)的REN位后才能启动,串行接收,在CPU将数据写入SBUF寄存器后,立即启动发送。待8位数据输完后,硬件将SCON寄存器的T1位置1,必须由软件清零。 单片机与PC机通信时,其硬件接口技术主要是电平转换、控制接口设计和远近通信接口的不同处理技术。在DOS操作环境下,要实现单片机与微机的通信,只要直接对微机接口的通信芯片8250进行口地址操作即可。WINDOWS的环境下,由于系统硬件的无关性,不再允许用户直接操作串口地址。如果用户要进行串行通信,可以调用WINDOWS的API 应用程序接口函数,但其使用较为复杂,可以使用KEILC的通信控件解决这一问题。 四、实验电路 [参考学习板说明书P27]

嵌入式实验报告

目录 实验一跑马灯实验 (1) 实验二按键输入实验 (3) 实验三串口实验 (5) 实验四外部中断实验 (8) 实验五独立看门狗实验 (11) 实验七定时器中断实验 (13) 实验十三ADC实验 (15) 实验十五DMA实验 (17) 实验十六I2C实验 (21) 实验十七SPI实验 (24) 实验二十一红外遥控实验 (27) 实验二十二DS18B20实验 (30)

实验一跑马灯实验 一.实验简介 我的第一个实验,跑马灯实验。 二.实验目的 掌握STM32开发环境,掌握从无到有的构建工程。 三.实验内容 熟悉MDK KEIL开发环境,构建基于固件库的工程,编写代码实现跑马灯工程。通过ISP 下载代码到实验板,查看运行结果。使用JLINK下载代码到目标板,查看运行结果,使用JLINK在线调试。 四.实验设备 硬件部分:PC计算机(宿主机)、亮点STM32实验板、JLINK。 软件部分:PC机WINDOWS系统、MDK KEIL软件、ISP软件。 五.实验步骤 1.熟悉MDK KEIL开发环境 2.熟悉串口编程软件ISP 3.查看固件库结构和文件 4.建立工程目录,复制库文件 5.建立和配置工程

6.编写代码 7.编译代码 8.使用ISP下载到实验板 9.测试运行结果 10.使用JLINK下载到实验板 11.单步调试 12.记录实验过程,撰写实验报告 六.实验结果及测试 源代码: 两个灯LED0与LED1实现交替闪烁的类跑马灯效果,每300ms闪烁一次。七.实验总结 通过本次次实验我了解了STM32开发板的基本使用,初次接触这个开发板和MDK KEILC 软件,对软件操作不太了解,通过这次实验了解并熟练地使用MDK KEIL软件,用这个软件来编程和完成一些功能的实现。作为STM32 的入门第一个例子,详细介绍了STM32 的IO口操作,同时巩固了前面的学习,并进一步介绍了MDK的软件仿真功能。

基于linux的嵌入式串口通信

天津电子信息职业技术学院 嵌入式软件编程》课程报告 课程名称:基于linux 的嵌入式串口通信 课程代码:115229 姓名:甘琦 学号:48 专业:物联网应用技术 班级:物联S14-1 完成时间:2016 年10 月28 日

目录 摘要 (1) 前言 (2) 一、嵌入式串口通信概述 (2) 1.1嵌入式串口通信的原理 (2) 1.2嵌入式串口通信的开发工具 (2) 1.2.1 ............................................................. CC2530 功耗 2 1.2.2........................................................... ARM 简介 3 1.2.3................................................................ L inux 系统简介 3 1.3嵌入式串口通信的基本任务 (4) 1.4嵌入式串口通信协议及实现 (4) 二、RS-232C 标准 (5) 2.1引脚定义 (5) 2.2字符(帧)格式 (6) 2.3握手协议 (8) 2.4双机互连方式 (9) 2.4.1无硬件握手情况 (9) 2.4.2 .................................................................. DTR 和DSR握手情况9 三、嵌入式串口驱动程序设计 (10) 3.1嵌入式串口操作需要的头文件 (10) 3.2打开串口 (10) 3.3串口设置 (11) 3.4串口读写 (13) 3.5关闭串口 (14) 四、源程流程图 (15) 五、源程序代码 (15) 总结 (19)

嵌入式系统实验实验报告

嵌入式系统实验实验报告 一、实验目的 1.基本实验

. Word 资料搭建PXA270嵌入式LINUX开发软硬件环境;安装LINUX操 作系统;安装与配置建立宿主机端交叉编译调试开发环境;配置宿主机 PC 机端的minicom(或超级终端)、TFTP服务、NFS服务,使宿主PC机与PXA270开发板可以通过串口通讯,并开通TFTP 和NFS服务。 2.人机接口 键盘驱动;LCD控制;触摸屏数据采集与控制实验; 3.应用实验 完成VGA显示;Web服务器实验;网络文件传输实验;多线程应用实验。 4.扩展应用实验 完成USB摄像头驱动与视频采集;GPS实验;GSM/GPRS通讯;视频播放移植;USB蓝牙设备无线通讯;NFS文件服务器;蓝牙视频文件服务器。 5.QT实验 完成基本嵌入式图形开发环境搭建;“Hello world!”QT初探;创建一个窗口并添加按钮;对象通信:Signal和Slot;菜单和快捷键;工具条和状态栏;鼠标和键盘事件;对话框;QT的绘图;俄罗斯方块;基于QT的GSM手机在嵌入式LINUX下的设计与实现。 二、实验内容 1.人机接口实验 实验十九键盘驱动实验 ?实验目的:矩阵键盘驱动的编写

?实验内容:矩阵键盘驱动的编写 ?作业要求:完成键盘加减乘除运算 ?实验作业源码及注释: #INCLUDE #INCLUDE #INCLUDE #INCLUDE #INCLUDE #INCLUDE #DEFINE DEVICE_NAME “/DEV/KEYBOARD” INT MAIN(VOID){ INT FD; INT RET; UNSIGNED CHAR BUF[1]; INT I,F,J; DOUBLE X; INT A[2]={0}; CHAR PRE_SCANCODE=0XFF; FD=OPEN(DEVICE_NAME,O_RDWR); IF(FD==-1)PRINTF(“OPEN DEVICE %S ERROR\N”,DEVICE_NAME); ELSE{ BUF[0]=0XFF; I=0;F=0; WHILE(1){ READ(FD,BUF,1);

串口通信实验报告全版.doc

实验三双机通信实验 一、实验目的 UART 串行通信接口技术应用 二、实验实现的功能 用两片核心板之间实现串行通信,将按键信息互发到对方数码管显示。 三、系统硬件设计 (1)单片机的最小系统部分 (2)电源部分 (3)人机界面部分

数码管部分按键部分 (4)串口通信部分 四、系统软件设计 #include #define uchar unsigned char #define uint unsigned int void send(); uchar code0[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//0-9的数码管显示 sbit H1=P3^6; sbit H2=P3^7;

sbit L1=P0^5; sbit L2=P0^6; sbit L3=P0^7; uint m=0,i=0,j; uchar temp,prt; /***y延时函数***/ void delay(uint k) { uint i,j; //定义局部变量ij for(i=0;i

{ m=1; //KEY1键按下 return(m); } if(H2==0) { m=4; //KEY4键按下 return(m); } } } if(L2==0) { delay(5); if (L2==0) { L2=0;H1=1;H2=1; if(H1==0) { m=2; //KEY2键按下 return(m); } if(H2==0) { m=5; //KEY5键按下 return(m); } } } if(L3==0) { delay(5); if (L3==0) { L3=0;H1=1;H2=1; if(H1==0) { m=3; //KEY3键按下

嵌入式综合实验报告

《嵌入式系统综合实验》报告 学号: 姓名: Shanghai University of Engineering Science School of Electronic and Electrical Engineering

基于STM32的GPS信息显示系统 ——嵌入式系统综合实验报告 班级:0211112 姓名:褚建勤学号:021111228 班级:0211112 姓名:于心忆学号:021111216 班级:0211112 姓名:乐浩奎学号:021111232 一、产品设计要求(产品规格描述) 1 、嵌入式产品名称 GPS信息显示系统 2 、嵌入式产品目的 在学校的生活中,你经常可能需要联系不是同一间宿舍的同学,但是你不能确定他现在在什么地方,这时候全球定位系统(GPS)就可以发挥作用了,但是传统的GPS系统只能提供经纬度信息,不能直观的显示你想要找到人在何处,我们的系统就在传统的GPS的基础上添加了对应位置显示的功能,方便你更方便更快捷的找到你想找的同学 3 、嵌入式产品功能 使用GPS输入用户位置信息 GPS将相关经纬度信息反馈给主处理器 主处理器处理相关位置信息并将信息转换为对应位置在LCD上显示出来 在LCD上输出用户状态信息 4 、嵌入式产品的输入和输出 输入设备:GPS系统 输出设备:LCD 二、产品方案设计(产品设计方案) 1 2 1 )处理器选择 本系统选用基于ARMCortex-M3内核的STM32F103RB嵌入式微控制器作为处理器。 ①选用原因 A 技术因素 工作频率: 最高72MHz。 内部和外部存储器: 128K字节的闪存程序存储器,用于存放程序及数据;多达20K字节的内置SRAM,CPU能以0等待周期访问(读/写)。

基于linux的嵌入式串口通信

天津电子信息职业技术学院《嵌入式软件编程》课程报告 课程名称:基于linux的嵌入式串口通信 课程代码:115229 姓名:甘琦 学号:48 专业:物联网应用技术 班级:物联S14-1 完成时间:2016 年10 月28日

目录 摘要 (1) 前言 (2) 一、嵌入式串口通信概述 (2) 1.1 嵌入式串口通信的原理 (2) 1.2 嵌入式串口通信的开发工具 (2) 1.2.1 CC2530功耗 (2) 1.2.2 ARM简介 (3) 1.2.3 Linux系统简介 (3) 1.3 嵌入式串口通信的基本任务 (4) 1.4嵌入式串口通信协议及实现 (4) 二、 RS-232C标准 (5) 2.1引脚定义 (5) 2.2 字符(帧)格式 (6) 2.3握手协议 (8) 2.4 双机互连方式 (9) 2.4.1无硬件握手情况 (9) 2.4.2 DTR和DSR握手情况 (9) 三、嵌入式串口驱动程序设计 (10) 3.1 嵌入式串口操作需要的头文件 (10) 3.2 打开串口 (10) 3.3 串口设置 (11) 3.4 串口读写 (13) 3.5 关闭串口 (14) 四、源程流程图 (15) 五、源程序代码 (15) 总结 (19)

摘要 随着Internet的发展和后PC时代的到来,嵌入式系统以其可靠性强、体积小、专用性、成本低等特性得到日益广泛的应用。目前嵌入式系统技术已经成为了最热门的技术之一。与此同时,一个独立的嵌入式系统的功能缺陷也逐渐暴露出来。新一代嵌入计算系统的功能集成和应用模式使之迅速向网络化嵌入计算的方向发展,标准和统一的TCP/IP通信协议是独立于任何厂家的硬件的,因此嵌入环境下的实时网络通信成为嵌入计算技术研究的重点和热点。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。 关键词:嵌入式串口通信 2410F

相关主题
文本预览
相关文档 最新文档