Performance of integrated household constructed wetland for domestic wastewater treatment in rural
- 格式:pdf
- 大小:1.21 MB
- 文档页数:7
EcologicalEngineering37 (2011) 948–954
ContentslistsavailableatScienceDirect
Ecological
Engineering
journalhomepage:www.elsevier.com/locate/ecoleng
Performanceofintegratedhouseholdconstructedwetlandfordomestic
wastewatertreatmentinruralareas
ShubiaoWua,DavidAustinb,LinLiua,RenjieDongc,∗
aKeyLaboratoryofAgriculturalEngineeringinStructureandEnvironmentofMinistryofAgricultural,CollegeofWaterConservancy&CivilEngineering,ChinaAgriculturalUniversity,100083Beijing,PRChinabCH2MHILL,MendotaHeights,MN,USAcCollegeofEngineering,ChinaAgriculturalUniversity,100083Beijing,PRChina
articleinfo
Articlehistory:Received1May2010Receivedinrevisedform24January2011Accepted15February2011Available online 2 April 2011
Keywords:ConstructedwetlandRuralareasHouseholdwastewatertreatmentabstract
Asenvironmentallegislationhasbecomestricterinrecentyears,theissueofwastewatertreatmentinruralareashasbecomeanincreasingconcern.Choiceofthemostsuitableon-sitepurificationsystemsisbasedonthekeyissuesofaffordabilityandappropriatenessinChineseruralareas.Thispaperdescribesanintegratedhouseholdconstructedwetland(IHCW)systemplantedwithwillow(Salixbabylonica)totreathouseholddomesticwastewaterinruralvillagesinnorthernChina.TheprecastframestructureofIHCWisstrongandwaterproof.Itcanbemass-producedandinstalledperastandardsetofspecifications.TheIHCWhasachievedhighoverallremovalefficienciesforBOD5,TSS,NH4-N,andTP:96.0%,97.0%,88.4%and87.8%,respectively.A0.4mbiomasslayercoveronthesystemprovidedsignificantsystemthermalinsulation,maintaininghightreatmentperformanceinfreezingwinterconditions.Thesystemiscosteffectiveanddoesnotneedanyoperationalenergyinputs,demonstratingitsfeasibilityforsingle-familyuseindevelopingcountries.© 2011 Elsevier B.V. All rights reserved.
1.Introduction
Domesticwastewatertreatmentinruralareasisessentialto
preventpollutionofaquaticenvironments,whichhasbeenof
increasingconcernforbothresearchersandgovernmentofficials
(Ichinarietal.,2008).Theseconcernsareapreludetotoughing
environmentallegislation.
EstimatesfromtheWorldHealthOrganization(WHO)andthe
WaterSupplyandSanitationCollaborativeCouncilindicatethat
<18%ofruralpopulationshaveaccesstosanitationservicesin
developingcountries(Massoudetal.,2009).Infact,theamountof
domesticwastewatertreatedinChinaisjust11%forcountytowns
and<1%forruralvillages(Panetal.,2007).Toaddressthissitu-
ation,in2005,theChinesegovernmentputforwardthestrategic
plan“NewSocialistCountrysideBuilding”.Methodsofimproving
thelivingenvironmentanddealingwithdomesticwastewaterin
ruralareashavebeenanurgentconcernoftheChinaStateCouncil
andStateEnvironmentProtectionAdministration.
Householdsinruralareasthatdonothavepublicsewersmust
dependonon-sitetreatmentsystemstomanagetheirwastewater.
Manyon-sitewastewatertreatmenttechnologies,suchasseptic
∗Correspondingauthor.E-mailaddress:wsb4660017@126.com(R.Dong).tanks,drain-fieldsystems,lagoons,aerobicbiologicaltreatment
units,membranebioreactors(MBRs)andconstructedwetlandsare
available(Nakajimaetal.,1999;Abegglenetal.,2008).A“Most
AppropriateTechnology”istheonethatiseconomicallyafford-
able,environmentallysustainable,andsociallyacceptable.On-site
treatmentsystemsoftendonotmeettheserequirements.High
totalsuspendedsolids(TSS),biochemicaloxygendemand(BOD),
totalfecalcoliforms,totalnitrogen(TN),andtotalphosphorus(TP)
makeseptictankeffluentunsuitabledischargetowaterbodies
(Carrolletal.,2006).Traditionalleach-fieldsystemsareproneto
failureinareaswithimpermeable,heavyclaysoils,andalsopro-
videinadequatetreatmentinareaswithhighlypermeablesoils
andhighwatertables.Lagoonstendtobeunpleasantfromanaes-
theticperspectiveandbecauseofodorproduction(Burkhardetal.,
2000;Garcíaetal.,2001).Aerobicbiologicaltreatmentunitand
membranebioreactors(MBRs)effectivelyremovepollutants,but
havehighcapital,operationsandmaintenancecoststhatarenot
affordableindevelopingcountries(Nakajimaetal.,1999;Daude
andStephenson,2004;Ichinarietal.,2008;Renetal.,2010).Con-
structedwetlandshavehighpollutantremovalefficiency,aswell
aslowcostandsimpleoperation(BrixandArias,2005;Siracusa
andLaRosa,2006),butcanbelimitedbyseasonalchangesin
treatmentcapacityandlargearearequirements(Brix,1994).Itis
apparentthatasuccessfulandsustainablesystementailsawide
rangeofcriteriaincludingenvironmental,technicalandsocialcul-
0925-8574/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.ecoleng.2011.02.002S.Wuetal./EcologicalEngineering37 (2011) 948–954949
Fig.1.Schematicdiagramoftheintegratedhouseholdconstructedwetlandsystem(thedotedredlineshowsthewaterflowpath).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)
turalfactors.Thatistheunderlyingreasonsomecurrentlyavailable
practicesadoptedfromothercountriescanbeincompatiblewith
localrequirements,limitations,andconditions(Massoudetal.,
2009;Renetal.,2010).Itisthereforeessentialtoconductresearch
intoanalternativedisposalsystembasedonlocalrequirementsand
conditionsforthetreatmentofwastewaterfromatypicalsingle
familyinruralChina.
Thispaperdescribesanewon-sitewastewatertreatmentsys-
tem(IntegratedHouseholdConstructedWetland,IHCW)forrural
householdwastewatertreatment.Thesystemconsistsofatwo-
stagesedimentationtankandavertical-flow,constructedwetland
bed.Theprecaststructureisstrongandwaterproof.Modularcon-
structionallowsforinstallationwithunskilledlabor.Itisexpected
thatthesystemmayovercomethelocallimitationsofsoilcon-
ditionsandunskilledconstruction.Additionally,theinsulating
biomasslayeratthewetlandbedsurfaceallowsthesystemto
runnormallyinfreezingtemperatures.Thisconceptappearsto
offeradvantagesforhouseholdwastewatertreatmentindevelop-
ingcountries,wherereallylow-cost,convenientconstructionand
operationalsimplicityareessential.
2.Materialsandmethods
Theexperimenttookplaceinthebackyardofaruralfamilyin
ChangPing,Beijing,China.Itwasaninsulated,at-grade,vertical-
flowmodeltoavoiddamagefromlowtemperaturesinwinter
(Fig.1).Thesystemconsistedofatwo-stagesedimentationtank
andaverticalflowconstructedwetlandbedsection.Theframe
structurewasprecastwithmagnesiacementandfiberglassfabric
whichisstrongandwaterproof.Inplanviewthestructureisellipti-
calwiththebottomsmallerthanthetoptofacilitatetransportation.
Itcanbedirectlyinstalledafterexcavation.Thetwo-stagesedi-
mentationtankconsistsoftwosegmentswithequalempty-bed
volumeforeachsegmentof0.5m3.Theemptyvolumeofthewet-
landbedsectionis1.2m3(area×depth:1.2m2×1.0m).Asteel
sievewasinstalledintheinletbasintopreventlargesolids(such
asvegetableleavesandfishscalesfromthekitchen)fromflow-
ingintothetank.Wastewaterflowsintothefirstsegmentfrom
theinletbasinandthenintothesecondsegmentviaafloating
valveinstalledinthefirstsegmenttoallowintermittentsystemfeeding.Inordertomaintainnormaloperationduringthewinter
period,0.4mofsawdustinsultsthebed.Wastewaterflowsfromthe
sedimentationtankdownwardsthrougha60mmdiameterperfo-
ratedplasticpipewith5mmholeslocatedatthetopofthesand
layerandthentricklesthroughthewetlandbed.Theeffluentflows
intothebottomgravellayerandthenthroughthedewateredalum
sludgeplacedintheoutlet,andfinallyflowsintotheground.The
dewateredalumsludgeisabyproductfromdrinkingwatertreat-
mentplantsandhasbeenreportedtoenhancePremovalduetoits
highcontentofamorphousaluminum(BabatundeandZhao,2007,
2009;Razalietal.,2007).
Thebedmediafromthebottomtothetoparewashedgravel,
peagravelandsandwhichwasmodifiedaccordingtothestan-
darddesigncriteria(BrixandArias,2005):a15cmlayerofwashed
gravelwithparticlesizeof10–30mm,15cmofwashedpeagravel
withparticlesizeof5–12mm,and90cmofwashedsand.The
effectivesizeofthewashedsandis0.45–1mmwithauniformity
coefficientof3.8.Seventyfivekilogramsofwasheddewateredalum
sludgederivedfromdrinkingwatertreatmentplantwithparticle
sizeof0.5–1mmwasputintheoutletofthesystem.Themedium
surroundingthedistributionpipenetworkwas10cmofgravelwith
particlesizeof10–30mm.
Awillow(Salixbabylonica)withatrunkdiameterof40mmwas
plantedintheverticalflowwetlandbedsection.Thewillowwas
selectedasthewetlandplantforseveralreasons.InChinapeople
wouldpreferatreeintheirbackyardratherthanwetlandplants.
Theexperienceofsomeconstructedwetlandsystemswithwillows
inDemarkhassuccessfullyprovidedashowcaseofgoodperfor-
manceinnutrientsandheavymetalsremoval(Hasselgren,1998;
SanderandEricsson,1998),probablyduetothewell-developed
rootsystemwillowsproduced.Willowsarealsocoldhardyinthe
harshclimaticconditionsofnorthernChina.
ThesystemwasplantedandthenseededinNovember2007.
SamplingevensoccurredfromMarch2008toFebruary2009.Dur-
ingtheexperimentoperation,householdwastewaterinfluentwas
comprisedofkitchenandlaundryeffluents.Thehydraulicloading
ratewasabout0.12md−1.Watersamplesofapproximately200ml
werecollectedfromtheinfluent,sedimentationtank(secondseg-
ment),andeffluent(Fig.1)at7–10daysintervalstoevaluatethe
treatmentperformances.Wastewaterparametersofbiochemical
oxygendemand(BOD5,5210B.5-dayBODtest),totalsuspended
solids(TSS,2540D.totalsuspendedsolidsdriedat103–105◦C),
ammonia-nitrogen(NH4-N,4500G.automatedphenatemethod),
andtotalphosphorus(TP,4500F.automatedascorbicacidreduc-
tionmethod)weremeasuredonthesamedayofcollectioninthe
KeyLaboratoryofAgriculturalEngineeringinStructureandEnvi-
ronmentofChinaMinistryofAgricultureaccordingtotheStandard
Methods(AWWA,1999).ThepHandDOweremeasuredinsitufor
eachsampleusingaportablemeter(Orion-5-Star,510M-62).For
eachoftheparameters,sampleswerecollectedandanalyzedin
triplicate.Meanandstandarddeviationvalueswerereported.The
dailyairtemperatureofmeteorologicaldataintermsofmaximum
andminimumwasprovidedbytheBeijingMeteorologicalBureau,
Beijing,China.Thetemperatureoftheverticalconstructedwetland
bedwasdeterminedbyatemperaturesensor(Pt1000,Yonghua,
China)installedinthemiddledepthofthebed(Fig.1).
Face-to-facequestionnaireswereconductedamong158home-
respondentstoevaluatefarmers’willingnesstopayfortreatment
andthepotentialapplicationoftheintegratedhouseholdcon-
structedwetlandinruralvillages.
3.Results
Thewastewaterusedforexperimentwasgeneratedinasingle
household,excludingtoiletwastewater.Averageconcentrations