当前位置:文档之家› 电涌保护器主要技术参数

电涌保护器主要技术参数

电涌保护器主要技术参数
电涌保护器主要技术参数

电涌保护器的主要参数

1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。

3、额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。

4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。

7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。

8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。

9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。

10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。通常称为“系统阻抗”。

13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。

14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。

Ⅰ级试验的电涌保护器是不是10/350波形的电涌保护器?

悬赏分:0 |提问时间:2006-10-10 09:58 |提问者:fonken|问题为何被关闭

如题

问题补充:

Iimp(最大冲击电流)和Ipeak(电流峰值)的关系?

其他回答共1条

是的。

对于电源产品有2种标示方式Iimp(最大冲击电流):是由电流峰值Ipeak和电荷量Q确定,其测试按I级分类试验的动作负载试验的程序进行。根据能量计算,通常用10/350us波形的冲击电流试验。Imax(最大放电电流):按8/20us 波形试验,其测试属于II级分类试验。Iimp和Imax之间的电流比较可以按4倍(上海防雷测试中心的试验数据)。某些厂家将最大放电电流标到150KA以上,可现实是,目前国内只有上海防雷测试中心有能力做带负载150KA冲击试验,国外厂家没有一家能提供超过150KA(8/20us)的测试波形。而在工程实践中,导线超过150KA的雷电流的概率小于1%。

浪涌保护器的选型及使用

浪涌保护器的选型及使用 由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。 风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。业主对浪涌保护器的需求越来越普遍。这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规范。 应用指南 该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。该标准也说明了选择过电压保护设备的各种问题。标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。下图是评估中最重要问题的概览:

选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT 系统等)。浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。 仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。所以设计该系统时,记得连接电缆要包含火线和接地线。

通信局(站)低压配电系统用电涌保护器技术要求

通信局(站)低压配电系统用电涌保护器技术要求 Performance requirements for Surge Protective Devices Connected to Low-voltage Distribution Systems of Telecommunication Stations/Sites YD/T 1235.1-2002 2002-11-08 发布2002-11-08 实施 中华人民共和国信息产业部发布 目 次 前言 1 范围 2 规范性引用文件 3 术语和定义 4 使用环境条件 4.1 供电条件 4.2 气候条件 5 分类 5.1 按冲击测试电流等级分类 5.2 按用途分类 5.3 按端口分类 5.4 按构成分类 6 技术要求 6.1 标称额定值 6.1.1 优选值 6.1.2 SPD分类的冲击测试电流等级规定 6.2 整体要求 6.2.1 外观质量 6.2.2 保护模式 6.2.3 分离装置 6.2.4 告警功能 6.2.5 接线端子连接导线的能力 6.3 电涌防护性能 6.3.1 最大持续运行电压 6.3.2 等级限制电压 6.3.3 电压保护水平

6.3.4 动作负载试验 6.4 安全性能 6.4.1 电气间隙和爬电距离 6.4.2 外壳防护等级 6.4.3 保护接地 6.4.4 着火危险性(灼热丝试验) 6.4.5 暂时过电压失效安全性 6.4.6 暂时过电压耐受特性 6.4.7 热稳定性 6.5 二端口SPD及带独立输入/输出端子的一端口SPD 的附加要求 6.5.1 电压降 6.5.2 负载侧电涌耐受能力 6.5.3 负载侧短路耐受能力 6.6 环境适用性 6.6.1 耐振动性能 6.6.2 耐高温性能 6.6.3 耐低温性能 6.6.4 耐湿热性能 7 检验规则 7.1 交收检验 7.2 型式检验 8 标志、包装、运输和贮存 8.1 标志的内容 8.2 包装 8.3 运输和贮存 8.3.1 运输 8.3.2 贮存 附录A (规范性附录) 通信局(站)配电系统用电涌保护器(SPD)的构形 前 言 制订本标准的目的在于规范我国通信局(站)低压配电系统用电涌保护器的 技术要求,并为电涌保护器的设计、生产、检验、选择和应用提供技术依据。 本标准主要依据IEC61643-1:1998《连接至低压配电系统用电涌保护器第1 部分:技术要求和测试方法》,参考IEC 61312-1、UL 1449、IEEE Std C62.62 和YD/T 5098等标准,并结合低压配电系统用电涌保护器在我国通信局(站)的 实际应用情况而制定的。 本标准规定了通信局(站)低压配电系统用电涌保护器的电气、结构、安全 及环境适用性等方面的技术要求, 并重点突出了防雷及电涌保护的安全性和可靠 性,以使标准具有科学性、更好的可操作性和实用性。在编写方法上遵循 GB/T1.1-2000和GB/T1.3-1997的基本规则。 本标准于2002年11月 8日首次发布,2002年11 月8日起实施。 本标准附录A是标准的附录。

电源系统电涌保护器(SPD)选用

电源系统电涌保护器(SPD)选用(2013版) 一、主要依据 《建筑物电子信息系统防雷技术规范》GB50343-2012 《建筑物防雷设计规范》GB50057-2010 二、按建筑物电子信息系统的重要性和使用性质, 确定本单位目前的设计的建筑物 (主要为住宅)的雷电防护等级为D级。经计算当第一级浪涌保护器保护的线路长度大于100m时,需设第二级浪涌保护器,当第二级浪涌保护器保护的线路长度大于 50m时,需在被保护设备处设第三级浪涌保护器;在具有重要终端设备或精密敏感设备处,可安装第三级SPD。 三、 SPD的选用原则及主要参数 1、 第一级 SPD (主要安装在建筑物380V低压配电柜(箱)总进线处) 1.1 、 在 IPZ0A或LPZ0B区与LPZ1区交界处,在电源引入的总配电箱出应装设Ⅰ级试 验的电涌保护器。主要参数需满足以下要求: 波形 10/350μS 最大持续运行电压 Uc≥253V 电压保护水平 Up≤2.5KV 冲击电流Iimp≥12.5KA 1.2、 当进线完全在LPZ0B或雷击建筑物和雷击与建筑物相连接的电力线路或通信线上的失效风险可以忽略时,可采用Ⅱ级试验的电涌保护器。主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2.5KV 标称放电电流In≥50KA

1.3、 过电流保护器(熔断器和断路器,优先使用熔断器),选用100A 2、第二级 SPD (主要安装在动力配电柜、楼层配电箱、水泵房、中央控制室、消防、电梯机房、屋面用电设备等)。 2.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2KV 标称放电电流In≥10KA 2.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用32A 3、第三级 SPD (主要安装在重要的终端设备或精密敏感设备处,如信息机房、办公室入室配电箱等)。 3.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤1.2KV 标称放电电流In≥3KA 3.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用16A 四、产品选用要求(需在说明中注明) 选用的浪涌保护器(SPD) 须经过北京雷电防护装置测试中心或上海防雷产品测试中心的检测通过,并经过当地防雷装置主管机构的备案。

安全防范系统雷电浪涌防护技术要求GA-T670-2006

安全防范系统雷电浪涌防护技术要求 GA/T 670-2006 中华人民共和国公安部2006-12-14发布2007-06-01实施 前言 本标准的附录A、附录B为资料性附录。 本标准由全国安全防范报警系统标准化技术委员会(SAC/TC 100)提出并归口。 本标准起草单位:广西地凯科技有限公司、全国安全防范报警系统标准化技术委员会(SAC/TC100)秘书处、广西壮族自治区公安厅技防办。 本标准主要起草人:王东生、刘希清、张凡夫、施巨岭、张跃、马宁。 1 范围 本标准规定了安全防范系统雷电防护的基本要求,着重规定了安全防范系统雷电浪涌防护的具体要求。 本标准适用于安全防范系统雷电防护的设计、实施和检验等。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本标准。 GB 18802.1—2002 低压配电系统的电涌保护器(SPD) 第1部分:性能要求和试验方法(IEC 61643-1:1998,IDT) GB 50057-1994(2000年版) 建筑物防雷设计规范 GB 50343-2004 建筑物电子信息系统防雷技术规范 GB 50348-2004 安全防范工程技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 安全防范系统security and protection system:SPS 以维护社会公共安全为目的,运用安全防范产品和其他相关产品,所构成的入侵报警系统、视频安防监控系统、出入口控制系统、防爆安全检查系统等;或由这些系统作为子系统组合或集成的电子系统或网络。 [GB 50348-2004,2.0.2] 3.2 直击雷direct lightning flash 闪击直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者。 [GB 50057-1994(2000年版)附录8] 3.3 雷电感应lightning induction 闪电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。 [GB 50057-1994(2000年版)附录8] 3.4 雷电浪涌lightning surge 与雷电放电相联系的电磁辐射,所产生的电场和磁场能够耦合到电气(电子)系统中而产生破坏性的冲击电流或电压。 3.5 雷电活动区分类classification of thunder and lightning active zone

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

spd浪涌保护器选型

深圳市安普迅通信技术有限公司是专业的spd浪涌保护器生产厂商,主要的防雷系列有:AX电源防雷箱,AM电源防雷模块、ASspd浪涌保护器、AR天馈浪涌保护器、AJ监控系统三合一(二合一)集成浪涌保护器、防雷插座(排插),千兆网浪涌保护器,POE以太网供电浪涌保护器,并对外提供OEM等。 交流电源spd浪涌保护器 交流电源spd浪涌保护器适用范围 ·交流电源防雷模块适用于配电室、配电柜、开关柜、交直流配电屏等系统的电源保护;·建筑物内有室外输入的配电箱、建筑物层配电箱; ·用于低压( 220/380V AC)工业电网和民用电网; ·在电力系统中,主要用于自动化机房、变电站主控制室电源屏内三相电源输入或输出端。命名规则 AM系列交流电源spd浪涌保护器的型号命名规则

保护方式 保护方式 三相 L1,L2,L3,N—PE 三相 L1,L2,L3—N,N—PE (3+1电路) 单相 L,N—PE; 单相 L—N, N—PE;(1+1电路) 代号 A B C D 产品性能参数及特点 性能特点 ·通流容量大,残压低,响应时间快; ·漏电流及变化率小; ·采用最新热脱离技术,彻底避免火灾; ·采用特殊冲击熔片,具有高可靠性; ·自带远程告警干接点,便于远程监控; ·具有工作故障指示,遥信告警功能; ·采用温控保护电路,内置热保护,短路故障自动脱离装置; · 3+1保护模式(L-N, N-PE),特别适合电网差的地区使用; ·采用标准模块化设计,安装简单,维护方便; ·核心元件采用国际知名品牌,性能优异,工作稳定可靠; ·可以实现凯文接线;结构严谨,安装方便,维护简单; ·工艺考究,能在酸、碱、尘、盐雾及潮湿等恶劣环境下长期工作。 主要技术参数 型号AM100A AM80B AM60C AM40D

三合一防雷器技术参数说明

三合一防雷器技术参数说明 产品介绍 RESON监控系统三合一防雷器主要用于动态监控摄像机的电源、视频/音频、云台控制线路实施全方位保护,是一体化多功能电涌保护器。广泛应用于银行监控系统、小区安防系统、学校、企业、道路安全防护等监控设备。 功能特点 1、大容量:10KA,高速反应(10-12纳秒),低损耗; 2、三合一设计理念,适用于动态球形摄像机防雷保护; 3、能有效防止因电源、视频/音频、云台控制等设备间电位差瞬时增大而造成的设备损坏; 4、三级电涌保护,残压低,响应速度快,使用寿命长; 5、集成化、体积小、接线简易、安装方便。 技术指标 型号CPD-12DC/3 CPD-24DC/3 CPD-24AC/3 CPD-220AC/3 电源视频控制电源视频控制电源视频控制电源视频控制标称工作电压 Un 12V 5V 12V 24V 5V 24V 24V 5V 24V 220V 5V 24V 最大持续运行 电压Uc 15V 8V 30V 30V 8V 30V 48V 8V 30V 275V 8V 30V 标称放电电流 (8/20μS)In 5kA 最大放电电流 (8/20μS)Imax 10kA 电压保护水平 (In)Up ≤30V ≤15V ≤75V ≤60V ≤15V ≤75V 60V ≤15V ≤75V ≤900V ≤15V ≤75V 响应时间tA ≤25ns ≤10ns ≤ 25ns ≤10ns ≤25ns ≤10ns ≤25ns ≤10ns 传输速率Vs - 10Mbps - 10Mbps - 10Mbps - 10Mbps 插入损耗Ae - ≤0.2db - ≤0.2db - ≤0.2db - ≤0.2db 接口类型接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 安装接线规 格 2.5mm2 - 2.5mm2 2.5mm2 - 2.5mm2 2.5mm2 - 2.5mm2 4mm2 - 2.5mm2 温度范围-40℃ (85)

推荐-浪涌保护器技术要求 精品

成都市城市照明管理处20XX年至20XX年路灯维护材料采购项目各包描述: A包:电线电缆采购 此包为20XX-20XX年每年度电线电缆采购预估总量,实际供货量以每批次采购为准,每批次实际供货价格按照同类金属价格的上下浮动进行调整,价格调整计

算公式为:调整合同单价=投标报价×(电缆入库合同签订当日金属价格/开标期间金属价格),其中开标期间金属价格固定为:铜元/吨,铝元/吨。电缆入库合同签订当日金属价格以上海金属网公布价格为准。 招标人每批次电缆采购需求,以各入库单位的调整合同单价为报价上限进行比价,价格合理者与招标人订立该批次电缆供货合同。 B包:光源电器采购

此包为20XX-20XX年每年度光源电器采购预估总量,实际供货量以每批次采购为准。其中镇流器价格因受铜价影响较大按可调单价的方式进行,调价条件是以开标期间铜价格为基准,变化超过10000元/吨,具体为调后价格=投标报价×(合同签订当日铜价格/开标期间铜价格),其中开标期间金属价格固定为:铜元/吨,均以上海金属网公布价格为准。 C包:浪涌保护器采购 此包为20XX-20XX年每年度浪涌保护器采购预估总量,实际供货量以每批次采购为准。 请参与本项目投标的投标人遵守上述规定,否则其报价将被视为无效报价。 二、技术要求: A包电力电缆和护套线技术要求 一、电力电缆技术要求 1.投标人提供的产品应符合《额定电压35KV及以下铜芯铝芯塑料绝缘电力电缆》产品标准以及其它相关规定; 2.投标人应提供招标产品所遵循的标准及生产工艺,并提供主要生产设备清单、铜杆及塑料的原产厂; 3.投标人应提供法定质量检验机构出具的本厂相同型号规格产品近期质检报告,其检验依据应符合GB12706标准的要求,控制电缆应符合GB9330标准的要求; 4.电缆外观应无损伤,绝缘良好,不得有铠装压扁、电缆绞拧、护套层折裂等机械损伤。标志牌齐全、正确、清晰;

浪涌保护器的设计选型(新)

(1)考察建筑物所处地理位置及供电进线方式 首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。 推荐选择第一级浪涌保护器的最大通流量应大于以下标准值: 高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs) 郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs) 城市内(埋地进线):40KA(8/20μs) 第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs); 第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。 (2)检查建筑物内供电系统的类别 ?单相、三相及直流供电系统 在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。 其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。 下面是防雷器的几个重要参数: (1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 (2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。 (3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 (4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

一分钟让你了解,配电箱中浪涌保护器的选用原则!

“雷正电气”11年专注生产:电缆桥架、金属线槽、JDG/KBG镀锌线管厂家 一分钟让你了解,配电箱中浪涌保护器的选用原则! 配电箱中浪涌保护器的选用原则: 1)SPD的电压保护水平Up应始终小于被保护设备的冲击耐受电压Uchoc,并且大于根据接地类型得出的电网最高运行电压Usmax,即Usmax<Up<Uchoc,若线路无屏蔽,尚应计入线路感应电压,Uchoc宜按其值的80%考虑; (2)SPD与被保护设备两端引线应尽可能短,控制在0.5m以内; (3)如果进线端SPD的Up加上其两端引线的感应电压以及反射波效应与距其较远处的被保护设备的冲击耐受电压相比过高,则需在此设备处加装第二级SPD,其标称放电电流In不宜小于8/20μs 3kA;当进线端SPD距被保护设备不大于10m 时,若该SPD的Up加上其两端引线的感应电压小于设备的Uchoc的80%,一般情况在该设备处可不装SPD; (4)当按上述第3点要求装的SPD之间设有配电盘时,若第一级SPD的Up加上其两端引线的感应电压保护不了该配电盘内的设备,应在该配电盘内安装第二级SPD,其标称放电电流In不宜小于8/20μs 5kA; (5)当在线路上多处安装SPD时,电压开关型SPD与限压型SPD之间的线路长度不宜小于10m,限压型SPD之间的线路长度不宜小于5m。例如:被保护设备与配电中心距离较近,在线路敷设上可特意多绕一些导线; (6)当进线端的SPD与被保护设备之间的距离大于30m时,应在离被保护设备尽可能近的地方安装另一个SPD,通流容量可为8kA; (7)选择SPD时应注意保证不会因工频过压而烧毁SPD,因SPD是防瞬态过电压(μs级),工频过电压是暂态过电压(ms级),工频过电压的能量是瞬态过电压能量的几百倍,因此,应注意选择较高工频工作电压的SPD; (8)SPD的保护:每级SPD都应设保护,可采用断路器或熔断器进行保护,保护器的断流容量均大于该处最大短路电流; (9)此外,选用SPD时还应注意:响应时间尽可能快;使用寿命的长短、价格因素、可维护性要好、通流容量的大小、耐湿性能等方面。

浪涌保护器原理分析

浪涌保护器原理分析 随着相关设备对防雷要求的日益严格,安装浪涌保护器浪涌保护器 (Surge Protection Device, SPD)抑制线路上的浪涌和瞬时过电压、泄放线路上的过电流成为现代防雷技术的重要环节之一。 随着电子技术的高速发展,个人PC机、大中型计算机及相关信息设备的大量应用,使建筑物防雷击电磁脉冲(过电压)愈来愈受到大家的重视,由此,越来越多的过电压保护产品投入市场,浪涌保护器SPD(Surge Protective Device)也逐渐为人们所熟悉。 1 雷电的特性防雷包括外部防雷和内部防雷。外部防雷以避雷针(带、网、线)、引下线、接地装置为主,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针(带、网、线)、引下线等泄放入大地。内部防雷包括防雷电感电感应、线路浪涌、地电位反击、雷电波入侵以及电磁与静电感应的措施。其基本方法是采用等电位联结,包括直接连接和通过SPD间接连接,使金属体、设备线路与大地形成一个有条件的等电位体,将因雷击和其他浪涌引起的内部设施分流和感应的雷电流或浪涌电流泄放入大地,从而保护建筑物内人员和设备的安全。能产生电感作用的元件统称为电感原件,常常直接简称为电感。电感器在电子制作中虽然使用得不是很多,但它们在电路中同样重要。我们认为电感器和电容器一样,也是一种储能元件,它能把电能转变为磁场能,并在磁场中储存能量。 [全文] 雷电的特点是电压上升非常快(10μs

以内),峰值电压高(数万至数百万伏),电流大(几十至几百千安),维持时间较短(几十至几百微秒),传输速度快(以光速传播),能量非常巨大,是浪涌电压中最具破坏力的一种。 2 浪涌保护器的分类SPD是电子设备雷电防护中不可缺少的一种装置,其作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击。 2. 1 按工作原理分类按其工作原理分类, SPD可以分为电压开关开关型、限压型及组合型。开关是最常见的电子元件,功能就是电路的接通和断开。接通则电流可以通过,反之电流无法通过。在各种电子设备、家用电器中都可以见到开关。 [全文] (1)电压开关型SPD。在没有瞬时过电压时呈现高阻抗,一旦响应雷电瞬时过电压,其阻抗就突变为低阻抗,允许雷电流通过,也被称为“短路开关型SPD”。(2)限压型SPD。当没有瞬时过电压时,为高阻抗,但随电涌电流和电压的增加,其阻抗会不断减小,其电流电压特性为强烈非线性,有时被称为“钳压型SPD”。(3)组合型SPD。由电压开关型组件和限压型组件组合而成,可以显示为电压开关型或限压型或两者兼有的特性,这决定于所加电压的特性。 2. 2 按用途分类按其用途分类, SPD可以分为电源电源线路SPD和信号线路SPD两种。电源是向电子设备提供功率的装置,也称电源供应器,它提供计算机中所有部件所需要的电能。 2. 2. 1 电源线路SPD 由于雷击的能量是非常巨大的,需要

防雷仪器-电涌保护器巡检仪K-2766(说明书)

电涌保护器安全巡检测试仪 K-2766 使用说明书 介绍 谢谢您选购了K-2766电涌保护器安全巡检仪。为了从此产品中获得最大收益,请在使用前先阅读此手册,并将其放在易于找到的地方,以便未来参照使用。 检查 当您收到产品后,仔细检查一下仪表,以确保在运输过程中没有任何损坏,特别要检查配件、面板开关及连接器。如果有损坏或者根据说明仪表也无法使用,请及时与销售商联系。 配置 K-2766电涌保护器安全巡检仪1部 测量电缆1对(黑:1.5m,红:1.5m);表笔1对(黑红各1只);转接电缆1对(黑:10cm,红:10cm);鳄鱼夹1对(黑红各1只);专用充电器1套; 使用说明书1册; 套装配置:感应数字式测电笔1只;防静电手套1副; (可选)SPD运行温度测试仪1部;漏电流钳形表1部; 专用仪表便携箱1个 安全提示 本手册包括此产品安全操作和在安全运行条件下维护的必要的信息和警告,在使用此产品前要仔细阅读下面安全提示。

△!提醒 ●在给电涌保护器安巡仪通电前,务必检查并确认连接于测量端 子的测试线无短路。 ●在测试过程中,可能有最大值为2100V的电压存在于测量端子 之间,注意采取适当的预防措施防止电击。 ●在没有确认可靠连接测试元件前,请不要进行测试键操作。 △!警告 ●为防止电击,不要把产品弄湿,以及手湿的时候不要使用此产 品。在使用户外元件时,要格外小心。 ●此仪表不要在腐蚀剂或易燃气体的环境中使用,否则仪表会损 坏或引起爆炸。 ●除了电池,不要将元件接电以阻止损坏或电击的危险。 △!小心 ●当仪表处于直接光照、高温、潮湿、结霜时,不要贮存或使用。 在这些条件下,可能造成绝缘损坏,使仪表不再满足指标。 ●此仪表并不完全防尘或防水,为了防止可能的损坏,避免在潮 湿或灰尘的环境中使用。 ●在使用仪表前,要确保测量电缆的绝缘没有损坏并且没有裸露 的导体暴露出来。在这种条件下使用仪表可能导致电击。 ●为了避免仪表损坏,在运输和操作中防止仪表撞击或震动,特 别小心不要坠落。 第一部分概要 1.1产品的概要 随着各种电源避雷器(SPD)的大量安装和在线运行,电源避雷器(SPD)的在线安全状态(即安全有效的在线运行状态)会直接影

航嘉相关电涌保护器技术参数

相关电涌保护器技术参数 HJSPD140/4-550电源电涌保护器额定电压Un 380V AC 启动电压V1ma 910V 最大连续工作电压Uc 550V 放电电流In 80KA Imax 140KA 保护级别≤3.1KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:144×92×67mm HJSPD80/4-420电源电涌保护器额定电压Un 380V AC 启动电压V1ma 680V 最大连续工作电压Uc 420V 放电电流In 40KA Imax 80KA 保护级别≤2.5KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:108×90×62mm HJSPD40/4-385电源电涌保护器:额定电压Un 380V AC 启动电压V1ma 620V 最大连续工作电压Uc 385V 放电电流In 20KA Imax 40KA 保护级别≤1.6KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×72mm B级电源防雷器HJSPD80/2 额定电压Un 380V AC 启动电压V1ma 680V 最大连续工作电压Uc 420V 放电电流In 40KA Imax 80KA 保护级别≤2.5KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨

HJSPD40/2-385电源电涌保护器: 额定电压Un 230V AC 启动电压V1ma 620V 最大连续工作电压Uc 385V 放电电流In 20KA Imax 40KA 保护级别≤1.6KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×36mm HJSPD40/2-75电源电涌保护器: 启动电压V1ma 120V 最大连续工作电压Uc 75V 放电电流In 5KA Imax 10KA 保护级别≤280V 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×36mm HJSPDFLD230电源电涌保护器: 额定电压:230V AC 最大连续工作电压Uc:255V 放电电流:In 5KA Imax 10KA 保护级别:L-N≤1.25KV L/N-PE≤1. 5KV 额定电流:5A 响应时间:L-N≤25ns L/N-PE≤100ns 接入方式:串联 接线规格:最大2.5mm2 安装方式:35mm标准导轨 外形尺寸:90×18×63mm HJSPDFLD24电源电涌保护器: 额定电压:24V 最大连续工作电压Uc:35VDC 25V AC 放电电流:In 5KA Imax 10KA 保护级别:线/线≤50V 线/地≤600V 额定电流:5A 响应时间:线/线≤1ns 线/地≤100ns 接入方式:串联 接线规格:最大2.5mm2 安装方式:35mm标准导轨 外形尺寸:90×18×63mm

浪涌保护器的工作原理

浪涌保护器的工作原理 随着微电子技术的长足进步,个人PC、各类中型、大型及超大型计算机、大型程控交换机的运用越来越普及。由于这类电子设备内部有大量的对过电压十分敏感的大规模或超大规模集成电路,从而使由过电压造成的损失越来越大。针对这种现状,《建筑物防雷设计规范》GB50057-94(2000年版)中加入了第六章——防雷击电磁脉冲的内容。根据这一要求,一些生产厂家也推出了相应的过电压保护产品,也就是我们现在常说的浪涌保护器(SurgeProtectiveDeviceSPD)。要保护电气和电子系统重要的是在电磁兼容性保护区内设置一套包括全部有源导线在内的完整的等电位联结系统。不同种类的过电压保护装置中放电元器件的物理特性在实际应用中既有优点,亦有缺点,因此采用多种元件组合的保护电路运用得更为广泛。 但是,能满足具有当代技术水平的,能传导10/350μs脉冲电流的雷击电流放电器,用于二次配电的可插式浪涌保护器,电器电源保护装置直到电源滤波器所有技术要求的产品系列却是极为少见的。同样这种产品系列应该包括适用于所有的电路,即除电源外,还应包括用于测量、控制、调节技术电路和电子数据处理传输电路以及适用于无线和有线通讯的放电器,以便客户使用。 本文将对目前常用的几种浪涌保护产品做简单的介绍并对其特性及适用场合做简略分析。 1、等电位联结系统 过电压保护的基本原理是在瞬态过电压发生的瞬间(微秒或纳秒级),在被保护区域内的所有金属部件之间应实现一个等电位。“等电位是用连接导线或过电压保护器将处在需要防雷的空间内的防雷装置、建筑物的金属构架、金属装置、外来的导体物、电气和电讯装置等连接起来。”(《建筑物防雷设计规范条文说明》)(GB50057-94)。“等电位联结的目的在于减小需要防雷的空间内各金属部件和各系统之间的电位差”(IEC13123.4)。《建筑物防雷设计规范》(GB50057-94)中规定:“第3.1.2条装有防雷装置的建筑物,在防雷装置与其他设施和建筑物内人员无法隔离的情况下,应采取等电位联结。”在建立这个等电位联结网络时,应注意使相互之间必须进行信息交换的电器和电子设备与等电位联结带之间的连接导线保持最短距离。 根据感应定理,电感量越大,瞬变电流在电路中产生的电压越高;(U=L·di/dt)电感量大小主要和导线的长度有关,与导线截面关系不大。因此,应使接地导线尽可能的短。多条导线的并联连接可显著地降低电位补偿系统的电感量。为了将这两条付诸实践,理论上可以把应与等电位联结装置连在一起的所有电路和设备连在同一块金属板上。基于金属板的构想在补装等电位联结系统时可采用线状、星状或网状结构。设计新的设备时原则上应只采用网状的等电位联结系统。 2、将电源线路与等电位联结系统连接 所谓瞬变电压或瞬变电流意味着其存在时间仅为微秒或毫微秒。浪涌保护的基本原理是:在瞬态过电压存在的极短时间内,在被保护区域内的所有导电部件之间建立起一个等电位。这种导电部件也包括电路中的电源线。人们需要响应速度快于微秒的元件,对于静电放电甚至要快于毫微秒。这种元件能够在极短的时间间隔内,将非常强大直到高达数倍于十千安的电流导出。在预期的雷击情况下按10/350μs脉冲计算,电流高达50kA。通过完备的等电位联结装置,可以在极短的时间内形成一个等电位岛,这个等电位岛对于远处的电位差甚至可高达数十万伏。但重要的是,在需要保护的区域内,所有导电部件都可认为具有接近相等或绝对相等的电位,而不存在显著的电位差。 3、浪涌保护器的安装及其作用 浪涌保护电器元件从响应特性来看,有软硬之分。属于硬响应特性的放电元件有气体放电管和放电间隙型放电器,二者要么是基于斩弧技术(Arc-chopping)的角型火花隙,要么是同轴放电火花隙。属于软响应特性的放电元件有压敏电阻和抑制二极管。所有这些元件的区别在于放电能力、响应特性以及残余电压。由于这些元件各有优缺点,人们将其组合成特殊保护电路,以扬长避短。在民用建筑领域中常用的浪涌保护器主要为放电间隙型放电器和压敏电阻型放电器。 闪电电流和闪电后续电流需要放电性能极强的放电器。为了将闪电电流通过等电位联结系统导入接地

菲尼克斯防雷器、电涌防护器使用说明

菲尼克斯防雷器、电涌防护器使用说明

VAL-MS230 ST 和F-MS 12 ST 德国菲尼克斯浪涌保护器防雷器 防雷器的工作原理:防雷器内部结构其实就是巨功率电压敏感器件,当雷击进入电源进户线路时:防雷器将过高的电压吸收和泄放到大地上,所以地线是很重要的,没有地线就没有防雷效果,只能吸收浪涌效果,当遇到过于强大的雷击时需要空气开关或熔断器(保险丝)来保护,所以空气开关和熔断器的电流要选择合适,不然烧了防雷器还与电网未断开,在空气开关后面再接熔断器是为了更保险,因为空气开关是机械动作的,不会100%可靠。防雷器的使用必须与空气开关和熔断器配合,理论上讲:空气开关或保险丝电流越小越好,防雷器的并联只数越多效果越好,对雷电的吸收功率越大,但如果选用过大电流的空气开关是不利的,当防雷器达到极限功率时间后,如果空气开关或保险丝未断开是不行的。 使用漏电开关要接在防雷线路之后,漏电开关里面有电子线路,接在防雷线路后面可以保护漏电开关被雷击损坏。 本防雷器属于快速更换结构,当过强雷击被击穿后可以快速更换防雷器芯,不用任何工具,只从防雷器座上拔下和插上,购买时也以多买几个防雷器芯备用,防雷器芯购买请看:德国菲尼克斯PHOENIX CONTACT V AL-MS230 防雷器芯 下图是:简单的浪涌保护接线图,本图不能实现防雷保护,只有浪涌保护,空气开关和溶断器大于32A时用两只防雷器并联。

VALVETRAB -MS是一个单通道、导轨安装式的Ⅱ类(C级)电涌保护器。为了对多路导线进行电涌保护,可以将多个VALVETRAB并联在一起安装,并在接地侧桥接。VAL MS...VF产品在保护插头中特殊设计了压敏电阻和气体放电管,可以有效限制漏电流。VALVETRAB产品由保护插头和基座两部分组成,这种构造的优点是,在进行绝缘检测的整个过程中,可以拔出保护插头或者在超负荷情况下无需中断供电便可调换保护插头。保护插头的基座的编码在首次插入保护插头时即行完成。这样就排除了将不合适的保护插头插入已编码的基座中的可能。 VAL-MS产品特性: —可插拔 —热脱离装置 —机械式状态显示 —遥信接点(浮地干接点)

防雷器主要技术参数

防雷器主要技术参数 链接:https://www.doczj.com/doc/d514652860.html,/tech/12839.html 防雷器主要技术参数 信息时代的今天,电脑网络和通讯设备越来越精密,其工作环境的要求也越来越高,而雷电以及大型电气设备的瞬间过电压会越来越频繁的通过电源、天线、无线电信号收发设备等线路侵入室内电气设备和网络设备,造成设备或元器件损坏,人员伤亡,传输或储存的数据受到干扰或丢失,甚至使电子设备产生误动作或暂时瘫痪、系统停顿,数据传输中断,局域网乃至广域网遭到破坏。其危害触目惊心,间接损失一般远远大于直接经济损失。防雷器就是通过现代电学以及其它技术来防止被雷击中的设备。 防雷器又称等电位连接器、过电压保护器、浪涌抑制器、突波吸收器、防雷保安器等,用于电源线防护的防雷器称为电源防雷器。 防雷器的一些主要技术参数:额定工作电压、额定工作电流,特批串并式电源防雷器的载流量。通流能力,防雷器转移雷电流的能力,以千安为单位,与波开开式有关。防雷器在功能上可分为可防直击雷的防雷器和防感应雷的防雷器。可防直击雷的防雷器通常用于可能被直击雷击中的线路保护,如LPZOA区与LPZ1区交界处的保护。用10/35μs电流波形测试与表示其通流能力。防感应雷的防雷器通常用于不可能被直击雷击中的线路保护,如LPZOB区与LPX1区、LPZ1区交界处的保护。用8/20μs电流波形测试与表示其通流能力响应时间,防雷器对瞬态现象起控制作用所需的时间,与波形性质有关。残压,防雷器对瞬态现象的电压限制能力,与雷电流幅值及波形性质有关。 防雷器的主要技术参数说明: 1.标称电压Un 与被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 2.额定电压Uc 能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 3.额定放电电流Isn 给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。4.最大放电电流Imax 给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。5.电压保护级别Up 保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 6.响应时间tA 主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。7.数据传输速率Vs 表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。 8.插入损耗Ae 在给定频率下保护器插入前和插入后的电压比率。 9.回波损耗Ar 表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数 原文地址:https://www.doczj.com/doc/d514652860.html,/tech/12839.html 页面 1 / 1

SPD浪涌保护器的分级

SPD浪涌保护器的分级 分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。 入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过电源防雷器时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASS I级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。 第一级电源防雷器可防范10/350μs、100KA的雷电波,达到IEC规定的最高防护标准。其技术参考为:雷电通流量大于或等于100KA (10/350μs);残压值不大于2.5KV;响应时间小于或等于100ns。 2、第二级防护 目的是进一步将通过第一级防雷器的残余浪涌电压的值限制到1500—2000V,对LPZ1—LPZ2实施等电位连接。 分配电柜线路输出的电源防雷器作为第二级保护时应为限压型电源防雷器,其雷电流容量不应低于20KA,应安装在向重要或敏感用电设备供电的分路配电处。这些电源防雷器对于通过了用户供电入口处浪涌放电器的剩余浪涌能量进行更完善的吸收,对于瞬态过电压具有极好的抑制作用。该处使用的电源防雷器要求的最大冲击容量为每相45kA以上,要求的限制电压应小于1200V,称之为CLASS II级电源防雷器。一般用户供电系统做到第二级保护就可以达到用电设备运行的要求了 第二级电源防雷器采用C类保护器进行相—中、相—地以及中—地的全模式保护,主要技术参数为:雷电通流容量大于或等于 40KA(8/20μs);残压峰值不大于1000V;响应时间不大于25ns。 3、第三级保护 目的是最终保护设备的手段,将残余浪涌电压的值降低到1000V以内,使浪涌的能量有致损坏设备。 在电子信息设备交流电源进线端安装的电源防雷器作为第三级保护时应为串联式限压型电源防雷器,其雷电通流容量不应低于10KA。 最后的防线可在用电设备内部电源部分采用一个内置式的电源防雷器,以达到完全消除微小的瞬态过电压的目的。该处使用的电源防雷器要求的最大冲击容量为每相20KA或更低一些,要求的限制电压应小于1000V。对于一些特别重要或特别敏感的电子设备具备第三级保护是必要的,同时也可以保护用电设备免受系统内部产生的瞬态过电压影响。 对于微波通信设备、移动机站通信设备及雷达设备等使用的整流电源,宜视其工作电压的保护需要分别选用工作电压适配的直流电源防雷器作为末级保护。 4、根据被保护设备的耐压等级,假如两级防雷就可以做到限制电压低于设备的耐压水平,就只需要做两级保护,假如设备的耐压水平较低,可能需要四级甚至更多级的保护。第四级保护其雷电通流容量不应低于5KA。

相关主题
文本预览
相关文档 最新文档