当前位置:文档之家› 纳米润滑添加剂分散性研究进展

纳米润滑添加剂分散性研究进展

纳米润滑添加剂分散性研究进展
纳米润滑添加剂分散性研究进展

311

润滑油中加入纳米添加剂可以改善润滑油在摩擦副中的摩擦学性能,主要是在摩擦副之间形成摩擦膜来改善润滑油的抗磨减摩性能,进而减少机械部件等的磨损[1]。由于纳米材料的本身较大的表面能和比表面积,所以粒子相互之间极易形成团聚,那么在润滑油中不能够很好的分散,成为了纳米材料在润滑油中使用的阻碍,从而影响其摩擦效果[2]。为了克服纳米材料的分散稳定性的问题,研究者们利用对纳米材料的表面进行改性的方法。

纳米材料的表面改性的方法可分为表面物理和化学修饰两种:一是添加分散剂,利用分散剂的作用让纳米材料均匀稳定地分散在润滑油中,但分散剂或许会使纳米材料的在润滑油中的摩擦学性能有一定的影响;二是将纳米材料进行表面改性,让它在润滑油中的分散稳定性能够一定提升。纳米材料的表面改性主要通过与无机纳米材料复合或者利用有机物的接枝对其改性等方式提高了纳米材料的分散稳定性[3]。

本文探讨了纳米材料在润滑油中分散方法的研究进展,并对纳米润滑添加剂未来的发展趋势作出了展望。

1?纳米润滑添加剂物理改性

表面物理改性其实是改性剂与纳米材料的表面之间不会发生化学反应,改性剂通过氢键、范德华力等作用力吸附在纳米材料的表面,即不会有共价键或者离子键的结合。方法主要包括有:吸附包覆改性法、表面活性剂法和表面沉积改性法[4]。

1.1?吸附包覆法

吸附包覆法是较早的改性方法,主要是通过将有机高分子、无机物或者生物大分子等在纳米材料表面发生包覆现象来达到改性的过程。就到现在为止所采用的包覆方法主要有:(1)在溶液中让改性剂沉积在或者吸附在纳米材料的表面,去除溶液后形成一种包覆膜;(2)主要针对高分子材料,单体通过吸附在纳米材料的表面上,然后再聚合形成高分子,最后形成包覆膜。纳米材料被包覆以后也就是我们通常称为的“核壳”结构,并将具有新的特性和功能,尤其是对提升纳米材料的分散性有很好的效果。

1.2?表面活性剂法

该方法是利用相关的表面活性剂来处理纳米材料,使其吸附在纳米材料的表面,因为表面活性剂的存在会使纳米材料的粒子之间存在排斥力,从而可以阻止粒子之间的团聚,使纳米材料可以分散到溶液中。上海海事大学顾彩香等人[5]选择吐温20等作为表面

活性剂使CeO 2和CaCO 3纳米材料在混合溶液中的分散性和稳定性得到了明显的改善。

1.3?表面沉积改性法

该方法为利用沉淀的反应将其生成物经过沉积到纳米材料的表面,形成一层甚至多层的无化学结合的异质包覆层,进而改变纳米材料的某些特性。例如在纳米二氧化钛(TiO 2)表面形成一层氧化铝(Al 2O 3)的包覆层,可以增多纳米TiO 2的表面的正电荷,提高纳米TiO 2的亲油性,进而可以更好的分散在润滑油中提升它的摩擦学性能。Won?等人[6]研究了在大气压下沉积在块状Cu基底上的几层石墨烯涂层的耐久性和退化机理,在干滑动条件下,在几mN的正常载荷下对抗表面。

2?纳米润滑添加剂表面化学改性法

化学改性的方法是通过改性剂与纳米材料之间的发生化学反应,在纳米材料的表面在一定条件下引入改性剂,从而提升纳米材料的某些特性来达到改性的目的[7]。

2.1?纳米润滑添加剂表面接枝有机小分子

有机小分子利用纳米材料的表面的含氧官能团(主要为羟基)与有机小分子的化合物发生化学的反应,使纳米材料的表面接枝上有机的小分子。有机小分子大多为广泛用的偶联剂,这些有机小分子结构简单明确、反应活性较高,接枝在纳米材料表面的工艺很简单,能够很好的提升在润滑油中的分散稳定性。王滨等人[8]研究了通过液相还原法制备出了油酸改性的铜纳米粒子,所合成的改性的纳米粒子在润滑油中可以较好的分散。

2.2?纳米润滑添加剂表面接枝高分子材料

纳米材料表面接枝高分子是通过化学反应将高分子化合物在一定条件下接枝到纳米材料的表面。接枝后的材料可以最大的发挥纳米材料和有机高分子两者的特性,起到1+1>2的效果。在润滑油或者其他有机溶剂中的分散性也可以得到很好的改善。

蒋正权等[9]采用油胺(OM)和马来酸酐十二烷基酯(MADE)作为表面改性剂以制备OM/MADE接枝在二硫化钨(WS 2)纳米颗粒上。结果表明,OM接枝WS 2纳米粒子对DIOS基础油的摩擦学性能几乎没有影响。OM/MADE接枝的WS 2纳米颗粒以2.0?wt?%?的浓度添加在相同的基础原料中,然而,表现出良好的分散性并导致摩擦学性能大大提高。原因在于,在含有极性基团和含OM配位基团的MADE进行表面封端后,添加在基础油中的OM/MADE接枝WS 2颗粒很好地吸附在钢-钢触点的滑动表面上,从而得到化学吸附膜具有低

纳米润滑添加剂分散性研究进展

黄威1?赵萍萍1?黄港滨2?晏金灿2?王广健1

1.?淮北师范大学?安徽?淮北?235000

2.?中山大学惠州研究院?广东?惠州?516000

摘要:纳米材料作为润滑添加剂可改善润滑油的摩擦学性能,但是纳米材料在润滑油中的分散性极差,导致应用受限。本文综述了改善纳米润滑添加剂分散性的方法。

关键词:纳米润滑添加剂?分散性?摩擦学性能

纳米润滑

纳米润滑 一基本知识介绍 纳米润滑是在原子、分子尺度研究相对转动界面上的摩擦磨损与润滑行为,而揭示微观摩擦磨损机理,设计与制备出纳米尺度上的润滑剂及摩耐磨材料的学科。它是随着纳米科学与技术的发展而派出来的,是90年代以来摩擦学研究领域最活跃的,也是材料科学与摩擦学交叉领域最前沿的内容。它产生的推动力来源于高技术发展的需求,同时近代测试技术的不断出现也推动了纳米摩擦学的发展。高技术中的诸多摩擦学问题都对其抗磨、防擦及润滑提出更高的要求【1】。但是无机纳米粒子油溶性差, 一般是靠分散剂的作用或借助强力搅拌、超声分散将纳米粒子分散在基础油中。但是由于纳米粒子粒度小, 表面能高, 粒子之间容易发生团聚, 纳米材料在润滑油中的分散和稳定成为限制其在润滑油添加剂中应用的主要问题之一【2】。选择表面修饰剂不仅要考虑其油溶分散性、稳定性, 还要考虑表面活性剂解吸后在油中要有良好的摩擦学性能。目前采用的表面修饰剂主要有: 二烷基二硫代磷酸(DDP)、烷基磷酸醋、硬脂酸、油酸、EHA、含N 有机化合物等【3】。 二纳米润滑添加剂的研究进展 同常规材料相比,纳米材料是一种低维材料。由于材料的超细化,其表面层原子占有很大的比重,所以纳米材料实际上是晶粒中原子的长程有序排列与无序界面成分的组合。将纳米材料应用于润滑体系,是一个全新的研究领域。目前,被用作润滑油添加剂加以研究的纳米微粒主要有纳米单质、纳米氧化物、纳米氢氧化物、纳米硫化物、纳米稀土化合物以及聚合物纳米微粒等。其中低熔点金属,例如锡、铟、铋及其合金等,是常用的膜润滑材料和防护材料。这类金属的纳米微粒作为润滑油添加剂有望显著改善润滑油的摩擦学性能。铋纳米微粒添加剂的研究表明,铋是“环境友好”的、与S、P、Cl 等元素有良好协同性的、唯一可以取代铅的重金属元素。但是,目前这类金属的纳米微粒通常是由化学法来制备的。例如锡和铟纳米微粒常常通过相应的金属有机化合物热分解来制备,铋纳米微粒是还原法来合成的,这些方法仅适宜于实验室研究。对于这类金属及其合金纳米微粒,可以采用直接分散的方法进行制备。这种方法的特点是使用单一的试剂(金属单质或合金),并且金属单质的成本远远低于其相应的金属盐、金属有机化合物, 因此这种方法有获得工业化的可能【4】。 三可行性和现实意义 锡、铟、铋及其合金的熔点都低于300℃,许多有机溶剂的沸点都高于这一温度,并能长时间保持稳定,因此便于找到合适的反应介质。直接分散法制备锡、铟和铋纳米微粒及其摩擦学性能纳米微粒由于具有特殊的物理化学性能和较小的粒子尺寸在摩擦领域中倍受关注, 而将纳米微粒用作润滑油添加剂是近年来润滑领域中的一个研究热点【5】。研究表明纳米微粒由于自身组成和结构上的特点,具有不同于传统有机润滑添加剂的润滑特性。具体表现在以下三个方面:(1)纳米微粒多为球形,它们在摩擦对偶面间可能起一种类似“球轴承”的作用,从而有效提高润滑油的摩擦学性能;(2)在重载荷和高温下,摩擦对偶面间的纳米微粒可能被压平,形成一滑动系,从而降低摩擦和磨损;(3) 纳米微粒可以填充在工件表面的微坑和损伤部位,有可能实现摩擦表面的原位修复。金属纳米微粒润滑剂兼有纳米微粒上述三种机制的联合作用,被认为最有可能成为新一代的润滑添加剂【6】。

中药药剂学:片剂的赋形剂——润滑剂

片剂的赋形剂[润滑剂(Lubricants)]药物颗(或粉)粒在压片前必须加入一定量的具有润滑作用的物料,以增加颗(或粉)粒的流动性,减少颗(或粉)粒与冲模之间的摩擦力,以利于将片剂推出模孔,使片剂的剂量准确,片面光洁美观,此类物料一般称为润滑剂。润滑剂应具有或兼有以下作用:①润滑性,系指能降低颗(或粉)粒或片剂与模孔壁之间的摩擦力,可使压片力分布及片剂密度分布均匀,使压成之片由模孔中推出时所需的力减少,同时减低冲模的磨损。②抗粘附性,系指能防止压片原料粘着在冲头表面或模孔壁上,使片剂表面光洁美观。③助流性,系指能减少颗(或粉)粒间的摩擦力,增加颗(或粉)粒流动性。使能顺利流入模孔,片重差异合格。生产中常用的润滑剂如下:┌硬脂酸镁│┌水不溶性润滑剂┤滑石粉│││└硬脂酸、高熔点蜡、玉米淀粉│└水溶性润滑剂水溶性润滑剂由于疏水性润滑剂对片剂的崩解及药物的溶出有一定的影响,同时为了满足制备水溶性片剂如口含片、泡腾片等的要求,需选用水溶性或亲水性的润滑剂。常用的水溶性润滑剂及其用量,见下表: 润滑剂 用量(%) 润滑剂 用量(%) 硼酸 1 氯化钠 5 苯甲酸钠 5 醋酸钠 5 油酸钠 5 月桂醇硫酸钠 O.5~2.5 聚乙二醇4000

1~4 月桂醇硫酸镁 1~3 聚乙二醇6000 1~4 聚氧乙烯单硬脂酸酯 1~3 实验证明硼酸和氯化钠减低摩擦力的作用不好;硼酸不宜用于内服;有的润滑剂价贵不宜推广。近年研究证明,月桂醇硫酸镁有较好的润滑作用,虽不及硬脂酸镁,但较滑石粉、聚乙二醇及月桂醇硫酸钠等好。本品对片剂硬度的不良影响小于硬脂酸镁。润滑剂的作用与表面积有关,粉状润滑剂,其粉末愈细,则润滑作用愈强,故用前常须通过五号筛后,再与颗粒均匀混合压片。 硬脂酸镁本品为白色细腻轻松粉末,比容大(硬脂酸镁1g的容积为10~15ml),有良好的附着性,与颗粒混合后分布均匀而不易分离,为最常用的润滑剂。本品润滑性强,抗粘附性好,助流性差,若与其他润滑剂混合应用,润滑性更佳。-般用量为0.25%~1%。硬脂酸镁为疏水物,用量过多能影响片剂的崩解时间或产生裂片,应用这种疏水性润滑剂时,可同时加入适量表面活性剂如十二烷基硫酸钠以克服之。由于本品含有微量碱性杂质,故遇碱容易起变化的药物(如颠茄类生物碱、阿斯匹林等)不宜使用。 滑石粉 本品为白色至灰白色结晶性粉末,以白色者佳。密度大,抗粘附性及助流性好,但附着性及润滑性较差。一般用量为3%~6%。生产中有时与硬脂酸镁合用,但有人实验证明滑石粉对硬脂酸镁的润滑作用有干扰,所以最好不要同用。滑石粉为亲水性物质,不妨碍片剂崩解。本品亦有微量碱性杂质,在用前先用酸处理以克服之。 硬脂酸、高熔点蜡、玉米淀粉 1.硬脂酸本品常用浓度为l%~5%,润滑性好,抗粘附性不好,无助流性。 2.高熔点蜡本品常用浓度为3%~5%,润滑性很好,抗粘附性不好,无助流性。 3.玉米淀粉本品常用浓度为3%~10%,助流性、抗粘附性好,润滑性不好。

纳米材料粒度分析

纳米材料粒度分析 一、实验原理 纳米颗粒材料(粒径<100nm )是纳米材料中最重要的一种,可广泛用于纳米复合材料制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。粒径(或粒度)是纳米颗粒材料的一个非常重要的指标。测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000个以上颗粒的粒径)方法来得到颗粒粒径,比较烦琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。激光光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。因此,上述两种纳米材料的测试方法各有优缺点。本实验选用激光光散射法测试纳米材料的粒径及粒径分布。所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。 图1为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802微处理器和计算机组成。 图1 N4 Plus 型激光粒度测试仪的测量单元组成图 N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光谱(Photon Correlation Spectroscopy, PCS)现象。在溶液中,粒子由热导致与溶剂分子发生随机碰撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。在恒定温度及某一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程: d 3T k D B πη= (1) 式中k B 为玻尔兹曼常数(1.38×10-16 erg/?K),T 为温度(?K),η为分散介质(或稀释剂)粘度(poise),

纳米颗粒添加剂在润滑油中的应用

纳米颗粒添加剂在润滑油中的应用 黄昆 (广西大学材料科学与工程学院材卓121) 摘要:纳米材料科学的发展推动了纳米润滑技术的发展,纳米级材料作为润滑油添加剂的研究已受到广泛关注。已经发现的纳米金属、纳米氧化物、纳米硫化物、碳纳米管、富勒烯、金刚石以及纳米磁性颗粒等都能使润滑油的润滑性能大幅提高。该文综述了各种纳米颗粒润滑油添加剂的摩擦学性能,探究了它们的润滑机理。基于大量的实验研究结果比较了他们性能的优劣,提出纳米磁性颗粒作润滑油添加剂有其它材料不可比拟的优势,指出如何提高添加剂的分散稳定性是提高润滑油润滑性能的关键问题。 关键词:纳米颗粒;添加剂;润滑油 The Application of Nano—Particle Additives in Lubricating Oil Huangkun ( Zhuo 121 Guangxi university of materials science and engineering materials) Abstract:The development of nanomaterials science to promote the development of the nanometer lubricating technology, nanoscale materials as lubricating oil additives research has attracted much attention. Have found that the nanometer metal, nanometer oxide, nanometer sulfide, carbon nanotubes and fullerene, diamond and nanometer magnetic particles can make lubricating oil lubrication performance is greatly increased. This paper summarizes the tribological performance of various nanoparticles lubricating oil additive, explores their lubrication mechanism. Based on lots of experimental results compared their advantages and disadvantages, the performance of magnetic nanoparticles as lubricating oil additive has other materials incomparable advantages, points out how to improve the dispersion stability of additive is a key problem to improve the performance of lubricating oil. keywords:Nanoparticles;additive;Lubricating oil 1概述 表面磨损是机械零件失效的主要形式,因此摩擦磨损和润滑理论是机械学的重要课题。随着工业技术的发展设备不断向高速、重载、集成化、高精度方向发展,由于机械运行条件的苛刻及内部温度过高导致的摩擦磨损已成为提高机械寿命的最大制约因素,实践的需求推动了润滑伦理研究的发展。一种广泛接受的观点认为没有润滑的情况下摩擦力的来源分为两个方面:一是滑动时接触点粘着点被剪断;二是硬金属表面的微凸体嵌入软金属表面,运动过程中产生推碾和犁沟效应。传统的润滑主要基于两个原理:利用流体压力分隔表面,避免接触;以牺牲性的表面化学膜保护表面,避免粘着和磨粒磨损的损伤。因此润滑油在改善机构润滑状态中起着关键的作用。为了改良润滑油的技术指标,以取得更好的润滑效果,纳米颗粒作为添加剂在润滑中得到了广泛的应用。纳米颗粒添加剂能显著

纳米二硫化钼作为润滑油添加剂的润滑机理

MoS2晶体属于六方晶系,为典型三明治结构的层状化合物,每个平面层为S-Mo-S的结构,层内Mo和S以共价键结合为三方柱面体结构,层间以微弱的范德华力维系,因此,层状的MoS2容易受外界环境的影响破坏层与层之间的堆垛结构,并形成较为稳定的薄层,当MoS2用作润滑剂时,层状MoS2会转移到金属表面,缓和摩擦和磨损,这一性质使其在摩擦润滑领域有很好的应用,20世纪50年代,普通MoS2就作为固体润滑剂得到了广泛应用。 纳米材料是指至少有一维尺寸为纳米级别的材料,而当材料的尺寸缩小至纳米级别时,会凸显处诸如小尺寸效应、界面效应、量子隧道效应等性能特点。研究表明,一些纳米尺度的固体粒子加入到润滑油中,可以明显提升润滑油的性能,展现出许多优于传统添加剂的特点。近年来,将纳米MoS2用作润滑油添加剂得到了广泛关注,本文主要介绍纳米MoS2作为润滑油添加剂的润滑机理。 润滑机理 1物理吸附/沉积作用 学者们普遍认为,典型的MoS2晶体为层状结构,层与层之间以范德华力连接,在摩擦产生的剪切应力下层状结构剥离,并吸附到摩擦表面,这一过程对抗磨减摩有显著作用,如图1所示

摩擦过程中纳米MoS2的层状剥离 Wu等研究了纯MoS2和硼酸锌/MoS2纳米复合材料的摩擦学性能,研究发现当使用纯纳米MoS2作为添加剂时,有缺陷的MoS2纳米片和部分氧化的MoS2纳米片会导致润滑不良,在润滑油中加入硼酸锌/MoS2纳米复合材料时,具有极压性能的硼酸锌纳米颗粒能有效地填充MoS2纳米片的表面缺陷,并连续提供保护膜,以进一步降低摩擦系数,提高承载能力。还有学者指出,纳米MoS2可以填充摩擦表面的微裂纹区域,对磨损位置起到了修复作用 化学吸附/反应膜 纳米MoS2扩散能力强、表面能高、颗粒表面缺陷结构多,容易参加摩擦化学反应。有学者报道,在钢制摩擦副中纳米MoS2可以生成含FeS、FeSO4等产物的化学反应膜,反应膜的形成减少了摩擦基体的直接接触,降低了摩擦磨损,图2展示了纳米MoS2参加摩擦化学反应的一种典型方式。 纳米MoS2参加摩擦化学反应的一种典型方式

常用润滑油添加剂的代号与名称对照

常用润滑油添加剂的代号与名称对照: T101 101 清净剂低碱值石油磺酸钙 T102 102 清净剂中碱值石油磺酸钙 T103 103 清净剂高碱值石油磺酸钙 T104 104 清净剂低碱值合成磺酸钙 T105 105 清净剂中碱值合成磺酸钙 T106 106 清净剂高碱值合成磺酸钙 T106A 106A 清净剂高碱值合成磺钙 T107 107 清净剂超碱值合成磺酸镁 T108 108 清净剂硫磷化聚异丁烯钡盐 T108A 108A 清净剂硫磷化聚异丁烯钡盐 T109 109 清净剂烷基水杨酸钙 T111 111 清净剂环烷酸镁 T114 114 清净剂高三值环烷酸钙 T121 121 清净剂中碱值硫化烷基酚钙 T122 122 清净剂高三值硫化烷基酚钙 T151 151 分散剂单烯基丁二酰亚胺 T152 152 分散剂双烯基丁二酰亚胺 T153 153 分散剂多烯基丁二酰亚胺 T154 154 分散剂聚异丁烯丁二酰亚胺(高氮)T155 155 分散剂聚异丁烯丁二酰亚胺(低氮)T201 201 抗氧抗腐剂硫磷烷基酚锌盐 T202 202 抗氧抗腐剂硫磷丁辛基锌盐 T203 203 抗氧抗腐剂硫磷双辛基碱性锌盐 T203A 203A 抗氧抗腐剂硫磷双辛基碱性锌盐 T204 204 抗氧抗腐剂硫磷二烷基锌盐 T205 205 抗氧抗腐剂硫磷二烷基锌盐 T301 301 极压抗磨剂氯化石蜡 T304 304 极压抗磨剂酸性亚磷酸二丁酯 T305 305 极压抗磨剂硫磷酸含氮衍生物 T306 306 极压抗磨剂磷酸三甲酚酯 T307 307 极压抗磨剂硫代磷酸胺盐 T308 308 极压抗磨剂异辛基酸性磷酸酯十八胺盐T309 309 极压抗磨剂硫代磷酸三茜酸 T321 321 极压抗磨剂硫化异丁烯 T322 322 极压抗磨剂二苄基二硫化物 T323 323 极压抗磨剂氨基硫代酯 T341 341 极压抗磨剂环烷酸铅

纳米润滑添加剂分散性研究进展

311 润滑油中加入纳米添加剂可以改善润滑油在摩擦副中的摩擦学性能,主要是在摩擦副之间形成摩擦膜来改善润滑油的抗磨减摩性能,进而减少机械部件等的磨损[1]。由于纳米材料的本身较大的表面能和比表面积,所以粒子相互之间极易形成团聚,那么在润滑油中不能够很好的分散,成为了纳米材料在润滑油中使用的阻碍,从而影响其摩擦效果[2]。为了克服纳米材料的分散稳定性的问题,研究者们利用对纳米材料的表面进行改性的方法。 纳米材料的表面改性的方法可分为表面物理和化学修饰两种:一是添加分散剂,利用分散剂的作用让纳米材料均匀稳定地分散在润滑油中,但分散剂或许会使纳米材料的在润滑油中的摩擦学性能有一定的影响;二是将纳米材料进行表面改性,让它在润滑油中的分散稳定性能够一定提升。纳米材料的表面改性主要通过与无机纳米材料复合或者利用有机物的接枝对其改性等方式提高了纳米材料的分散稳定性[3]。 本文探讨了纳米材料在润滑油中分散方法的研究进展,并对纳米润滑添加剂未来的发展趋势作出了展望。 1?纳米润滑添加剂物理改性 表面物理改性其实是改性剂与纳米材料的表面之间不会发生化学反应,改性剂通过氢键、范德华力等作用力吸附在纳米材料的表面,即不会有共价键或者离子键的结合。方法主要包括有:吸附包覆改性法、表面活性剂法和表面沉积改性法[4]。 1.1?吸附包覆法 吸附包覆法是较早的改性方法,主要是通过将有机高分子、无机物或者生物大分子等在纳米材料表面发生包覆现象来达到改性的过程。就到现在为止所采用的包覆方法主要有:(1)在溶液中让改性剂沉积在或者吸附在纳米材料的表面,去除溶液后形成一种包覆膜;(2)主要针对高分子材料,单体通过吸附在纳米材料的表面上,然后再聚合形成高分子,最后形成包覆膜。纳米材料被包覆以后也就是我们通常称为的“核壳”结构,并将具有新的特性和功能,尤其是对提升纳米材料的分散性有很好的效果。 1.2?表面活性剂法 该方法是利用相关的表面活性剂来处理纳米材料,使其吸附在纳米材料的表面,因为表面活性剂的存在会使纳米材料的粒子之间存在排斥力,从而可以阻止粒子之间的团聚,使纳米材料可以分散到溶液中。上海海事大学顾彩香等人[5]选择吐温20等作为表面 活性剂使CeO 2和CaCO 3纳米材料在混合溶液中的分散性和稳定性得到了明显的改善。 1.3?表面沉积改性法 该方法为利用沉淀的反应将其生成物经过沉积到纳米材料的表面,形成一层甚至多层的无化学结合的异质包覆层,进而改变纳米材料的某些特性。例如在纳米二氧化钛(TiO 2)表面形成一层氧化铝(Al 2O 3)的包覆层,可以增多纳米TiO 2的表面的正电荷,提高纳米TiO 2的亲油性,进而可以更好的分散在润滑油中提升它的摩擦学性能。Won?等人[6]研究了在大气压下沉积在块状Cu基底上的几层石墨烯涂层的耐久性和退化机理,在干滑动条件下,在几mN的正常载荷下对抗表面。 2?纳米润滑添加剂表面化学改性法 化学改性的方法是通过改性剂与纳米材料之间的发生化学反应,在纳米材料的表面在一定条件下引入改性剂,从而提升纳米材料的某些特性来达到改性的目的[7]。 2.1?纳米润滑添加剂表面接枝有机小分子 有机小分子利用纳米材料的表面的含氧官能团(主要为羟基)与有机小分子的化合物发生化学的反应,使纳米材料的表面接枝上有机的小分子。有机小分子大多为广泛用的偶联剂,这些有机小分子结构简单明确、反应活性较高,接枝在纳米材料表面的工艺很简单,能够很好的提升在润滑油中的分散稳定性。王滨等人[8]研究了通过液相还原法制备出了油酸改性的铜纳米粒子,所合成的改性的纳米粒子在润滑油中可以较好的分散。 2.2?纳米润滑添加剂表面接枝高分子材料 纳米材料表面接枝高分子是通过化学反应将高分子化合物在一定条件下接枝到纳米材料的表面。接枝后的材料可以最大的发挥纳米材料和有机高分子两者的特性,起到1+1>2的效果。在润滑油或者其他有机溶剂中的分散性也可以得到很好的改善。 蒋正权等[9]采用油胺(OM)和马来酸酐十二烷基酯(MADE)作为表面改性剂以制备OM/MADE接枝在二硫化钨(WS 2)纳米颗粒上。结果表明,OM接枝WS 2纳米粒子对DIOS基础油的摩擦学性能几乎没有影响。OM/MADE接枝的WS 2纳米颗粒以2.0?wt?%?的浓度添加在相同的基础原料中,然而,表现出良好的分散性并导致摩擦学性能大大提高。原因在于,在含有极性基团和含OM配位基团的MADE进行表面封端后,添加在基础油中的OM/MADE接枝WS 2颗粒很好地吸附在钢-钢触点的滑动表面上,从而得到化学吸附膜具有低 纳米润滑添加剂分散性研究进展 黄威1?赵萍萍1?黄港滨2?晏金灿2?王广健1 1.?淮北师范大学?安徽?淮北?235000 2.?中山大学惠州研究院?广东?惠州?516000 摘要:纳米材料作为润滑添加剂可改善润滑油的摩擦学性能,但是纳米材料在润滑油中的分散性极差,导致应用受限。本文综述了改善纳米润滑添加剂分散性的方法。 关键词:纳米润滑添加剂?分散性?摩擦学性能

润滑油添加剂项目可行性分析报告

润滑油添加剂项目可行性分析报告 规划设计/投资分析/实施方案

摘要说明— 自20世纪30年代以来,全球润滑油添加剂行业已逐步发展至相对成 熟阶段,市场规模较大且基本趋于稳定增长。全球润滑油添加剂需求量从2012年的400万吨增长到2018年的442万吨,市场规模由133亿美元增长到143亿美元。综合考虑到印度、巴西等新兴经济体的高速增长,及美联 储停止缩表对全球经济的影响,实际润滑油添加剂年需求进入新一轮增长 周期,预计至2023年,全球润滑油添加剂需求量将增加至543万吨,市场 规模约为185亿美元。 该润滑油添加剂项目计划总投资18478.74万元,其中:固定资产投资15613.31万元,占项目总投资的84.49%;流动资金2865.43万元,占项目 总投资的15.51%。 达产年营业收入26147.00万元,总成本费用20269.56万元,税金及 附加331.35万元,利润总额5877.44万元,利税总额7019.47万元,税后 净利润4408.08万元,达产年纳税总额2611.39万元;达产年投资利润率31.81%,投资利税率37.99%,投资回报率23.85%,全部投资回收期5.69年,提供就业职位400个。 报告内容:概况、建设必要性分析、产业分析预测、项目建设方案、 选址规划、项目建设设计方案、项目工艺技术、环境保护说明、安全保护、

项目风险说明、节能分析、项目实施进度、投资分析、项目经济收益分析、项目总结、建议等。 规划设计/投资分析/产业运营

润滑油添加剂项目可行性分析报告目录 第一章概况 第二章建设必要性分析 第三章项目建设方案 第四章选址规划 第五章项目建设设计方案 第六章项目工艺技术 第七章环境保护说明 第八章安全保护 第九章项目风险说明 第十章节能分析 第十一章项目实施进度 第十二章投资分析 第十三章项目经济收益分析 第十四章招标方案 第十五章项目总结、建议

浅析无油润滑剂和水溶性润滑油的区别

浅析无油润滑剂和水溶性润滑油的区别 世界科技在变化,润滑工艺在变化,环保节能在变化,管理使用化学品的法律也在变化。因此,已经使用了多年的金属成型润滑原则也由此而发生变化。受市场需求和各种变化的推动影响,冲压油市场正悄然发生着重大改变,国内外众多厂家推出的水溶性冲压油(亦称作“挥发性冲压油或冲片油”)开始大规模进入市场,以试图取代使用多年的矿物质润滑油。 基于众多网友和用户的关心,本人结合多年的市场调研和应用经验,就无油润滑剂(亦称水基润滑剂)与水溶性冲压油的区别着重从三个方面向大家介绍两者的不同性,以供大家参考区别。如下: 一、基本合成工艺 水溶性冲压油:水溶性润滑剂指的是乳化液,油分散在水中称为水包油型,反之称为油包水型,冲压生产中主要采用水包油型,通常是把母液用水稀释后使用,各种润滑剂都已微滴状分散在水中,具有冷却和润滑的双重效果,表面活性剂在乳化液中主要用作乳化剂,使用较多的是阴离子型和非离子型,其配置过程为,首先将油溶性的添加剂添加到油中形成油相,再把水溶性的添加剂添加到水中形成水相,然后将两相混合,在表面活性剂的作用下充分搅拌,即可形成微乳化剂,以矿物质油作为基材,加入乳化剂、水以及防锈剂等加以合成,同时考虑到工件成型难度的不同,不同型号的产品其矿物油的添加比例也有所不同。由于水溶性冲压油其研发背景的最大特点,就是便于清洗或免清洗,因此,为减少残留产品中还需要添加大量的挥发性物质。所以就其合成机理来说水溶性润滑剂含有的主要成分,除去水分以外,还含有大量油份和表面活性剂。 无油(水基)润滑剂:以水作为基材,添加高分子抗极压聚合物、热敏反应聚合物、防锈因子合成而来,要求不含任何油脂成份和挥发性有毒物质。根据目前的市场调查,国际上目前真正能够掌握并生产无油润滑剂的只有美国IRMCO公司。 二、技术性能 水溶性冲压油: 从水介质的特殊性及其对添加剂结构的要求和性能的影响角度考虑,水溶性润滑添加剂往往存在水解稳定性差,性能不稳定等缺点。很多含活性元素的水溶性润滑剂在水中会发生过度水解反应产生腐蚀性酸, 加剧水基润滑液的腐蚀性。对模具造成一定程度的破坏。 容易被微生物污染而变质、腐败,影响其使用寿命,保质期一般在3-6个月,比较短,保存过程中需定期添加杀菌剂、防腐剂和防锈剂,定期除屑、净化,防锈性能比较差。 1、存放或使用过程中溶液易出现分层,而且使用过程中对使用液浓度要进行严格管理; 2、可以满足一般工件的成型或拉深要求,但对于重载、高强钢、深冲等难以满足或达要求;长期使用对模具的磨损影响较大; 3、清洗环节需要加入大量的脱脂剂等化学品,清洗水温一般要控制在50-60℃; 无油(水基)润滑剂:

润滑油添加剂基础知识

润滑油添加剂Ⅰ 静态混合器加工方法 有关“润滑油添加剂”的基础知识 1、什么是抗泡剂? 内燃机油及工业用油在发动机等设备中使用时,往往要喷散成雾状,这样就使润滑油中混进一部分空气,而形成比较稳定的泡沫流入曲轴箱内和润滑油箱内,结果就会使发动机不能正常操作。加入抗泡剂便可破坏润滑油与空气所形成的泡沫,降低泡沫吸附膜的稳定性,缩短泡沫存在的时间,从而保证设备的正常运转。 常用抗泡剂有:甲基砖坯油、丙烯酸酯与醚共聚物等。 抗泡剂的统一符号 为:“T9XX”。 2、什么是降凝剂? 润滑油中一般均含有少量的石蜡,当油品温度下降到一定程度后,由于 石蜡结晶析出,油就要失去流动性面凝固。降凝剂的作用主要是降低油品的凝点。 降凝剂是一种化学合成的聚合物或缩合产品,其分子中一般含有极性基团和与石蜡烃结构相似的烷基链,通过在蜡结晶表面的吸附或与其共晶的作用,改变蜡结晶的形状和尺寸,防止蜡晶粒间粘结形成三维网状结构,从而保持油品在低温下的流动性。但是,如果润滑油中石蜡含量过多,大大超过了降凝剂所能起到的作用,那么即使加了降凝剂也起不到降凝作用。 我国降凝剂有:烷基萘、聚α-烯烃、聚丙烯酸酯等。 降凝剂的统一符号为:“T8XX”。 3、什么是防锈剂? 防锈剂能在金属表面形成牢固的吸附膜,以抑制氧及水、特别是水对金属表面的接触、使金属不致锈蚀。防锈剂的分子结构应对金属有充分的吸附性,并对油的溶解性也好。 常用的防锈剂有:烯基丁二酸、十七烯基咪唑烯基丁二酸盐、环烷酸锌、二壬基萘磺酸钡、苯骈三氮唑、石油磺酸钡等。 防锈剂的统一符号为:“T7XX”。 4、什么是抗氧剂和金属减活剂? 润滑油在使用过程中,在氧的存在下,受热、光、金属的催化作用,油品分子中结构最不牢的碳氢键受到破坏,发生自由基连锁反应,生成氧化物、过氧化物、水等。而后进一步聚合、缩合,形成胶质、油泥、漆膜等,使润滑油的使用性能变坏,使用寿命缩短。 抗氧剂的作用在于抑制油品的氧化、钝化金属的催化作用,减少油品的败坏,

水溶性润滑剂见证中国消毒供应中心清洗水质发展史

水溶性润滑剂见证中国消毒供应中心清洗水质发展史 作者:刘刚建美国鲁沃夫中国培训中心学术部主任 摘要:复用金属器械应使用水溶性润滑剂保养,在关注器械清洗质量以后,清洗干净的器械在干燥后出现的各类斑点也被关注,这些是因为水溶性润滑剂被应用于终末漂洗而引发的关于水质的研究。而这些不同的斑点,也让鲁沃夫润滑防锈剂见证了中国消毒供应中心水处理供应系统的发展,见证了复用器械清洗质量的不断提高。 关键词:水溶性润滑剂水质斑点清洗质量 消毒供应中心的清洗用水的水质在2005年前一直没有引起重视。随着清洗不彻底,消毒灭菌就失败的复用器械、器具和物品的处理基本原则,逐渐被消毒供应中心的管理者们接受。消毒供应中心对清洗用水也开始重视。 复用金属器械清洗彻底后,需要对其进行润滑防锈的保养,从而保证器械在高温高压蒸汽灭菌过程中不被侵蚀和保持其原有功能的完好。 可是每次清洗后,并不能彻底去除器械上的微生物,如果使用非水溶性的润滑防锈剂就会保护这些残余微生物,使高温高压水蒸汽无法穿透润滑剂杀灭残留微生物,导致灭菌失败。据美国AORN组织的推荐,润滑器械应使用可溶于水的润滑剂,鲁沃夫润滑剂是药典级的矿物油,它的工作原理是其能在器械表面形成一层可被高压水蒸汽穿透的保护膜,防止空气中的氧与不锈钢器械的接触,且无油质、非硅胶、无黏性、无毒性,相比而言,传统的润滑剂一石蜡油却不溶于水,

在高压蒸汽灭菌时会阻碍蒸汽的穿透而影响灭菌效果【1】。 因此用于复用金属器械最后润滑防锈保养的润滑剂必须是水溶性的。 既然是水溶性的润滑防锈剂,那么水到哪里,润滑防锈剂就会到哪里。因此水质的问题就凸显出来了。 下面我们描述的均是鲁沃夫润滑防锈剂在清洗消毒器内的应用:在2005年-2006年期间,国内医院开始使用鲁沃夫润滑防锈剂,这时,普遍出现的状况是无法擦除的白斑,但是使用水垢去除剂可以很容易去除。通过鲁沃夫公司技术人员的调查研究,确认该白斑为碳酸钙等水垢,是因为在终末漂洗阶段的清洗用水为未经处理的自来水,水中大量钙镁离子与水中的碳酸根和氢氧根离子结合,在清洗消毒器本身干燥功能不完善的状况下,沉积在器械和清洗消毒器舱内壁表面,形成白色和黄色的水垢[2]。于是,国内各医院逐渐了解了水质对清洗质量的影响,开始购进水处理装置来改善水质。 在2007年-2008年期间,国内医院开始在消毒供应中心配备软水处理系统,通过钠离子交换树脂将自来水中的钙镁离子用钠离子来交换,使进入清洗消毒器中的水不再含会形成水垢的钙镁离子,从而达到改善清洗质量的目的。但是,这时一个新的问题又出现了,医院向鲁沃夫公司的技术人员反映,还是有白斑,但是这些白斑是可以擦除的,而且擦除后没有任何痕迹。那么这些白斑又是什么物质呢?它们是氯化钠的结晶,主要原因还是因为,软化水中氯化钠浓度非常高【3】,因此在干燥不彻底的状况下,非常容易将氯化钠的结晶析出,

纳米颗粒分散技术的研究与发展

!!!!!!!!!化!!!工!!!进!!!展!!!!! !!!!!!!!!CHEM I CAL I NDUSTRY AND ENG I NEER I NG PROGRESS!!!! 纳米颗粒分散技术的研究与发展 宋晓岚!王海波!吴雪兰!曲!鹏!邱冠周 中南大学资源加工与生物工程学院无机材料系长沙41008S 摘!要!分析了纳米颗粒团聚形成的原因!阐述了研究纳米颗粒分散的意义!着重介绍了物理分散和化学分散技术研究进展!指出纳米颗粒分散技术的发展方向是设计高效分散机械!以提高有效分散体积和能量利用率"合成性能优异的超分散剂及研究不同的混合分散剂!以提高分散后的粒子稳定性!最终提高分散效果"加强纳米颗粒分散的基础理论研究及其与其他学科融合交叉!为纳米颗粒分散及分散剂的选择提供理论指导!并开发新的适合纳米材料制备的新工艺# 关键词!纳米颗粒!团聚!分散技术!研究与发展 中图分类号!TB S8S!!!!!文献标识码!A!!!!!文章编号!1000661S Z00501004706 Research and d evelo p m ent of d is p ers ion techni

关于水基无油润滑剂和水溶性润滑剂的区别

关于水基无油润滑剂和水溶性润滑剂的区别无油润滑剂(亦称水基润滑剂)与水溶性润滑剂的区别着重从三个方面向大家介绍两者的不同性,以供大家参考区别。 一、基本合成工艺 水溶性润滑剂:水溶性润滑剂指的是乳化液,油分散在水中称为水包油型,反之称为油包水型,冲压生产中主要采用水包油型,通常是把母液用水稀释后使用,各种润滑剂都已微滴状分散在水中,具有冷却和润滑的双重效果,表面活性剂在乳化液中主要用作乳化剂,使用较多的是阴离子型和非离子型,其配置过程为,首先将油溶性的添加剂添加到油中形成油相,再把水溶性的添加剂添加到水中形成水相,然后将两相混合,在表面活性剂的作用下充分搅拌,即可形成微乳化剂,以矿物质油作为基材,加入乳化剂、水以及防锈剂等加以合成,同时考虑到工件成型难度的不同,不同型号的产品其矿物油的添加比例也有所不同。由于水溶性冲压油其研发背景的最大特点,就是便于清洗或免清洗,因此,为减少残留产品中还需要添加大量的挥发性物质。所以就其合成机理来说水溶性润滑剂含有的主要成分,除去水分以外,还含有大量油份和表面活性剂。 无油(水基)润滑剂:以水作为基材,添加高分子抗极压聚合物、热敏反应聚合物、防锈因子合成而来,要求不含任何油脂成份和挥发性有毒物质。根据目前的市场调查,国际上目前真正能够掌握并生产无油润滑剂的只有美国IRMCO公司。 二、技术性能 水溶性润滑剂: 从水介质的特殊性及其对添加剂结构的要求和性能的影响角度考虑,水溶性润滑添加剂往往存在水解稳定性差,性能不稳定等缺点。很多含活性元素的水溶性润滑剂在水中会发生过度水解反应产生腐蚀性酸,加剧水基润滑液的腐蚀性。对模具造成一定程度的破坏。 容易被微生物污染而变质、腐败,影响其使用寿命,保质期一般在3-6个月,比较短,保存过程中需定期添加杀菌剂、防腐剂和防锈剂,定期除屑、净化,防锈性能比较差。 1、存放或使用过程中溶液易出现分层,而且使用过程中对使用液浓度要进行严格管理; 2、可以满足一般工件的成型或拉深要求,但对于重载、高强钢、深冲等难以满足或达要求;长期使用对模具的磨损影响较大; 3、清洗环节需要加入大量的脱脂剂等化学品,清洗水温一般要控制在50-60℃; 无油(水基)润滑剂: 1、可以与水充分混合,无沉淀和分层; 2、由于不含任何油脂成份,所以清洗过程中20-40℃的常温水就可以完全清洗干净,无需添加任何脱脂剂及相关化学品; 3、冲压过程中,由于润滑剂中不含油脂成份,所以热熔性较低,可以快速形成蒸汽带走热量,降

润滑油中各种添加剂的作用机理

润滑油中各种添加剂的作用机理 粘度指数改进剂 粘度指数改进剂又称增粘剂或粘度剂,其产量仅次于清净分散剂。粘度指数改进剂是油溶性的链状高分子聚合物,其分子量由几万到几百万大小不等。粘度指数改进剂溶解在润滑油中,在低温时它们以丝卷状存在,对润滑油的粘度影响不大,随着润滑油温度升高,丝卷伸张,有效容积增大,对润滑油流动阻力增大,导致润滑油的粘度相对显著增大。由于不同温度下粘度指数改进剂具有不同形态并对粘度产生不同影响,它可以增加粘度和改进粘温性能,故粘度指数改进剂主要用于提高润滑油的粘度指数、改善粘温性能、增大粘度。粘度指数改进剂可用来配制稠化机油,使配制的油品具有优良的粘温性能,使油品的低温起动性好、油耗低和具有一定的抗磨作用。 粘度指数改进剂广泛用于内燃机油料中,主要用于生产多级汽柴油机油,另外液压油和齿轮油也要使用。常用的粘度指数改进剂有:聚异丁烯、聚甲基丙烯酸酯、乙烯/丙烯共聚物、苯乙烯与双烯共聚物和聚乙烯正丁基醚等。 油性和极压抗磨剂 1、极压抗磨添加剂是指在高温、高压的边界润滑状态下,能和金属表面形成高熔点化学反应膜,以防止发生熔结、咬粘、刮伤的添加剂。它的作用是分解的产物在摩擦高温下能与金属起反应,生成剪切应力和熔点都比纯金属低的化合物,从而防止接触表面咬合和焊熔,有效地保护金属表面。极压抗磨剂主要用于工业齿轮油、液压油、导轨油、切削油等有极压要求的润滑油中,以提高油品的极压抗磨性能。

极压抗磨剂一般分为有机硫化物、磷化物、氯化物、有机金属盐和硼酸盐型极压抗磨剂等。极压磨剂的主要品种有:氯化石蜡、酸性亚磷酸二丁脂、硫磷酸含氮衍生物、磷酸三甲酚酯、硫化异丁烯、二苄基二硫、环烷酸铅、硼酸盐等。 2、凡是能使用润滑油增加油膜强度,减小摩擦系数,提高抗磨损能力,降低运动部件之间的摩擦和磨损的添加剂都叫油性剂。 油性剂是一种表面活性剂,分子的一端带有极性基团,另一端为油溶性的烃基基团。含有这种极性基团的物质对金属表面具有很强的亲和力,它能牢固地定向吸附在金属表面上,在金属之间形成一种类似于缓冲垫的保护膜,防止金属表面的直接接触,减小摩擦和磨损。 油性剂具有很高的界面活性,它们在金属表面产生物理吸附或化学吸附。物理吸附是可逆的,在温度较低、负荷较小的情况下,物理吸附起作用;在高温高负荷下吸附剂会脱附而失去作用。脂肪酸型的油性剂除了物理吸附外,还有化学吸附,在较低的温度下与金属表面生成金属皂,提高抗磨性。 常用的油性剂为高级脂肪酸(如硬脂酸、软脂酸、油酸、月桂酸、棕榈酸、蓖麻油酸等),脂肪酸的酯(如硬脂酸乙酯、油酸丁酯等),脂肪酸胺或酰胺化合物(如硬脂酸胺、N,N-二(聚乙二醇)十八胺、硬脂酰胺等),硫化鲸鱼油、硫化绵籽油,二聚酸、苯三唑脂肪胺盐及酸性磷酸酯类等。 油性剂主要用于工业润滑油、液压油、导轨油、齿轮油等。 清净分散剂 清净分散剂包括清净剂和分散剂两类。主要用于内燃机油(汽油机油、柴油机油、铁路内燃机车用油、二冲程汽油机油和船用发动机油)。其主要作用是使发动机内部保持清洁,使生成的不溶性物质呈

水溶性冲压加工润滑剂研究

水溶性冲压加工润滑剂研究 水溶性冲压加工润滑剂研究 罗新民刘喜梅李燕卿 (后勤工程学院重庆400016) 摘要:由非离子表面活性剂、油溶性润滑剂、水溶性防锈剂、稳定剂、中粘度矿物油和自来水等组成的微乳化液,lOm%浓度即具有良好的润滑性和防锈性,能代替植物油用作冲压加工润滑剂,减少了工序和污染。 关键词:冲压加工,润滑剂,微乳液,水溶性 Study on a Water Soluble Lubricant as Punch Forming Fluid Luo Xinmin Liu Ximei Li Yanqing ( Dept. of Applied Petroleum Products, Logistical Engineering University, Chongqing) Abstract: A kind of microemulsion is prepared as water soluble punch fomaing fluid in this paper. It consists of nonionic surfactant, lubricant, antirust additive, stabilizer, mineral oil with medium viscosity and weater. In the concentration of 10m% in water, it has excellent abilities in lubficity and antirust and can substitute vegetable oil in the forming process of steel and brass sheet punching. Keywords: Punch Forming Lubricant Microemulsion Water Soluble 黄铜和低碳钢等板材冲压加工的压力很高,一般采用植物油如菜籽油作润滑剂,其供液方式多为板材在润滑油油池中浸没后形成一层油膜满足高压下的润滑[1]。板材经冲压加工后形成盂、故此工序也称为冲盂。由于润滑油池与冲盂处分离,板材上粘附的润滑油沿途滴落,增加了能耗,污染了操作环境,更为严重的是,在进行后续的加工处理前必须清洗工件上粘附的润滑油,这不仅延长了工时,同时也增加了成本。因此用水溶性润滑剂代替润滑油,不仅可以去掉清洗工序,而且其较低的价格可带来显著的效益。本文研制了一种微乳化型的水溶性润滑剂用于冲压加工,成功地取代了菜籽油,减少了工序,降低了成本,取得了良好的效果。 1 组成 水溶性冲压加工润滑剂的组成采用了微乳化液的方式,首先将油溶性的添加剂溶于油中形成油相,再将水溶性的添加剂溶于水中形成水相,然后将两相混合,在表面活性剂的作用下充分搅拌,即可形成微乳化液旧[2]。微乳化液可以同时借助于油溶性和水溶性添加剂的作用而具备多种性能,满足冲压加工的要求。(1)基本组成 冲压加工采用全损耗的润滑形式,润滑液不循环使用,供液池的温度较低,可以选择非离子表面活性剂;加工中利用板材粘附的薄油膜进行润滑,因此微乳液组成中应选择粘度较高的矿物油,同时在水相中还应加入水溶性增粘剂,以保证润滑液粘附层的厚度,液池较小且使用中没有搅动,故不考虑抗泡性和防霉性。即冲压加工水溶性润滑剂要求的主要性能为润滑性,防锈性和粘附能力,其基本组成的部分试验结果如表l所示。

相关主题
文本预览
相关文档 最新文档