当前位置:文档之家› 1.3将军饮马问题及作图问题关联

1.3将军饮马问题及作图问题关联

1.3将军饮马问题及作图问题关联
1.3将军饮马问题及作图问题关联

典型精炼

例1:三角形、刻度尺作图,保留作图痕迹,不写做法;

(1) 如图1,在等边三角形ABC 中,点E 是AB 的中点,AD 是高,在AD 上找一点P ,是BP+PE 的值最小;

C

A

B E

D (2) 如图2,正方形ABCD 中,

E 为AB 的中点,在AC 上找一点P ,使

PB+PE 的值最小;

j

A C

B D E

(3)如图3,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠。

A

C D

B

例2:三角形、刻度尺作图,保留作图痕迹,不写做法;

(1) 如图,在△ABC 中,点D 、E 分别是AB 、AC 边上的两定点,请你在

BC 边上确定一点P ,使得△PDE 的周长最小。

B C A

D

E

(2)如图,在锐角三角形ABC 中,BD 平分∠ABC ,M 、N 分别是线段BD 、BC 上的动点,试确定点M 、N 的位置使得CM+MN 最小。

B C

A D

M

N

例3.在∠MON 的两边上分别找两点P 、Q ,使得AP+PQ+QB 最小。(保留作图痕迹,不要求写做法)

O

N M

A

B

例4.如图,∠AOB=30°,点P 位于∠AOB 内,OP=3,点M 、N 分别是射线OA 、OB 上的动点,求△PMN 的最小周长。

O A B P

N

M

例5.已知∠MON=40°,P 为∠MON 内一点,A 为OM 上的点,B 为ON 上的点,问当△PAB 的周长取最小值时,∠APB 等于多少度?如果∠MON= , ∠APB 又等于多少?

O N M

P

A

B

初中数学解题模型专题讲解10---“将军饮马”模型详解与拓展

初中数学解题模型专题讲解 专题10 “将军饮马”模型详解与拓展 平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系; ② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用 ①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。 问题提出: 唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交 河.”诗中隐含着一个有趣的数学问题. 如图所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后再到B 点宿营.请问怎样走才能使总的路程最短? 模型提炼: 模型模型【【1】一定直线、异侧两定点 直线l 和l 的异侧两点A、B,在直线l 上求作一点P,使PA+PB 最小

解答:根据“两点之间,线段距离最短”,所以联结AB 交直线l 于点P,点P 即为所求点 模型模型【【2】一定直线、同侧两定点 直线l 和l 的同侧两点A、B,在直线l 上求作一点P,使PA+PB 最小 解答: 第一步:画点A 关于直线l 的对称点A'(根据“翻折运 动”的相关性质,点A、A'到对称轴上任意点距离相等, 如图所示,AP=A'P,即把一定直线同侧两定点问题转化为 一定直线异侧两定点问题) 第二步:联结A'B 交直线l 于点Q,根据“两点之间,线段距离最短”,此时“A'Q+QB”最短即“AQ+QB”最短 模型模型【【3】一定直线、一定点一动点 已知直线l 和定点A,在直线k 上找一点B (点A、B 在直线l 同侧), 在直线l 上找点P,使得AP+PB 最小 解答: 第一步:画点A 关于直线l 的对称点A' 第二步:过点A'做A'B⊥k 于点B 且交直线l 于点P,根据“从直线 外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB 最小即AP+PB 最小

将军饮马模型(终稿)教学提纲

将军饮马模型(终稿)

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求. 原理:两点之间,线段最短

将军饮马模型终稿

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.

将军饮马模型(终稿)

将军饮马模型 将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营 A 出发,先到河边饮马,然后再去河岸同侧的军营 B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“ 将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点 P,使动点 P 到两个定点 A 与 B 的距离之和最小,即 PA+PB 最小 . 作法:连接 AB ,与直线l 的交点Q, Q 即为所要寻找的点,即当动点P 跑到了点 Q 处, PA+PB 最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接 AB ,与直线l 的交点Q,P为直线 l 上任意一点, 在⊿ PAB 中,由三角形三边关系可知:AP+PB ≧ AB( 当且仅当 PQ 重合时取﹦ )

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 的和最小 . 关键:找对称点 作法:作定点 B 关于定直线l的对称点 C,连接 AC ,与直线 l 的交点 Q 即为所要寻找的点,即 当动点 P 跑到了点 Q 处, PA+PB 和最小,且最小值等于 AC. 原理:两点之间,线段最短 证明:连接 AC ,与直线l 的交点Q,P为直线 l 上任意一点, 在⊿ PAC 中,由三角形三边关系可知:AP+PC≧ AC( 当且仅当 PQ 重合时取﹦ ) 2.两动一定型 例3:在∠ MON 的内部有一点 A ,在 OM 上找一点 B ,在 ON 上找一点 C,使得△ BAC 周长最短. 作法:作点 A 关于 OM 的对称点 A’,作点 A 关于 ON 的对称点 A’’,连接 A’ A ’’,与 OM 交于点 B,与 ON 交于点 C,连接 AB , AC ,△ ABC 即为所求. 原理:两点之间,线段最短

(完整word版)将军饮马问题的11个模型及例题

将军饮马问题 问题概述 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 方法原理 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 基本模型 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

将军饮马模型

一、背景知识:【传说】.一天,一海伦早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.应该怎样走开会,出发,先到河边饮马,然后再去河岸同侧的军营B将军每天从军营A这个从此以后,才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.”的问题便流传至今.被称为“将军饮马造桥选址费马点【问题原型】将军饮马【涉及知识】两点之间线段最短,垂线段最短;轴对称;平移;三角形两边三边关系; 【解题思路】找对称点,实现折转直二、将军饮马问题常见模型两定点到一动点的距离和最小1.两定一动型:l,使动点P到两个定点A与B的距离之和最小,即PA+PB例1:在定直线上找一个动点P最小. l的交点Q,AB,与直线作法:连接Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 ll为P证明:上任意一点,直线连接AB,与直线的交点Q,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦) l:2例A与的距离之和最小,B在定直线P上找一个动点P,使动点到两个定点 .即PA+PB的和最小 关键:找对称点l即为所要寻找的点,的交点Q,连接AC作法:作定点B关于定直线,与直线的对称点Cl和最小,且最小值等于AC.Q处,PA+PB即当动点P跑到了点原理:两点之间,线段最短ll为:P证明,与直线直线的交点Q,上任意一点,连接AC)PQ重合时取﹦中,由三角形三边关系可知:AP+PC≧AC(当且仅当在⊿PAC 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.

将军饮马的六种模型

将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。 2.如图,直线l和l同侧两点A、B,在直线l上求作一点P,使P A+PB最小。 3.如图,点P是∠MON内一点,分别在OM,ON上作点A,B。使△P AB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形P AQB的周长最小。 5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小

6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小 二、常见题目 Part 1、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值 解: ∵点C 关于直线AD 的对称点是点B , ∴连接BE ,交AD 于点M ,则ME +MD 最小, 过点B 作BH ⊥AC 于点H , 则EH = AH – AE = 3 – 2 = 1, BH =22BC CH -=2263-=33 在直角△BHE 中,BE =22BH EH - =22(33)1+=27 2.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____. 解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 4

“将军饮马”模型详解与拓展

“将军饮马”模型详解与拓展 平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系;② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。 问题提出: 唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题. 如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿 营.请问怎样走才能使总的路程最短? 模型提炼: 模型【1】一定直线、异侧两定点 直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小 解答:根据“两点之间,线段距离最短”,所以联结AB交直 线l于点P,点P即为所求点 模型【2】一定直线、同侧两定点 直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小 解答: 第一步:画点A关于直线l的对称点A'(根据“翻折运动”的 相关性质,点A、A'到对称轴上任意点距离相等,如图所示, AP=A'P,即把一定直线同侧两定点问题转化为一定直线异侧两 定点问题) 第二步:联结A'B交直线l于点Q,根据“两点之间,线段距离 最短”,此时“A'Q+QB”最短即“AQ+QB”最短

模型【3】一定直线、一定点一动点 已知直线l和定点A,在直线k上找一点B(点A、B在直线l同侧),在直线l上找点P, 使得AP+PB最小 解答: 第一步:画点A关于直线l的对称点A' 第二步:过点A'做A'B⊥k于点B且交直线l于点P,根据“从直线 外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB 最小即AP+PB最小 模型【4】一定点、两定直线 点P是∠MON内的一点,分别在OM,ON上作点A,B,使△PAB的周长最小 解答: 策略:两次翻折 第一步:分别画点P关于直线OM、ON的对称点P1、P2 第二步:联结P1P2,交OM、ON于点A、点B (根据“翻折运动”的相关性质,AP=AP1,BP=BP2;根据“两点之间, 线段距离最短”可知此时AP1+BP2+AB最短即△ABP周长最短) 拓展 如果两定点、两定直线呢? “如图,点P,Q为∠MON内的两点,分别在OM,ON上作点 A,B。使四边形PAQB的周长最小” 问题升级: 问题:如图,△ABC中,点D、E、F分别在边AB、AC、BC上,试求作△DEF的最小值

将军饮马模型(终稿)(完整资料).doc

【最新整理,下载后即可编辑】 将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点,

在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ 重合时取﹦) 例2:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小, 即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l 的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB 和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ 重合时取﹦) 2.两动一定型

将军饮马模型(终稿)

1.两定一动型: 两定点到一动点的例1:在定直线 I 上找一个动点P,使动点P 到两个定点A 与B 的距离之和最小,即 PA+PB 最小. 作法:连 接AB 与直线I 的交点Q, Q 即为所要寻找的点,即当动点 P 跑到了点Q 处, PA+PB 最小,且最小值等于 AB. 将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者, 名叫海伦?一天,一 位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营 A 出发,先到河边饮马,然后再去河岸同侧的军营 B 开会,应该怎样走 才能使路程最短?这个问题的答案并不难, 据说海伦略加思索就解决了它. 从此以后,这个 被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马 造桥选址 费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系; 轴对称;平移; 【解题思路】找对称点,实现折转直 、将军饮马问题常见模型 原理:两点之间线段最短。 证明:连接AB,与直线I 的交点Q P 为直线I 上任意一点, 在"PAB 中,由三角形三边关系可知: AP+P 匡AB (当且仅当PQ 重合时取=)

例2:在定直线l上找一个动点P,使动点P 到两个定点A与B的距离之和最小, A f C,连接AC,与直线I的交点Q即为所要寻找的点, 即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线I的对称点即当动点P跑到了点Q处,PA+PB和最小,且最小值等于 AC. 原理:两点之间,线段最短 证明:连接AC,与直线I的交点Q P为直线I上任意一点, 在"PAC中,由三角形三边关系可知:AP+P& AC(当且仅当PQ重合时取=) 2.两动一定型

将军饮马问题的11个模型及例题

将军饮马问题 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

将军饮马模型

将军饮马模型 Revised as of 23 November 2020

将军饮马问题 将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。而最短距离是题眼,也就意味着归类这类的题目的理由。比如题目经常会出现线段 a+b 这样的条件或者问题。一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。 1.将军饮马故事 “将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短 A B 模型一:一条定直线,同侧两定点 在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。 一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。A’B即为最短距离。

理由:A ’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A ’P 。所以 PA+PB=PA ’+PB 。这样问题就化成了求 A ’到 B 的最短距离,直接相连就可以了。 例一:某供电部门准备在输电主干线L 上连接一个分支线路,分支点为M ,同时向新落成的A 、B 两个居民小区送电。已知两个居民小区A 、B 分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。 (1)如果居民小区A 、B 位于主干线L 的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短最短线路的长度是多少千米 (2)如果居民小区A 、B 位于主干线L 的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短此时分支点M 与A1的距离是多少千米 模型二:一条定直线,一定点,一动点 如图,已知直线L 和定点A ,在直线K 上找一点M ,在直线L 上找一点P ,使得AP+PB 值最小。 A B B A A ’ B ’ A ’ B ’ L L

将军饮马模型终稿-将军饮马最大值模型之欧阳家百创编

将军饮马模型 欧阳家百(2021.03.07) 一、布景知识: 【传说】 早在古罗马时代,传说亚历山年夜城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天参军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才干使路程最短?这个问题的谜底其实不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题罕见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值即是AB.

原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ 重合时取﹦) 例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小, 即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值即是AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ 重合时取﹦) 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求. 原理:两点之间,线段最短 例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON 上找一点D,使得四边形ABCD周长最短.

完整word版将军饮马问题的11个模型及例题

将军饮马问题问题概述路径最短、线段和最小、线段差最大、周 长最小等一系列最值问题方法原理 2.三角形两边之和大于第三边,两边之差小于第三边;1.两点之间,线段最短;.垂线段最短 3.中垂线上的点到线段两端点的距离相等; 4.基本模型 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 , 即为所求,点PP解:连接AB交直线l于点 PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP'中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小 (或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求;

理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1. 3. 两的同侧(A、B已知:如图,定点A、B分布在定直线l 的距离不相等)点到l︱的值最大P,使PA-PB︱要求:在直线l上找一点 P,点P即为所求;解:连接BA并延长,交直线l于点 的一点P′,︱=AB,在l上任取异于点P此时︱理由:PA-PB ︱

初中几何模型:将军饮马模型分析

初中几何模型—将军饮马模型分析让我们先来了解“将军饮马”这个故事。 古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦。有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军A从出发到河边饮马,然后再到B地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题。 下面我们来看看数学家是怎样解决的。海伦发现这是一个求折线和最短的数学问题。 根据公理:连接两点的所有线中,线段最短。 若A、B在河流的异侧,直接连接AB,AB与l的交点即为所求。 若A、B在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解。 将军饮海伦解决本问题时,是利用作对称点把折线问题转化成直线,现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即 1

2 轴对称思想。 轴对称的两个图形有如下性质: ①关于某条直线对称的两个图形是全等形; ②对称轴是任何一对对应点所连线的垂直平分线; ③两个图形关于某条直线对称,如果他们的对应线段或延长线相 交,那么交点在对称轴上。 将军饮马的数学问题,考察的知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、 三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、 四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现. 模型1:直线与两定点 模型作法结论 l B A 当两定点A、B在直线l异侧时,在直线 l上找一点P,使P A+PB最小. l P A B 连接AB交直线l于点P,点P 即为所求作的点. P A+PB的最小值为AB l A B 当两定点A、B在直线l同侧时,在直线 l上找一点P,使得P A+PB最小. l P B' A B 作点B关于直线l的对称点B', P A+PB的最小值为AB'

将军饮马模型

将军饮马模型 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现. B 当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使P A +PB 最小. B 连接AB 交直线l 于点P ,点P 即为所求作的点. P A +PB 的最小值为AB l A B 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得P A +PB 最小. l P B' A B 作点B 关于直线l 的对称点B ', 连接AB '交直线l 于点P ,点P 即为所求作的点. P A +PB 的最小值为AB A A

模型实例 例1:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD +PE 最小值是 . E D P P E C D 解答:如图所示,∵点B 与点D 关于AC 对称, ∴当点P 为BE 与AC 的交点时,PD +PE 最小,且线段BE 的长. ∵正方形ABCD 的面积为12,∴其边长为23∵△ABE 为等边三角形,∴BE =AB =23PD +PE 的最小值为3 例2:如图,已知△ABC 为等腰直角三角形,AC =BC =4,∠BCD =15°,P 为CD 上的动点,则PA PB - 的最大值是多少? 解答: 如图所示,作点A 关于CD 的对称点A ′,连接A ′C ,连接A ′B 并延长交CD 于点P ,则点P 就是PA PB -的值最大时的点,PA PB -=A ′B . ∵△ABC 为等腰直角三角形,AC =BC 等于4,∴∠ACB =90°.

将军饮马模型(终稿)

將軍飲馬模型 一、背景知識: 【傳說】 早在古羅馬時代,傳說亞曆山大城有一位精通數學和物理の學者,名叫海倫.一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解の問題. 將軍每天從軍營A出發,先到河邊飲馬,然後再去河岸同側の軍營B開會,應該怎樣走才能使路程最短?這個問題の答案並不難,據說海倫略加思索就解決了它.從此以後,這個被稱為“將軍飲馬”の問題便流傳至今. 【問題原型】將軍飲馬造橋選址費馬點 【涉及知識】兩點之間線段最短,垂線段最短; 三角形兩邊三邊關係;軸對稱;平移; 【解題思路】找對稱點,實現折轉直 二、將軍飲馬問題常見模型 1.兩定一動型:兩定點到一動點の距離和最小 例1:在定直線l上找一個動點P,使動點P到兩個定點A與Bの距離之和最小,即PA+PB 最小. 作法:連接AB,與直線lの交點Q, Q即為所要尋找の點,即當動點P跑到了點Q處, PA+PB最小,且最小值等於AB. 原理:兩點之間線段最短。 證明:連接AB,與直線lの交點Q,P為直線l上任意一點, 在⊿PAB中,由三角形三邊關係可知:AP+PB≧AB(當且僅當PQ重合時取﹦)

原理:兩點之間,線段最短 證明:連接AC,與直線lの交點Q,P為直線l上任意一點, 在⊿PAC中,由三角形三邊關係可知:AP+PC≧AC(當且僅當PQ重合時取﹦) 2.兩動一定型 例3:在∠MONの內部有一點A,在OM上找一點B,在ON上找一點C,使得△BAC周長最短. 作法:作點A關於OMの對稱點A’,作點A關於ONの對稱點A’’,連接A’ A’’,與OM 交於點B,與ON交於點C,連接AB,AC,△ABC即為所求. 原理:兩點之間,線段最短

相关主题
文本预览
相关文档 最新文档