当前位置:文档之家› 施加弯矩扭矩方法总结

施加弯矩扭矩方法总结

施加弯矩扭矩方法总结
施加弯矩扭矩方法总结

施加弯矩扭矩方法总结

应该说venture在

[url=https://www.doczj.com/doc/d44365181.html,/forum/thread-41502-1-1.html](原创)图文并茂加力矩[/url]中很好的介绍了力矩的施加方法,但该帖子中所介绍的主要是一种方法,而且也缺少命令流。故通过查找网上的资料,并进行验证,对此加以总结:

施加弯矩扭矩的方法其实不只三种,有很多种方法,在这里介绍其中的5种,并进行比较:

1.将矩转换成一对的力偶,直接施加在对应的节点上面。

2.在构件中心部位建立一个节点,定义为mass21单元,然后跟其他受力节点耦合,形成刚性区域,就是用cerig命令。然后直接加转矩到主节点,即中心节点上面。

3.使用mpc184单元。是在构件中心部位建立一个节点,跟其他受力节点分别形成多根刚性梁,从而形成刚性面。最后也是直接加载荷到中心节点上面,通过刚性梁来传递载荷。

4.通过rbe3命令。该方法与方法2很接近。

5.基于表面边界法:主要通过定义一个接触表面和一个目标节点接触来实现,弯矩荷载可以通过在目标节点上用“F”命令施加。

对于方法1,通过转换为集中力或均布力,比如施加扭矩,把端面节点改成柱坐标,然后等效为施加环向的节点力;而施加弯矩,可以将力矩转化为端面的剪切均布力;但这种方法比较容易出现应力集中现象;

方法2,定义局部刚性区域,施加过程venture讲的很详细,这里就不在赘述。根据他的例子,我在下面给出了一段命令流。该方法有个不足,它在端面额外的增加了一定的刚度,只能适用于小变形分析。

方法3,相对方法2来说,采用刚性梁单元,适用范围更广一些,对于大应变分析也能很好的适用。但在小应变分析下,方法2和方法3没有什么区别。

方法4,定义一个主节点,施加了分布力面,应该说跟实际比较接近一点,但端面的结果好像不是很理想,结果有点偏大,在远离端面处的位置跟实际很符合。方法5,它具体的受力形式有如下两种:

刚性表面边界(Rigid surface constraint)-认为接触面是刚性的,没有变形,和通过节点耦合命令CERIG比较相似;

分布力边界(Force-distributed constraint)-允许接触面的变形,和边界定义命令RBE3相似。

使用这种方法,需要用KEYOPT(2) = 2打开接触单元的MPC(多点接触边界)算法,

下面针对venture给出的例题,用不同的方法来实现的命令流。

方法1不介绍了,方法2:

/PREP7

ET,1,95

KEYOPT,2,3,0

R,1,1E-6

MP,EX,1,2.01e5

MP,PRXY,1,0.3

CYLIND,15,10,0,200,0,360, wpro,,90,

vsbw,all

wpro,,,90

vsbw,all

WPCSYS,-1,0

K,17 , , ,210

lsel,s,,,13,16,1

lesize,all, , ,8, , , , ,1 lsel,s,,,22

lesize,all, , ,4, , , , ,1 lsel,s, , ,17,20,1

lsel,a, , ,26,27,1

lsel,a, , ,30,31,1 lesize,all, , ,20,0.4, , , ,1 alls

!!!!!下面一段开始各个方法有所不同,由于前面的建模一样,后面的例子就不再给出

ksel,s,,,17

type,2

real,1

kmesh,all

allsel

nsel,s,loc,z,200,210

npolt

CERIG,node(0,0,210),ALL,ALL, , , ,

!!!!!CERIG命令定义局部刚性区域

allsel

/SOLU

f,node(0,0,210),mz,10e5

FINISH

!!!!!以下一段边界条件的施加各种方法一样,后面例子也不再赘述

/SOL

nsel,s,loc,z,0

d,all,all

allsel

solve

方法3:使用MPC184单元定义刚性梁

……

et,2,184

keyopt,2,1,1

nsel,s,loc,z,200

n,15000 ,0,0,210

type,2

*get,nnum,node,0,count

*get,ND,node,0,num,min

*do,i,2,nnum

!!!!节点个数是nnum,只需要生成nnum个mpc单元E, 15000,ND

ND=NDNEXT(ND)

*enddo

allsel

/SOLU

f,node(0,0,210),mz,10e5

FINISH

……

方法4:rbe3命令……

ET,2,21

KEYOPT,2,3,0

R,1,1E-6

K,17 , , ,210

ksel,s,,,17

type,2

real,1

kmesh,all

allsel

nsel,s,loc,z,200

*get,nnum,node,0,count *get,ND,node,0,num,min *dim,sla,array,nnum

*dim,sla2,array,nnum

*do,i,1,nnum

sla(i)=ND

sla2(i)=ND

ND=NDNEXT(ND)

*enddo

allsel

rbe3,node(0,0,210),all, sla,sla2 /SOLU

f,node(0,0,210),mz,10e5 FINISH

……

方法5:定义刚性接触面……

n,15000 ,0,0,200

MAT,1

R,3

REAL,3

ET,2,170

ET,3,175

KEYOPT,3,12,5

KEYOPT,3,4,1 KEYOPT,3,2,2 KEYOPT,2,2,0 KEYOPT,2,4,111111 TYPE,2

! Create a pilot node TSHAP,PILO

E,15000

! Generate the contact surface ASEL,S,,,14

ASEL,A,,,19

ASEL,A,,,24

ASEL,A,,,28

CM,_CONTACT,AREA TYPE,3

NSLA,S,1

ESLN,S,0

ESURF

ALLSEL

allsel

/SOLU

f,node(0,0,210),mz,10e5 FINISH

…...

阶梯轴的加工工艺

平顶山工业职业技术学院 阶梯轴的加工工艺 班级: 姓名: 学号: 成绩:

目录 一零件的工艺分析 (6) 二生产纲领的计算与生产类型的确定 (10) 三确定毛坯、绘制毛坯图 (11) 四拟定轴的工艺路线 (12) 五选择加工设备及工艺装备 (16) 六加工工序设计 (17) 七加工后零件的三维图 (24) 八设计小结 (26)

摘要 我国社会主义现代化要求机械制造工业为国民经济个部门的技术进步,技术改造提供先进高效的技术装备,他首先要为我国正在发展的产业包括农业,重工业,轻工业以及其他的产业提供质量优良先进的技术设备,同时还要为新材料新能源机械工程等新技术的生产和应用提供基础设备。 随着科学技术和工业生产的飞速发展,国民经济个部门迫切需要各种各样质量优、性能好、效率高、能耗低、价格廉的机械产品。其中产品设计师决定产品性能,质量水平市场竞争力和经济效益的重要环节,因此采用数控加工就成了首选,因为他工作效率高,质量好,加工精度高

一零件的工艺分析 1、轴的用途: 轴是组成机器的主要零件之一。一切作回转运动的传动零件(如齿轮、蜗杆登),都必须安装在轴上才能进行运动及动力的传递。因此轴的主要作用是支承回转零件及传递运动和动力。按照轴的承受载荷不同,轴可分为转轴、心轴和传动轴三类。工作中既承受弯矩又承受扭矩的轴成为转轴,只承受弯矩的轴称为心轴,只承受扭矩而不承受弯矩的轴称为传动轴。 该轴主要采用40Cr钢能承受一定的载荷与冲击。此轴为台阶类零件,尺寸精度,形位精度要求均较高。Φ16,φ18,φ17为主要配合面,精度均要求较高,需通过磨削得到。轴线直线度为φ0.01,两键槽有同轴度要求。在加工过程中须严格控制。 2、技术要求: 轴通常是由支承轴颈支承在机器的机架或箱体上,实现运动传递和动力传递的功能。支承轴颈表面的精度及其与轴上传动件配合表面的位置精度对轴的工作状态和精度有直接的影响。其技术要求包括以下内容: 尺寸精度 轴段1,2,4,5为主要配合面,尺寸精度要求较高。 2.形状精度 该轴公共轴线的直线度公差为。其圆度及圆柱度无特殊要求,但应控制在尺寸公差范围内。 3.位置精度 零件对位置精度要求较低,无特别要求。故可按一般规定普通精度轴的配合轴径对支承轴径的径向圆跳动取为0.01~0.03mm。 4.表面粗糙度 具有配合要求的各轴颈表面粗糙度为1.6μm,轴肩侧面表面粗糙度为3.2μm,键槽底面粗糙度要求较低,为3.2μm,侧面为3.2μm。其余为12.5μm.

五种传动轴的静强度、变形及疲劳强度的计算

材料力学 课程设计说明书 设计题目五种传动轴的静强度、变形及疲劳强度的计算 学院 专业班 设计者 学号 指导教师 _年月日

目录 一设计目的 (3) 二设计任务和要求 (4) 三设计题目 (4) 四设计内容 (6) 五程序计算 (18) 六改进措施 (21) 七设计体会 (22) 八参考文献 (22)

一.材料力学课程设计的目的 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)综合运用,又为后继课程(机械设计、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。具体的有以下六项:1.使学生的材料力学知识系统化、完整化; 2.在系统全面复习的基础上,运用材料力学知识解决工程中的实际问题; 3.由于选题力求结合专业实际,因而课程设计可以把材料力学知识和专业需要结 合起来; 4.综合运用了以前所学的个门课程的知识(高数、制图、理力、算法语言、计算机等等)使相关学科的知识有机地联系起来; 5.初步了解和掌握工程实践中的设计思想和设计方法; 6.为后继课程的教学打下基础。

二.材料力学课程设计的任务和要求 要求参加设计者,要系统地复习材料力学的全部基本理论和方法,独立分析、判断、设计题目的已知条件和所求问题。画出受力分析计算简图和内力图,列出理论依据和导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 三.材料力学课程设计的题目 传动轴的强度、变形及疲劳强度计算 6-1 设计题目 传动轴的材料为优质碳素结构钢(牌号45),许用应力[σ]=80MPa,经高频淬火处理,其σb=650MPa,σ-1=300MPa,τ 磨削轴的表面,键槽均为端铣加工,阶梯轴过渡圆弧r均-1=155MPa, 为2mm,疲劳安全系数n=2,要求: 1)绘出传动轴的受力简图; 2)作扭矩图及弯矩图; 3)根据强度条件设计等直轴的直径; 4)计算齿轮处轴的挠度;(按直径Φ1的等直杆计算) 5)对阶梯传动轴进行疲劳强度计算;(若不满足,采取改进措施使其满足疲劳强度); 6)对所取数据的理论根据作必要的说明。

阶梯轴的工艺设计

机械制造工艺学 课程设计 姓名:高森 学号: 20100460116 班级: 10机械本1 指导教师:李海英 完成日期: 2013年7月12日

机电工程学院课程设计任务书

目录 一、零件的工艺分析 (1) 1.1轴的用途: (1) 1.2技术要求: (1) 二、设计轴的工艺性 (3) 2.1结构工艺 (3) 2.2加工工艺 (3) 三、生产纲领的计算与生产类型的确定 (4) 3.1生产类型的确定 (4) 3.2生产纲领的计算 (5) 四、确定毛坯、绘制毛坯图 (5) 4.1选择毛坯 (5) 4.2确定毛坯的尺寸公差 (5) 五、拟定轴的工艺路线 (6) 5.1定位基准的选择 (6) 5.2零件表面加工方法的选择 (7) 5.3工艺顺序的安排 (7) 六、加工阶段的划分 (8) 七、确定工艺路线 (9) 八、选择加工设备及工艺装备 (10) 8.1机床设备的选用 (10) 8.2工艺装备的选用 (10) 九、加工工序设计 (11) 9.1确定工序尺寸 (11) 9.2确定工序的切削用量 (16) 十、参考资料 (17) 十一、心得体会 (17)

一、零件的工艺分析 1.1轴的用途: 该轴主要采用40Cr 钢能承受一定的载荷与冲击。此轴为台阶类零件,尺寸精度,形位精度要求均较高。Φ17,φ19,φ18为主要配合面,精度均要求较高,需通过磨削得到。轴线直线度为φ0.01,两键槽有同轴度要求。在加工过程中须严格控制。 1.2技术要求: 轴通常是由支承轴颈支承在机器的机架或箱体上,实现运动传递和动力传递的功能。支承轴颈表面的精度及其与轴上传动件配合表面的位置精度对轴的工作状态和精度有直接的影响。其技术要求包括以下内容: 1.2.1尺寸精度 轴段1,2,4,5为主要配合面,尺寸精度要求较高。 0.0210.0070 0.01180.005191817????+ --±其中主要加工面有外圆柱面两段,,轴颈,, 尺寸为6的两个键槽以及各退刀槽。 1.2.2 形状精度 该轴公共轴线的直线度公差为01.0φ。其圆度及圆柱度无特殊要求,但应控制在尺寸公差范围内。 1.2.3位置精度 零件对位置精度要求较低,无特别要求。故可按一般规定普通精度轴的配合轴径对支承轴径的径向圆跳动取为0.01~0.03mm 。 1.2.4表面粗糙度 具有配合要求的各轴颈表面粗糙度为1.6μm,轴肩侧面表面粗糙度为3.2μm,键槽底面粗糙度要求较低,为3.2μm,侧面为3.2μm。其余为12.5μm. 1.2.5 热处理:锻造后应对毛坯安排正火处理,为消除内应力粗加工之后安排退火处理,为改善材料的力学物理性质半精加工之后,精加工之前安排调质处理(850℃油淬加520℃持续2小时回火)。

机械制造工艺学(阶梯轴的工艺规程)

莱芜职业技术学院 《机械制造工艺学》 综合实训 题目:阶梯轴机械加工工艺规程编制 系别:机电工程系 专业:机电一体化技术 班级:13级高职机电3班 姓名: 学号: 指导教师: 成绩: 2015年6 月

《机械制造工艺学》综合实训任务书 2014—2015 学年第二学期 机电工程系:机电一体化技术专业2013级高职机电3班 课程名称:机械制造工艺学 设计题目:轴的加工工艺规程的编制 一、设计的主要任务 如图所示为减速器输出轴,批量500件,材料45钢。试编制其加工工艺规程。 二、完成期限: 自2015年 6 月15 日至2015 年6 月22 日共1 周 指导教师(签字):年月日系(教研室)主任(签字):年月日

目录 序言 (1) 一. 零件的分析 (4) 1.1 轴的作用 (4) 1.2 轴的工艺分析 (4) 1.3 轴的零件图 (5) 二、工艺规程设计 (6) 2.1确定毛坯的制造形式 (6) 2.2定位基准的选择 (6) 2.3拟定轴的工艺路线 (7) 2.4加工工序的设计 (10) 2.5确定切削用量及基本工时 (11) 三、机床的设备选择 (12) 3.1机床设备选择 (12) 3.2工艺设备选用 (12) 3.3各工序所用机床、夹具、刀具、量具和辅具 (13) 参考文献 (16) 零件三维图 (16) 工艺卡片 (17) 工序卡片 (18) 设计总结 (19)

序言 本课程综合实训是学生在学完机械制造工艺学课程的一个综合性和实践性很强的教学环节,通过实训,能综合运用所学基本理论以及在生产实习中学到的实践知识进行工艺及结构设计的基本训练,掌握机械制造过程中的加工方法、加工装备等基本知识,提高学生分析和解决实际工程问题的能力,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。 本次机械制造工艺学综合实训不仅仅能帮助我们利用已学的知识进行设计,还培养了我们自己分析,独立思考的能力。这次综合性的训练,我在以下几方面得到锻炼: (1)提高结构设计能力。通过设计零件的训练,获得根据被加工零件的加工要求,设计出高效,省力,经济合理而能保证加工质量的零件的能力。 (2)学会使用手册以及图表资料。掌握与本设计有关的各种资料的名称,出处,能够做到熟练的运用。 就我个人而言,我希望通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己发现问题,分析问题和解决问题的能力,为今后参加工作打下良好的基础。

轴施加扭矩

在施加工程问题中,力矩无处不在,使用MPC184 单元,是在构建中心部位建立一个节点并于其他受力节点生产很多刚性梁,实现传递载荷。问题描述 模型为接头轴,第一段长为1m ,直径为0.4m ;第二段长为0.5,直径为0.6;第三段长为0.8m ,直径为0.5m 1.定义文件名 GUI : Utility Menu 》File 》Change Jobname 在弹出的对话框中输入名称即可如zhoudefenxi 2.定义单元和属性 GUI:Main Menu 》Preprocessor 》Element Type 》Add/Edit/Delete (1)定义单元 (2)定义属性 (3)定义单元材料常数 阶梯轴施加扭矩和弯矩 2013年6月29日 14:12

3.建立模型 (1)建立第一段轴 GUI:Main Menu》Preprocessor》Modeling》Create》Volumes》Cylinder》By Dimensions (2)建立第二段轴长 (3)建立第三段轴长

(4)布尔操作运算 使用布尔操作运算,把分离的三段轴合为一段轴 GUI:Main Menu 》Preprocessor 》Modeling 》Operate 》Booleans 》Add 》Volumes 之前使用过创立一根圆轴后对圆轴进行加工成阶梯轴 4.网格的划分 (1)显示线号 GUI :Utiliy Menue 》PlotCtrls 》Numbering 就是显示模型上各线段的编号

GUI:Utiliy Menue》Plo》Line 会单独显示线段 (2)打开网格划分工具 GUI:Main Menu》Preprocessor》Meshing》MeshTool (3)设置单元尺寸 单击Line工具中的Set选取选段编号25、26、27、28

机械制造课程设计(阶梯轴工艺规程)

机械制造技术基础 题目:设计阶梯轴的机械加工工艺规程院、系:机械与汽车工程学院 班级:机电一体化1021班 姓名: 学号: 指导教师: 年 5 月

目录 序言 (1) 一. 零件的分析 (4) 1.1 轴的作用 (4) 1.2 轴的工艺分析 (4) 1.3 轴的零件图 (5) 二、工艺规程设计 (6) 2.1确定毛坯的制造形式 (6) 2.2定位基准的选择 (6) 2.3拟定轴的工艺路线 (7) 2.4加工工序的设计 (10) 2.5确定切削用量及基本工时 (11) 三、机床的设备选择 (12) 3.1机床设备选择 (12) 3.2工艺设备选用 (12) 3.3各工序所用机床、夹具、刀具、量具和辅具 (13) 参考文献 (16) 零件三维图 (16) 工艺卡片 (17) 工序卡片 (18) 设计总结 (19)

序言 本课程设计是学生在学完机械制造工艺学课程的一个综合性和实践性很强的教学环节,通过课程设计,能综合运用所学基本理论以及在生产实习中学到的实践知识进行工艺及结构设计的基本训练,掌握机械制造过程中的加工方法、加工装备等基本知识,提高学生分析和解决实际工程问题的能力,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。 本次机械制造工艺学课程设计不仅仅能帮助我们利用已学的知识进行设计,还培养了我们自己分析,独立思考的能力。这次综合性的训练,我在以下几方面得到锻炼: (1)提高结构设计能力。通过设计零件的训练,获得根据被加工零件的加工要求,设计出高效,省力,经济合理而能保证加工质量的零件的能力。 (2)学会使用手册以及图表资料。掌握与本设计有关的各种资料的名称,出处,能够做到熟练的运用。 就我个人而言,我希望通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己发现问题,分析问题和解决问题的能力,为今后参加工作打下良好的基础。

阶梯轴 ANSYS静态分析与模态分析

阶梯轴 ANSYS静态分析与模态分析阶梯轴结构如下:

下面来做轴的静态分析: 1 定义工作文件名和工作标题(过程略) 2 显示工作平面(过程略) 3 利用矩形面素生成面 1) 生成矩形面:Main Menu>Preprocessor>Create>Rectangle>By Dimensions,在对话框的“X-coordinates”和“Y-coordinates”后面输入栏中分别输入下列数据: X1=0, X2=260, Y1=0, Y2=70,单击“Aplay” X1=260, X2=380, Y1=0, Y2=75,单击“Aplay”; XI=380, X2=420, Y1=0, Y2=100,单击“Aplay”; X1=420, X2=660, Y1=0, Y2=80,单击“Aplay”; X1=660, X2=800, Y1=0, Y2=75,单击“ok”;生成的结果如图 2) 矩形面相加操作:Main Menu>Preprocessor>Operate>Add>Areas,出现一个拾取框,单击“Pick All”,则完成相加操作,生成的结果如图

4 由面绕轴线生成体 1)面绕轴线操作:Main Menu>Preprocessor>Operate> Extrude>About Axis, 出现一个拾取框,单击“Pick All”又出现第二个拾取轴心线两端点的拾取框,用鼠标在图形上分别拾取编号为“1、18”的关键点,然后单击“OK”, 又弹出一个对话框单击“OK”.

2)保存到文件中:Main Menu> File>Save As, 弹出一个对话框,在 “Save Database to”下面的输入栏中输入用户自定义的文件名“shaft.DB”,单击“OK”. 5 生成A-A键槽 1)移动工作平面:在“Offset WP by Increments ”中的“X,Y,Z Offset” 下面的输入栏中输入“85,0,40”(A-A键槽左侧圆弧中心),并按“Enter” 键确认。 2)生成一个圆 Main Menu>Preprocessor>Create> Cylinder>Solid Cylinder, 弹出一个对话框,在其输入栏中分别输入“Radius=25,Deoth=50”,单击“OK”。 3)生成一个块:Main Menu>Preprocessor>Create> Block>By Dimensions, 弹出一个话框,在其输入栏中输入的数据如图所示,单击OK。

施加弯矩扭矩的各种方法

施加弯矩扭矩的各种方法 施加弯矩扭矩方法总结 在这里介绍其中的5种,并进行比较: 1.将矩转换成一对的力偶,直接施加在对应的节点上面。 2.在构件中心部位建立一个节点,定义为mass21单元,然后跟其他受力节点耦合,形成刚性区域,就是用cerig命令。然后直接加转矩到主节点,即中心节点上面。 3.使用mpc184单元。是在构件中心部位建立一个节点,跟其他受力节点分别形成多根刚性梁,从而形成刚性面。最后也是直接加载荷到中心节点上面,通过刚性梁来传递载荷。 4.通过rbe3命令。该方法与方法2很接近。 5.基于表面边界法:主要通过定义一个接触表面和一个目标节点接触来实现,弯矩荷载可以通过在目标节点上用“F”命令施加。 对于方法1,通过转换为集中力或均布力,比如施加扭矩,把端面节点改成柱坐标,然后等效为施加环向的节点力;而施加弯矩,可以将力矩转化为端面的剪切均布力;但这种方法比较容易出现应力集中现象; 方法2,定义局部刚性区域,施加过程venture讲的很详细,这里就不在赘述。根据他的例子,我在下面给出了一段命令流。该方法有个不足,它在端面额外的增加了一定的刚度,只能适用于小变形分析。 方法3,相对方法2来说,采用刚性梁单元,适用范围更广一些,对于大应变分析也能很好的适用。但在小应变分析下,方法2和方法3没有什么区别。 方法4,定义一个主节点,施加了分布力面,应该说跟实际比较接近一点,但端面的结果好像不是很理想,结果有点偏大,在远离端面处的位置跟实际很符合。方法5,它具体的受力形式有如下两种: 刚性表面边界(Rigid surface constraint)-认为接触面是刚性的,没有变形,和通过节点耦合命令CERIG比较相似; 分布力边界(Force-distributed constraint)-允许接触面的变形,和边界定义命令RBE3相似。 使用这种方法,需要用KEYOPT(2) = 2打开接触单元的MPC(多点接触边界)算法, 下面针对venture给出的例题,用不同的方法来实现的命令流。 方法1不介绍了,方法2: /PREP7 ET,1,95 ET,2,21 KEYOPT,2,3,0 R,1,1E-6 MP,EX,1,2.01e5

梁的剪力方程和弯矩方程 常用弯矩图

5-7.试列出下列梁的剪力方程和弯矩方程,并画出剪力图和弯矩图。 解:首先求出支座反力。考虑梁的整体平衡 由 0,0=+?=∑e RA B M l F M 得 l M F e RA - = 由 0,0=-?=∑e RB A M l F M 得 l M F e RB = 则距左端为x 的任一横截面上的剪力和 剪力图 弯矩表达式为: ()l M F x F e RA S - == ()x l M x F x M e RA ?- =?= 剪力方程为常数,表明剪图应是一条平行梁轴线的直线;弯矩方程是x 的一次函数,表明弯矩图是一条斜直线。( 如图) 解:首先求出支座反力。考虑梁的平衡 由 04 5 2,0=??-?=∑l l q l F M RB c 得 ql F RB 8 5= 由 02 1 ,02=+?=∑ql l F M RC B 得 ql F RC 2 1 -= 则相应的剪力方程和弯矩方程为: AB 段:(2 01l x ≤≤) ()()21 11 12 1qx x M qx x F S -=-= BC 段:( 2 322l x l ≤≤) 剪力图 弯矩图

()()? ?? ?? -?+??? ??-??-==-= 285428 21852222l x ql l x l q x M ql ql ql x F S AB 段剪力方程为x 1的一次函数,弯矩方程为x 1的二次函数,因此AB 段的剪力图 为斜直线,弯矩图为二次抛物线;BC 段剪力方程为常数,弯矩方程为x 2的一次函数,所以BC 段剪力图为平行梁轴线的水平线段,弯矩图为斜直线。(如图) 5-9 用简便方法画下列各梁的剪力图和弯矩图。 解:由梁的平衡求出支座反力: KN F KN F RB RA 12,8== AB 段作用有均布荷载,所以 AB 段的剪力图为下倾直线,弯矩图为下凹二次抛物线;BC 段没有荷载作用,所以BC 段的剪力图为平行梁轴线的水平线段,弯矩图为直线。 在B 支座处,剪力图有突变,突变值大小等于集中力(支座反力F RB )的大小;弯矩图有转折,转折方向与集中力方向一致。(如图) (5) 解:由梁的平衡求出支座反力: KN F KN F RB RA 5.6,5.3== AB 与BC 段没有外载作用,所以AB 、BC 段的剪力图为平行梁轴线的水平线段,弯矩图为直线;CD 段作用均布荷载,所以CD 段的剪力图为下倾直线,弯矩图为下凹二次抛物线。

阶梯轴锻造热加工工艺

热加工工艺课程设计阶梯轴铸造工艺设计 院系:工学院机械系 专业:机械设计制造及其自动化 班级:机电班 姓名: nicai 学号:qq37730385 指导老师:刘万福 时间:2013年6月2日

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业2011 级班 学号姓名指导教师刘万福 题目: 阶梯轴锻造工艺设计 课程:热加工工艺课程设计 课程设计时间:5 月22 日至6 月 5 日共 2 周 课程设计工作内容与基本要求(已知技术参数、设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1.已知技术参数: 阶梯轴零件图 2.设计任务与要求(完成后需提交的文件和图表等): 1.设计任务 (1)绘制锻件图。 (2)确定锻造工序。 (3)计算坯料质量及尺寸(均选择锻造比为1.2、钢密度为7.8、烧损质量为锻件质量的2.0%,料头质量除料头尾外还包含冲切掉的金属质量)。 (4)选择锻造设备及吨位。 (5)确定锻造温度范围、加热冷却及热处理规范。 2.设计要求 (1)设计图样一律按工程制图要求,采用手绘或机绘完成,并用三号图纸出图。

(2)按所设计内容及相应顺序要求,认真编写说明书(不少于1500字)。 3、工作计划 熟悉设计题目,查阅资料,做准备工作1天 确定铸造工艺方案1天 工艺设计和工艺计算2天 绘制铸件铸造工艺图1天 确定铸件铸造工艺步骤2天 编写设计说明书3天 答辩 1天 4.主要参考资料 《热加工工艺基础》、《金属成形工艺设计》、《机械设计手册》 系主任审批意见: 审批人签名: 时间:2013年月日

黄河科技学院课程设计说明书第1页摘要 我国汽车制造业、机车制造业、飞机制造业、船舶制造业、车床制造业等相关热加工行业正进入了蓬勃的发展期,对相关零件的需要大量激增,一些高技术的零件与锻造工业的发展是密切相关的。随着高新、精密科技的发展,对锻造技术的要求也越来越高。 热加工技术是机械类个专业一门重要的综合性技术学科。在机械制造过程中,由于加工过程十分复杂,加工工序繁多,工艺过程不仅有铸造成型,锻压成形,焊接成形,还有非金属的模压成形,挤压成形等。因此选着合适的工艺是保证产品质量的重要依据。本次课程设计,将进行铸造工艺的总结和学习。 铸造主要是将液态金属或合金浇注到与零件尺寸、形状相适应的铸型型腔里,待其冷却凝固后获得毛坯或零件的方法,是机械类零件和毛坯成型的主要工艺方法,尤其适合于制造内腔和外形复杂的毛坯或零件。 分析了阶梯轴的结构并根据其结构特点确定了它的锻造工艺,轴是支撑转动零件并与之一起回转以传递运动、扭矩货弯矩的机械零件。机器中做以回转运动的零件就装在轴上,因阶梯轴有便于零件的装配的作用,所以在装配零件中阶梯轴起着不可代替的作用。确定阶梯轴的锻造工艺过程主要包括绘制锻件图、确定变形工艺及锻造比、确定毛皮质量和尺寸、选定锻造设备、确定锻造温度及规范和制作锻件工艺卡。这些技术文件是知道和组织生产、规定操作规范、控制和检查产品的依据。 关键词:自由锻、锻造比、锻造工艺、加工余块、锻造公差、烧损率

弯矩图绘制方法

弯矩图绘制方法 1、基本方法: 采用“截面法”,运用静力平衡方程式(ΣX=0、ΣY=0、ΣM=0等)求解控制截面的内力(弯矩、剪力)。控制截面的内力求解后再勾绘弯矩图。 1)确定内力符号的规律为:“左上剪力正、左顺弯矩正”;“右下剪力正、右逆弯矩正”。 2)确定内力数值的规律为:剪力Q等于截面任意一侧所有外力沿梁轴垂直方向所作投影的代数和;弯矩M等于截面任意一侧所有外力对该截面形心的力矩的代数和。 2、勾绘弯矩图时线型处理: 除构件受“均布荷载”作用、其弯矩图是曲线外,其余均为直线。 3、弯矩图所画位置: 1)正弯矩画在杆件的下方,负弯矩画在杆件的上方。 2)使杆件下部受拉的弯矩为正,上部受拉的弯矩为负。 3)弯矩图画在杆件纤维受拉的一侧。 4、剪力图所画位置: 1)正剪力画在杆件的上方; 2)负剪力画在杆件的下方; 3)使杆件截面顺时针方向转动的剪力为正剪力; 4)使杆件截面逆时针方向转动的剪力为负剪力; 5)一般情况下,剪力与杆件所受外力的方向相反。 5、弯矩图叠加时注意事项: 1)叠加时以基线为标准,不是以其中某直线或斜线为基准; 2)叠加时要注意正负弯矩的抵消,应先计算每个控制截面的弯矩值,然后勾绘。 6、刚结点会在节点处产生负弯矩,铰结点不会在节点处产生负弯矩。在绘制弯矩图时,只要杆件端部是铰结点,则该节点处的弯矩必为零! 注意:弯矩M、剪力Q、分布荷载q之间的关系在绘制内力图上的应用: 1、设梁上作用有任意的分布荷载q,规定q向上为正、向下为负; 2、若梁上某段没有分布荷载: 1)该段的剪力图是一条平行于梁轴的直线,剪力Q为一常数; 2)该段弯矩图为一条直线,分以下3种情况: (1)当剪力Q=常数>0时,弯矩图为一下斜直线(\); (2)当剪力Q=常数<0时,弯矩图为一上斜直线(/); (3)当剪力Q=常数=0时,弯矩图为一水平直线(—); 3、若梁上某段作用有分布荷载: 1)该段的剪力图是一条斜线,分布荷载q为一常数; 2)分布荷载q为一常数,分以下3种情况: (1)当分布荷载q=常数>0时,Q图为一上斜直线(/),弯矩M图为上凸曲线(∩); (2)当分布荷载q=常数<0时,Q图为一下斜直线(\),弯矩M图为下凸曲线(∪); 4、在剪力Q=0处,弯矩M有极值。即在剪力Q=0的截面上,弯矩M有极值(极大或极小)。

阶梯轴的课程设计

《零件的工艺设计与实施》 课程设计任务书 设计题目:传动轴的机械加工工艺设计 院系: 班级: 姓名: 学号: 指导教师: 2013-4-19

目录 序言 (2) 一. 零件的分析 1.1 轴的作用 (3) 1.2 轴的工艺分析 (4) 1.3 轴的零件图 (4) 二、工艺规程设计 2.1确定毛坯的制造形式 (5) 2.2定位基准的选择 (6) 2.3拟定轴的工艺路线 (6) 2.4加工工序的设计 (9) 2.5 主要工艺的加工路线图 (10) 2.6确定切削用量及基本工时 (12) 三、机床的设备选择 3.1机床设备选择 (13) 3.2各工序所用机床、夹具、刀具、量具和辅具 (14) 四附录 机械加工工艺过程卡片 (19) 机械加工工序卡片 (20) 数控加工工序卡 (21) 设计总结 (23) 参考文献 (23)

序言 本课程设计是学生在学完机械制造工艺学课程的一个综合性和实践性很强的教学环节,通过课程设计,能综合运用所学基本理论以及在生产实习中学到的实践知识进行工艺及结构设计的基本训练,掌握机械制造过程中的加工方法、加工装备等基本知识,提高学生分析和解决实际工程问题的能力,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。 本次机械制造工艺学课程设计不仅仅能帮助我们利用已学的知识进行设计,还培养了我们自己分析,独立思考的能力。这次综合性的训练,我在以下几方面得到锻炼: (1)提高结构设计能力。通过设计零件的训练,获得根据被加工零件的加工要求,设计出高效,省力,经济合理而能保证加工质量的零件的能力。 (2)学会使用手册以及图表资料。掌握与本设计有关的各种资料的名称,出处,能够做到熟练的运用。 就我个人而言,我希望通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己发现问题,分析问题和解决问题的能力,为今后参加工作打下良好的基础。 一、零件的分析 1.1 轴的作用 轴的主要作用是支承回转零件及传递运动和动力。按照轴的承受载荷不同,轴可分为转轴、心轴和传动轴三类。工作中既承受弯矩又承受扭矩的轴成为转轴,只承受弯矩的轴称为心轴,只承受扭矩而不承受弯矩的轴称为传动轴。 1.2 轴的工艺分析 该轴主要采用45钢能承受一定的载荷与冲击。此轴为阶梯轴类零件,尺寸精度,形位精度要求均较高。两个Φ35,以及M20×1.5,M33×1.5的螺纹为主要配合面,其中有些精度均要求较高,需通过磨削得到。轴线圆跳动度要求较高,对于Φ35js5与Φ30js6的外表面需达到52HRC的强度,工过程中须进行滚压加工。

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 1.3.1、轴的设计概要 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 1.3.2、轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高

其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 1.3.3、轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 1). 轴的组成 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。 轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。 2). 结构设计步骤 设计中常采用以下的设计步骤:

_阶梯轴零件设计

轴类零件 一.轴类零件的功能:1.起支撑传动零件的作用(如齿轮.传动带) 2.传递扭矩.承受载荷 二.轴类零件的分类:光轴.阶梯轴.异形轴.空心轴.异形轴包括(十字轴.曲轴) 本人设计的是:阶梯轴 三.表面特点:外圆.内孔.圆锥.花孔.横向孔.螺纹 本人设计的零件表面特点:外圆.内孔.螺纹 四.技术要求:1)尺寸精度: 本人设计的零件尺寸精度: 2)几何精度:①直线度 ②平面度 ③圆度 ④圆柱度 ⑤面轮廓 ⑥线轮廓度 本人设计的零件需要保证:圆度.圆柱度.直线度3)位置精度:①定向:平行度. 垂直度. 斜度 ②定位:同轴度. 对称度. 位置度 ③移动:圆跳动. 全跳动. 本人设计的零件需要保证:圆跳动. 同轴度. 4)表面粗糙度: 本人设计的零件表面粗糙度需要达到: 五.轴类零件材料和毛坯: 材料 1.一般常用:45号钢. 45号钢特点:优质非合金钢.含碳量是0.45%.经过热处理它具 有良好的综合力学性能. 主要用途:用于制作要求强度.塑性.韧性都比较高的零件. (例如:轴.齿轮.轴套) 热处理:调质(淬火加高温回火)用这种方式来提高零件 的硬度.可使其硬度达到HRC40. 表面渗氮:在它的表面上附加一种金属.使其硬度提高到HRC60 本人设计的零件硬度需要达到HRC40即可.

2.中等精度要求:转速高:40Cr合金钢.轴承钢.弹簧钢. 3.高转速.重载荷:20CrMnTi 毛坯:一般情况下用圆棒料. 铸料(大型的.重载荷采用铸料) 本人设计的零件采用的是:圆棒料. 直径52 的. 六.预加工.准备工序: 1.校直:在保管或运输过程中会产生弯曲变形.在加工前必须校直. 2.切断:按所需长度切断. 目的:根据零件图的要求选择合适长度进行切断. 3.切端面.打中心孔:中心孔是最常用的定位基准面.为保证孔的准确位置需先平端面. 4.荒车:自由锻或大型铸件时采用荒车. 目的:减少毛坯外表形状误差.使后续余量均匀.便于发现毛坯缺陷.(如:气孔.沙眼.) 七.轴类零件加工时需注意的主要问题: ㈠.①.如何保证主要工作表面的尺寸精度. ②如何保证工作面与接触面的表面粗糙度. ③如何保证装配零件之间的相关表面. 八.轴类零件加工的一般工序: ①毛坯及其热处理. ②预加工. ③车削外圆. 车削外圆包括(粗车和精车) ④铣键槽等 ⑤热处理 ⑥磨削 ⑦检测 九.刀具 刀具比较:

机械制造课程设计(阶梯轴的工艺规程)

一、零件的分析 1.1 轴的作用 轴的主要作用是支承回转零件及传递运动和动力。按照轴的承受载荷不同,轴可分为转轴、心轴和传动轴三类。工作中既承受弯矩又承受扭矩的轴成为转轴,只承受弯矩的轴称为心轴,只承受扭矩而不承受弯矩的轴称为传动轴。 1.2 轴的工艺分析 该轴主要采用40Cr钢能承受一定的载荷与冲击。此轴为阶梯轴类零件,尺寸精度,形位精度要求均较高。Φ21,φ22.5,φ24,Φ22.55为主要配合面,精度均要求较高,需通过磨削得到。轴线直线度为φ0.01,两键槽有同轴度要求。在加工过程中须严格控制。 (1)该轴采用合金结构钢40Cr,中等精度,转速较高。经调质处理后具有良好的综合力学性能,具有较高的强度、较好的韧性和塑性。 (2)该轴为阶梯轴,其结构复杂程度中等,其有多个过渡台阶,根据表面粗糙度要求和生产类型,表面加工分为粗加工、半精加工和精加工。加工时应把精加工、半精加工和粗加工分开,这样经多次加工以后逐渐减少了零件的变形误差。 (3)零件毛坯采用模锻,锻造后安排正火处理。 (4)该轴的加工以车削为主,车削时应保证外圆的同轴度。 (5)在精车前安排了热处理工艺,以提高轴的疲劳强度和保证零件的内应力减少,稳定尺寸、减少零件变形。并能保证工件变形之后能在半精车时纠正。 (6)同一轴心线上各轴孔的同轴度误差会导致轴承装置时歪斜,影响轴的同轴度和轴承的使用寿命。在两端面钻中心孔进行固定装夹可以有效防止径向圆跳动、保证其同轴度。

零件图如下 轴的各表面粗糙度、公差及偏差见表一

二、工艺规程设计 2.1 确定毛坯的制造形式 阶梯轴材料为40Cr钢,要求强度较高,且工件的形状比较简单,毛坯精度低,加工余量大,因年产5000件,所以达到批量生产水平。综上考虑,采用锻件,其锻造方法为模锻,毛坯的尺寸精度要求为IT12以下。 2.2 定位基准的选择 正确的选择定位基准是设计工艺过程中的一项重要的内容,也是保证加工精度的关键,定位基准分为精基准和粗基准,以下为定位基准的选择。 粗基准的选择。 (1)粗基准的选择

施加弯矩扭矩方法总结

施加弯矩扭矩方法总结 应该说venture在 [url=https://www.doczj.com/doc/d44365181.html,/forum/thread-41502-1-1.html](原创)图文并茂加力矩[/url]中很好的介绍了力矩的施加方法,但该帖子中所介绍的主要是一种方法,而且也缺少命令流。故通过查找网上的资料,并进行验证,对此加以总结: 施加弯矩扭矩的方法其实不只三种,有很多种方法,在这里介绍其中的5种,并进行比较: 1.将矩转换成一对的力偶,直接施加在对应的节点上面。 2.在构件中心部位建立一个节点,定义为mass21单元,然后跟其他受力节点耦合,形成刚性区域,就是用cerig命令。然后直接加转矩到主节点,即中心节点上面。 3.使用mpc184单元。是在构件中心部位建立一个节点,跟其他受力节点分别形成多根刚性梁,从而形成刚性面。最后也是直接加载荷到中心节点上面,通过刚性梁来传递载荷。 4.通过rbe3命令。该方法与方法2很接近。 5.基于表面边界法:主要通过定义一个接触表面和一个目标节点接触来实现,弯矩荷载可以通过在目标节点上用“F”命令施加。 对于方法1,通过转换为集中力或均布力,比如施加扭矩,把端面节点改成柱坐标,然后等效为施加环向的节点力;而施加弯矩,可以将力矩转化为端面的剪切均布力;但这种方法比较容易出现应力集中现象; 方法2,定义局部刚性区域,施加过程venture讲的很详细,这里就不在赘述。根据他的例子,我在下面给出了一段命令流。该方法有个不足,它在端面额外的增加了一定的刚度,只能适用于小变形分析。 方法3,相对方法2来说,采用刚性梁单元,适用范围更广一些,对于大应变分析也能很好的适用。但在小应变分析下,方法2和方法3没有什么区别。 方法4,定义一个主节点,施加了分布力面,应该说跟实际比较接近一点,但端面的结果好像不是很理想,结果有点偏大,在远离端面处的位置跟实际很符合。方法5,它具体的受力形式有如下两种: 刚性表面边界(Rigid surface constraint)-认为接触面是刚性的,没有变形,和通过节点耦合命令CERIG比较相似; 分布力边界(Force-distributed constraint)-允许接触面的变形,和边界定义命令RBE3相似。 使用这种方法,需要用KEYOPT(2) = 2打开接触单元的MPC(多点接触边界)算法, 下面针对venture给出的例题,用不同的方法来实现的命令流。 方法1不介绍了,方法2: /PREP7 ET,1,95

相关主题
文本预览
相关文档 最新文档