当前位置:文档之家› 对等网络搜索方法比较与分析

对等网络搜索方法比较与分析

对等网络搜索方法比较与分析
对等网络搜索方法比较与分析

第19卷第5期湖 北 工 学 院 学 报2004年10月

Vol.19No.5 Journal of Hubei Polytechnic University Oct.2004

[收稿日期]2004-05-25

[作者简介]詹春华(1971-),男,湖北红安人,华中科技大学硕士研究生,研究方向:计算机网络,分布式计算.

[文章编号]1003-4684(2004)10 0034 03

对等网络搜索方法比较与分析

詹春华,陈晓苏

(华中科技大学计算机学院,湖北武汉430074)

[摘 要]详细介绍了现存的P2P 网络中的搜索技术,对搜索方法进行了比较和分析,指出了它们的优缺点.[关键词]对等网络;分布式搜索;搜索[中图分类号]T P 393

[文献标识码]:A

对等网络(peer to peer,P2P)技术是近年来计算机网络技术中的一个热点.P2P 可简单地定义为对等点(peer)之间通过直接交换信息从而达到共享计算机资源和服务,每一个对等点可以同时充当客户端和服务器两种角色,以该技术构建的网络称为对等网.对等网络是一个完全分布式的网络,所有对等点都是自治的,没有统一的管理,它们共同组成一个系统.对等网络在容错性、资源共享的可扩展性、自我组织、负载平衡、匿名等方面具有很大的优势.目前P2P 技术被广泛应用于文件共享、协同工作、分布式计算等领域.

对等网络中的一个基本问题就是如何找到储存有特定数据的节点,即分布式搜索问题.当节点在其自身找不到想要的对象时,就会发出请求,搜索过程涉及请求转发方法、收到请求消息的节点、消息的形式、某些节点维护的局部索引等方面.

不同网络结构可能会采用不同搜索方法.搜索方法对于对等网络系统的性能、网络流量和可扩展性等方面有很大影响.

笔者详细介绍了现存的P2P 网络中的搜索技术,对搜索方法进行了比较和分析,指出了其优缺点.

1 P 2P 系统分类

当前的P2P 系统,可以根据系统是否对拓扑结构和共享信息(文件)存放位置作出规定分为两大类:非结构化系统和高度结构化系统.

非结构化系统对网络拓扑结构的构成没有严格

的限制,节点可以自由地动态加入网络.非结构化系统主要关注的是共享数据,但对每个节点的共享数据的存放位置没有很好的规则,每个节点可以随意地决定其要共享的数据和共享数据的位置.非结构化系统不能保证每个搜索都能成功.

非结构化系统还可根据P2P 网络模型分为两类:纯P2P 系统和混合P2P 系统.在纯P2P 系统中每个节点的地位都是平等的.混合P2P 系统中,某些节点为超级节点,其余节点则为叶节点,超级节点为其相邻的叶节点的文档建立索引,并为相邻的叶节点提供搜索服务.这一类的系统有Napster [1]、Gnutella [2]

、Fr eenet

[3]

等.

高度结构化系统对拓扑结构的 叠加"被严格控制,文件(或者文件指针)存放在确定的位置上.

2 非结构化系统的搜索方法

非结构化系统的搜索方法主要有两类:一类为盲目搜索,它不依赖于任何已知信息,简单地将搜索请求传播给足够多的节点.另一类为启发式搜索,节点利用已知的信息进行搜索.已知信息可以是节点根据已有的搜索结果逐步建立的搜索知识库,也可能是准确的目标位置信息.这些信息的位置也有很大变化,在集中式网络结构中,该信息存在于一个所有节点都知道的中央目录,在分布式网络结构中,该信息保存在每个节点自身.

2.1 盲目搜索

2.1.1 基本盲目搜索方法 这种方法基于洪泛法,节点向所有相邻节点转发搜索请求,在搜索请求中

设置T TL值,以确定搜索请求在网络的生存时间.这种方法简单,并可最大限度地增加搜索结果的个数,但搜索给网络带来巨大的流量和开销;

2.1.2 改进的盲目搜索方法[4] 这种方法是洪泛法的一种改进方法,节点在其所有相邻节点中按一定比例(一般为一较小值)随机选择一部分节点,将搜索请求转发给它们.和前一种方法相比,这种方法在某种程度上降低了消息的产生数量,降低了网络流量,但依然涉及了大量的节点,并且搜索结果没有前一种方法可靠.

2.1.3 重复式深度优先搜索方法 使用连续的盲目搜索并不断增加深度.这种方法对于有深度上限的树型网络结构是很有效的,但对于其它网络结构,它甚至可能比基本的盲目搜索方法有更长的时延和产生更多的消息.

2.1.4 随机漫步法[5] 节点将K个请求消息转发给其相邻节点中随机选取的K个节点,然后这K个节点将请求消息随机地向它的一个相邻节点进行转发,依次类推.这些请求消息叫做漫步者,漫步者在搜索成功或者TT L为零时结束.这种方法最大的优点是大大减少了消息的产生数量,不管所在的网络如何,在最坏情况下,它总是产生K*TT L个消息,但其成功率和采样数目随着网络拓扑结构和所选取的随机数的变化而发生很大变化.

以上4种方法主要运用在纯P2P系统中,下面两种搜索方法则主要运用在混合P2P系统中.

2.1.5 GUESS(Gnutella UDP Extension for Scala ble Searches)[6] 这种方法建立在超级节点的概念之上.每个超级节点既和其它的超级节点相连,又和一些叶节点相连(叶节点只和超级节点连接).请求消息在超级节点间转发,每个超级节点又向其每个叶节点询问,直到找到一定数量的目标.

2.1.6 Gnutella2[7] 在Gnutella2中,当一个超级节点收到来自叶节点的搜索请求后,它将请求消息转发给其相应的叶节点和相邻的超级节点.相邻的超级节点自身处理请求消息过后,将请求消息转发给它相应的叶节点.除此之外,没有别的节点参与搜索过程.相邻超级节点之间经常交换各自的本地知识库,以减少它们之间不必要的流量.

这两种方法依赖于分层的网络结构,利用混合结构来减少洪泛法的影响.要想减少消息转发和获得足够的搜索结果,每个超级节点必须要有足够多的叶节点.

2.2 启发式搜索

2.2.1 智能BFS 这种方法是在改进的盲目式搜索方法的基础上增加了智能化的改进.每个节点维护一个(请求邻接点)元组,该元组将已获得回答的请求的类别和回答该类请求的邻接点一一对应,并将它们排序,当一个新的请求到来时,该节点根据请求的相似性判断元组中所有请求与当前请求的相似度,找出与当前请求相似的一些请求类,并记下相对应的邻接点,然后将该请求转发给那些邻接点.如果一条请求被成功命中(回答),请求沿相反的路径返回请求者,并对元组进行修改.

相比较而言,这种方法更侧重于发现目标而不是减少消息量.与改进的盲目搜索方法相比,它增加了消息量(增加了更新元组过程),但是增加了命中的数量,提高了搜索的精度.随着文档在网络节点中的分布程度增加,其消息产生量也会大幅增加.这种方法不太适应目标被删除或节点离开的情况,因为它没有根据搜索不成功来更新元组.另外,其搜索精度高度依赖与对某些节点专于存放某类文档的假设.

2.2.2 自适应概率搜索方法(APS)[8] 这种方法中,每个节点保持一个索引表,索引表的每个条目代表该节点曾经请求过的对象和其相邻节点,条目的值代表相邻节点存在该请求的可能性(概率).搜索者发布K个漫步者,中间节点在转发漫步者时,根据它自己的索引表中的概率来决定向哪个相邻节点转发.索引表根据漫步者的反馈进行更新,如果一个漫步者成功(失败),该漫步者所在相邻节点的概率就增加(减小),更新过程无论是请求成功还是失败都要进行.

APS方法的搜索是非常有效的,同时在利用带宽方面它和随机漫步法近似.它在网络拓扑结构改变时表现出很高的健壮性.

3 结构化系统的搜索方法

在结构化的系统中,系统提供从文件标识符到存放该文件的节点标识的映射服务,然后查询请求路由到该节点.目前结构化系统的搜索方法[9]都是基于DH T(Distributed H ash Table)的分布式查找和路由算法.典型的DH T算法有:Pastry[10],Tap estry[11],Cho rd[12],CAN[13]等.

DH T算法在很大程度上解决了系统查找的可扩展性问题.现有DH T算法由于采用分布式哈希函数,所以只适合于准确的查找,如果要支持目前Web上搜索引擎具有的多关键字查找的功能,还要引入新的方法.

35

第19卷第5期 詹春华等 对等网络搜索方法比较与分析

4 结束语

数据和节点查找作为对等网络中需要解决的核心问题之一,目前非结构化P2P系统的搜索方法已经在多个P2P系统中得到实际应用,其普遍存在的问题是搜索不可扩展化.结构化P2P系统的搜索方法还处于试验探索阶段.本文着重总结了非结构化P2P系统的搜索方法,分析了其优缺点,并对结构化P2P系统的搜索方法作了简单介绍.

[ 参 考 文 献 ]

[1] N apster[EB/OL].htt p:w ww.napst er.co m,2004

01 11.

[2] Gnutella[EB/OL].http:ww https://www.doczj.com/doc/d43792600.html,,2004

02 12.

[3] CL A RK E I,SAN DBER G O,WIL EY B,etal.

F reenet:A Distr ibuted A nonymo us Info rmatio n Stor

age and Retr ieval Sy stem.In P roceedings of the ICSI

W orkshop on Design Issues in A nonymit y and U nob

servability[M].N ew Yo rk:Spring er,2001.

[4] K alo geraki V,G uno pulo s D,Zeinalipour Yazti D.A

L ocal Sear ch M echanism for P eer to peer N etwo rks.

In Pr oceeding s o f the Eleventh Internatio nal Co nfer

ence on Infor mation and K now ledge M anag ement[Z],

ACM P ress,2002.

[5] Lv Q,Cao P,Co hen E,etal.Sea rch and Replication in

U nstr uctured Peer to peer N etwo rks.In ICS!02,

New Yo rk,U SA,June2002.

[6] GU ESS pro tocol specification.http:w ww.limew ire.

org lfishey e/v ienr ep/~raw,r=1,2/limecvs/co re/

guess 01.txt[S].

[7] G nutella2Specifications.http:w https://www.doczj.com/doc/d43792600.html,/

tiki index.php?page=G nutella2Specification[S]. [8] T soumakos D,Ro ussopoulo s N.Adapt ive Pro babilis

t ic Sear ch(A P S)fo r Peer to P eer Netw or ks.T echnical

Repo rt CS T R 4451,U n.of M ary land,2003.

[9] 李振武,杨 舰,白英彩.对等网络研究及其挑战.计算

机应用与软件,2004,21(2):54-55.

[10]A Row stro n and P.Dr uschel.Pastry:Scalable Dist rib

uted Object L o cation and Ro uting fo r L arg e Scale Peer

to P eer Systems.In Pr oc.o f IFI P/A CM M iddlew are,

No vember2001.

[11]Zhao B Y,K ubiato wicz J D,Jo seph A D.T apestr y:

An infrastr ucture fo r fault to ler ant wide ar ea location

and r outing.T echnical Repor t U CB/CSD 01 1141,

U C Berkeley,A pr.2001.

[12]T he Chor d Pr oject[EB/OL].http:w ww.pdos.lcs.

https://www.doczj.com/doc/d43792600.html,/chord,2004 04 12.

[13]Sylvia Ratnasamy,Paul Fr ancis,M ar k H andley,

Richard Ka rp,and Scott Shenker.A scalable content addressable netw or k.In Pr oc[R].A CM SIGCOM M

2001,A ug ust2001.

A Comparison of Peer to Peer Search Methods

ZH AN Chun hua,CH EN Xiao su

(School of Comp uter Science,H uaz hong Univ.of Science&T echnology,Wuhan430074,China)

Abstract:Peer to Peer netw or ks have become a major research topic o ver the last few y ears.Sear ch meth o d is a major part in P2P system s.In this paper,w e pr esent an overview of several search metho ds fo r peer to peer netw or ks,and analyze the advantage and disadvantage o f each search method.

Keywords:peer to peer netw or k;distr ibuted search;search

[责任编辑:张培炼] 36湖 北 工 学 院 学 报2004年第5期

浅谈神经网络分析解析

浅谈神经网络 先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可以一下子看出它的一些基本特征。可是计算机呢?它看到的只是一堆数字而已,因此要让机器从事物的特征中找到规律,其实是一个如何在数字中找规律的问题。 例:假如有一串数字,已知前六个是1、3、5、7,9,11,请问第七个是几? 你一眼能看出来,是13。对,这串数字之间有明显的数学规律,都是奇数,而且是按顺序排列的。 那么这个呢?前六个是0.14、0.57、1.29、2.29、3.57、5.14,请问第七个是几? 这个就不那么容易看出来了吧!我们把这几个数字在坐标轴上标识一下,可以看到如下图形: 用曲线连接这几个点,延着曲线的走势,可以推算出第七个数字——7。 由此可见,回归问题其实是个曲线拟合(Curve Fitting)问题。那么究竟该如何拟合?机器不

可能像你一样,凭感觉随手画一下就拟合了,它必须要通过某种算法才行。 假设有一堆按一定规律分布的样本点,下面我以拟合直线为例,说说这种算法的原理。 其实很简单,先随意画一条直线,然后不断旋转它。每转一下,就分别计算一下每个样本点和直线上对应点的距离(误差),求出所有点的误差之和。这样不断旋转,当误差之和达到最小时,停止旋转。说得再复杂点,在旋转的过程中,还要不断平移这条直线,这样不断调整,直到误差最小时为止。这种方法就是著名的梯度下降法(Gradient Descent)。为什么是梯度下降呢?在旋转的过程中,当误差越来越小时,旋转或移动的量也跟着逐渐变小,当误差小于某个很小的数,例如0.0001时,我们就可以收工(收敛, Converge)了。啰嗦一句,如果随便转,转过头了再往回转,那就不是梯度下降法。 我们知道,直线的公式是y=kx+b,k代表斜率,b代表偏移值(y轴上的截距)。也就是说,k 可以控制直线的旋转角度,b可以控制直线的移动。强调一下,梯度下降法的实质是不断的修改k、b这两个参数值,使最终的误差达到最小。 求误差时使用累加(直线点-样本点)^2,这样比直接求差距累加(直线点-样本点) 的效果要好。这种利用最小化误差的平方和来解决回归问题的方法叫最小二乘法(Least Square Method)。 问题到此使似乎就已经解决了,可是我们需要一种适应于各种曲线拟合的方法,所以还需要继续深入研究。 我们根据拟合直线不断旋转的角度(斜率)和拟合的误差画一条函数曲线,如图:

对等网络模式

一、对等网简介 “对等网”也称“工作组网”,那是因为它不像企业专业网络中那样是通过域来控制的,在对等网中没有“域”,只有“工作组”,这一点要首先清楚。正因如此,我们在后面的具体网络配置中,就没有域的配置,而需配置工作组。很显然,“工作组”的概念远没有“域”那么广,所以对等网所能随的用户数也是非常有限的。在对等网络中,计算机的数量通常不会超过20台,所以对等网络相对比较简单。在对等网络中,对等网上各台计算机的有相同的功能,无主从之分,网上任意节点计算机既可以作为网络服务器,为其它计算机提供资源;也可以作为工作站,以分享其它服务器的资源;任一台计算机均可同时兼作服务器和工作站,也可只作其中之一。同时,对等网除了共享文件之外,还可以共享打印机,对等网上的打印机可被网络上的任一节点使用,如同使用本地打印机一样方便。因为对等网不需要专门的服务器来做网络支持,也不需要其他组件来提高网络的性能,因而对等网络的价格相对要便宜很多。 对等网主要有如下特点: (1)网络用户较少,一般在20台计算机以内,适合人员少,应用网络较多的中小企业; (2)网络用户都处于同一区域中; (3)对于网络来说,网络安全不是最重要的问题。 它的主要优点有:网络成本低、网络配置和维护简单。 它的缺点也相当明显的,主要有:网络性能较低、数据保密性差、文件管理分散、计算机资源占用大。 二、对等网结构 虽然对等网结构比较简单,但根据具体的应用环境和需求,对等网也因其规模和传输介质类型的不同,其实现的方式也有多种,下面分别介绍: 1、两台机的对等网 这种对等网的组建方式比较多,在传输介质方面既可以采用双绞线,也可以使用同轴电缆,还可采用串、并行电缆。所需网络设备只需相应的网线或电缆和网卡,如果采用串、并行电缆还可省去网卡的投资,直接用串、并行电缆连接两台机即可,显然这是一种最廉价的对等网组建方式。这种方式中的“串/并行电缆”俗称“零调制解调器”,所以这种方式也称为“远程通信”领域。但这种采用串、并行电缆连接的网络的传输速率非常低,并且串、并行电缆制作比较麻烦,在网卡如此便宜的今天这种对等网连接方式比较少用。 2、三台机的对等网

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

社会网络分析法

第十三章社会网络分析法 近几十年来社会网络分析法有了迅速的发展,它已被“泛应用到了社会学、政治学、人类学和社会政策研究等多个领域。本章我们将侧重介绍社会网络分析法的基本概念、历史、主要分析技术及其应用。 第一节社会网络分析的概念 一、什么是社会网络分析 网络指的是各种关联,而社会网络(social network)即可简单地称为社会关系所构成的结构。故从这一方面来说,社会网络代表着一种结构关系,它可反映行动者之间的社会关系。构成社会网络的主要要素有: 行动者(actor):这里的行动者不但指具体的个人,还可指一个群体、公司或其他集体性的社会单位。每个行动者在网络中的位置被称为“结点(node)”。 关系纽带(relational tie):行动者之间相互的关联即称关系纽带。人们之间的关系形式是多种多样的,如亲属关系、合作关系、交换关系、对抗关系等,这些都构成了不同的关系纽带。 二人组(dyad):由两个行动者所构成的关系。这是社会网络的最简单或最基本的形式,是我们分析各种关系纽带的基础。 二人组(triad):由三个行动者所构成的关系。 子群(subgroup):指行动者之间的任何形式关系的子集。 群体(group):其关系得到测量的所有行动者的集合。 社会网络分析是对社会网络的关系结构及其属性加以分析的一套规范和方法。它又被称结构分析(structural analysis),因为它主要分析的是不同社会单位(个体、群体或社会)所构成的社会关系的结构及其属性。 从这个意义上说,社会网络分析不仅是对关系或结构加以分析的一套技术,还是一种理论方法——结构分析思想。因为在社会网络分析学者看来,社会学所研究的对象就是社会结构,而这种结构即表现为行动者之间的关系模式。社会网络分析家B·韦尔曼(Barry Wellman)指出:“网络分析探究的是深层结构——隐藏在复杂的社会系统表面之下的一定的网络模式。”例如,网络分析者特别关注特定网络中的关联模式如何通过提供不同的机会或限制,从而影响到人们的行动。 韦尔曼指出,作为一种研究社会结构的基本方法,社会网络分析具有如下基本原理: 1.关系纽带经常是不对称地相互作用着的,在内容和强度上都有所不同。 2.关系纽带间接或直接地把网络成员连接在一起;故必须在更大的网络结构背景中对其加以分析。 3.社会纽带结构产生了非随机的网络,因而形成了网络群(network clusters)、网络界限和交叉关联。

神经网络分析应用

基于动态BP神经网络的预测方法及其应用来源:中国论文下载中心 [ 08-05-05 15:35:00 ] 作者:朱海燕朱晓莲黄頔编辑:studa0714 摘要人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。 关键字神经网络,BP模型,预测 1 引言 在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。 2 BP神经网络模型 BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

网络分析法

网络分析法(Analysis Network Process Method)简介 1996年Saaty教授在层次分析法(AHP)的基础上提出了网络分析法(Analysis Network Process Method ,ANP)。ANP方法的基本理论与AHP法相同,不同的是模型结构,ANP 法中引入超矩阵的概念,采用这种方法,所有网络结构中的元素均能够对结论产生影响,最终结果不仅被备选方案的权重影响,也被备选方案所属元素集影响,可以通过反馈更好的反映现实生活。 ANP法的基本结构 与AHP法自上而下的层次结构不同,ANP法的网络结构中的连接没有固定方向,它既包括元素集之间的循环连接,也包括元素集对自身的反馈连接,这种网络结构往往能够较好的反映现实社会的问题,并且采用这种将问题细化结构、简单计算的方法远比采用简单划分结构、复杂计算过程的方法得到结果更令人满意。 网络分析法模型将系统分为控制层和网络层两个部分,控制层包括决策问题的目标和决策准则,至少应存在一个目标,但决策的准则可以没有,网络层由元素组组成,这些元素组受到控制层的支配,元素组间以及内部元素之间相互依存、相互影响,形成了网络结构。典型的ANP模型如图所示: 网络分析法的基本步骤: 1)分析问题 对决策问题进行分析,形成元素集,分析元素层次是否内部独立,是否存在依存和反馈,分析方法类同于AHP方法,可采用会议法、专家填表等形式进行。 2)构造ANP的典型结构 首先构造控制层,界定决策目标和准则,再构造网络层次,分析每一个元素集的网络结构和相互影响关系,元素集间关系确定后即可构建相应的ANP网络,基本实际问题中都是既有内部依存又有循环的ANP网络层次。 3)构造ANP的超矩阵计算权重 网络分析法中的1-9标度法

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

社会网络分析方法(总结)

社会网络分析方法 SNA分析软件 ●第一类为自由可视化SNA 软件,共有Agna 等9 种软件,位于图1 的右上角,这类软件可以自 由下载使用,成本低,但一般这类软件的一个共同缺点是缺乏相应的如在线帮助等技术支持; ●第二类为商业可视化SNA 软件,如InFlow 等3种,这类软件大都有良好的技术支持;(3)第 三类为可视化SNA 软件,如KliqFinder 等4 种,这类软件一般都是商业软件,但他们都有可以通过下载试用版的软件,来使用其中的绝大部分功能 ●第四类为自由非可视化SNA 软件,如FATCAT 等7 种,这类软件的特点是免费使用,但对SNA 的分析结果以数据表等形式输出,不具有可视化分析结果的功能; ●第五类为商业非可视化SNA 软件,只有GRADAP 一种,该软件以图表分析为主,不具有可 视化的功能。在23 种SNA 软件中,有16 种SNA 软件,即近70%的SNA 软件,具有可视化功能。 SNA分析方法 使用SNA 软件进行社会网络分析时,一般需要按准备数据、数据处理和数据分析三个步骤进行。尽管因不同的SNA 软件的具体操作不同,但这三个步骤基本是一致的。 1.准备数据,建立关系矩阵 准备数据是指将使用问卷或其他调查方法,或直接从网络教学支撑平台自带的后台数据库中所获得的用于研究的关系数据,经过整理后按照规定格式形成关系矩阵,以备数据处理时使用。这个步骤也是SNA 分析的重要的基础性工作。SNA 中共有三种关系矩阵:邻接矩(AdjacencyMatrix)、发生阵(Incidence Matrix)和隶属关系矩阵(Affiliation Matrix)。邻接矩阵为正方阵,其行和列都代表完全相同的行动者,如果邻接矩阵的值为二值矩阵,则其中的“0”表示两个行动者之间没有关系,而“1”则表示两个行动者之间存在关系。然而我们

神经网络分析法

神经网络分析法是从神经心理学和认知科学研究成果出发,应用数学方法发展起来的一种具有高度并行计算能力、自学能力和容错能力的处理方法。 神经网络技术在模式识别与分类、识别滤波、自动控制、预测等方面已展示了其非凡的优越性。神经网络是从神经心理学和认识科学研究成果出发,应用数学方法发展起来的一种并行分布模式处理系统,具有高度并行计算能力、自学能力和容错能力。神经网络的结构由一个输入层、若干个中间隐含层和一个输出层组成。神经网络分析法通过不断学习,能够从未知模式的大量的复杂数据中发现其规律。神经网络方法克服了传统分析过程的复杂性及选择适当模型函数形式的困难,它是一种自然的非线性建模过程,毋需分清存在何种非线性关系,给建模与分析带来极大的方便。 编辑本段神经网络分析法在风险评估的运用 神经网络分析方法应用于信用风险评估的优点在于其无严格的假设限制,且具有处理非线性问题的能力。它能有效解决非正态分布、非线性的信用评估问题,其结果介于0与1之间,在信用风险的衡量下,即为违约概率。神经网络法的最大缺点是其工作的随机性较强。因为要得到一个较好的神经网络结构,需要人为地去调试,非常耗费人力与时间,因此使该模型的应用受到了限制。Altman、marco和varetto(1994)在对意大利公司财务危机预测中应用了神经网络分析法;coats及fant(1993)trippi 采用神经网络分析法分别对美国公司和银行财务危机进行预测,取得较好效果。然而,要得到一个较好的神经网络结构,需要人为随机调试,需要耗费大量人力和时间,加之该方法结论没有统计理论基础,解释性不强,所以应用受到很大限制。 编辑本段神经网络分析法在财务中的运用 神经网络分析法用于企业财务状况研究时,一方面利用其映射能力,另一方面主要利用其泛化能力,即在经过一定数量的带噪声的样本的训练之后,网络可以抽取样本所隐含的特征关系,并对新情况下的数据进行内插和外推以推断其属性。 神经网络分析法对财务危机进行预测虽然神经网络的理论可追溯到上个世纪40年代,但在信用风险分析中的应用还是始于上个世纪90年代。神经网络是从神经心理学和认识科学研究成果出发,应用数学方法发展起来的一种并行分布模式处理系统,具有高度并行计算能力、自学能力和容错能力。神经网络的结构是由一个输入层、若干个中间隐含层和输出层组成。国外研究者如Altman,Marco和Varetto(1995),对意大利公司财务危机预测中应用了神经网络分析法。Coats,Pant(1993)采用神经网络分析法

Windows对等网中网络参数设置和资源共享

学生实验报告 实验课名称:计算机网络教程 实验项目名称:Windows对等网中网络参数设置和资源共享 姓名:马磊 学号:2403100220

实验一Windows对等网中网络参数设置和资源共享 一、实验目的 1.学习Windows支持的网络协议及设置参数的方法,加深了解网络协议对网络系统的重要作用。 2.学会使用Windows系统的三种最基本的网络协议,并了解各种协议的作用。 3.理解客户机与服务器的含义 4. 了解所在系统网络组件的安装和卸载方法 5.学习所在系统共享目录的设置和使用方法。 二、实验环境: Windows2000 server(xp)、对等局域网,为方便实验,每两台计算机组合成一个实验小组。 三、实验相关理论: 协议是通信双方为了实现通信所进行的约定或对话规则。双方要进行通信,必须保证使用相同的协议。目前常见的协议有:局域网通信协议——NetBEUI(NetBios)协议;NetWare网络通信协议——IPX/SPX协议;互联网通信协议TCP/IP协议。 服务是基于通信网络之上,为实现特定应用而实现的功能模块,它是面向用户的。它可以向网络的客户端提供应用服务,从而实现特定的应用。 客户端用于向特定的应用服务(服务器)发出请求、接收服务器端的处理结果。它本身并不进行复杂的功能实现处理,这些工作都交给服务器端完成。客户端所做的工作仅仅是发出请求、等待处理结果、接收处理结果。通常客户端和服务器是成对出现,往往一个客户端对应一个服务器。 对等网络是指网络上每个计算机都把其它计算机看作是平等的或者是对等的,没有特定的计算机作为服务器。在对等网络中的每一个计算机,当要使用网络中的某种资源时它就是客户机,当它为网络的其它用户提供某种资源时,就成为了服务器,所以在对等网络中的计算机既可作为服务器也可作为客户机。在对等网络中可以通过共享的方法很方便地使用网络资源。 四、实验内容 1.安装Windows支持的基本网络协议。 2.安装客户端网络软件。 3.安装网络服务组件。 4.查看当前计算机的名称。 5.学习所在系统共享目录的设置和使用方法。

网络分析法

什么是网络分析法 网络分析法(ANP)是美国匹兹堡大学的T.L.Saaty教授于1996年提出的一种适应非独立的递阶层次结构的决策方法,它是在层次分析法(Analytic Hierarchy Process,简称AHP)的基础上发展而形成的一种新的实用决策方法。 AHP作为一种决策过程,它提供了一种表示决策因素测度的基本方法。这种方法采用相对标度的形式,并充分利用了人的经验和判断力。在递阶层次结构下,它根据所规定的相对标度—比例标度,依靠决策者的判断,对同一层次有关元素的相对重要性进行两两比较,并按层次从上到下合成方案对于决策目标的测度。这种递阶层次结构虽然给处理系统问题带来了方便,同时也限制了它在复杂决策问题中的应用。在许多实际问题中,各层次内部元素往往是依赖的C低层元素对高层元素亦有支配作用,即存在反馈。此时系统的结构更类似于网络结构。网络分析法正是适应这种需要,由AHP延伸发展得到的系统决策方法。 ANP首先将系统元素划分为两大部分:第一部分称为控制因素层,包括问题目标及决策准则。所有的决策准则均被认为是彼此独立的,且只受目标元素支配。控制因素中可以没有决策准则,但至少有一个目标。控制层中每个准则的权重均可用AHP方法获得。第二部分为网络层,它是由所有受控制层支配的元素组组成的C其内部是互相影响的网络结构,它是由所有受控制层支配的元素组成的,元素之间互相依存、互相支配,元素和层次间内部不独立,递阶层次结构中的每个准则支配的不是一个简单的内部独立的元素,而是一个互相依存,反馈的网络结构。控制层和网络层组成为典型ANP层次结构,见下图。

[编辑] 网络分析法的特点[2] AHP通过分析影响目标的一系列因素,比较其相对重要性,最后选出得分最高的方案即为最优方案。Harker和Vargas曾经这样评价AHP:“AHP是一套复杂的评价系统,当我们进行多目标、多准则以及多评委的决策时,面对众多的可选方案,AHP能够用来解决各种量化和非量化、理性与非理性的决策问题。”AHP简单易用,其缜密的理论基础决定了它能解决各种实际问题。AHP模型使各决策层之间相互联系,并能推出跨层次之间的相互关系。模型的顶层为企业的总目标,然后逐层分解成各项具体的准则、子准则等,直到管理者能够量化各子准则的相对权重为止。 层次分析法能够为决策者解决各种复杂系统问题,但它也存在一些缺憾。例如,AHP就未能考虑到不同决策层或同一层次之间的相互影响,AHP模型只是强调各决策层之间的单向层次关系,即下一层对上一层的影响。但在实际工作中对总目标层进行逐层分解时,时常会遇到各因素交叉作用的情况。如一个项目的不同研究阶段对各评委的权重是不同的;同样,各评委在项目研究的不同阶段对各评价指标的打分也会发生变化。这时,AHP模型就显得有些无能为力了。

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

对等网络(P2P)总结整理解析

对等网络(P2P 一、概述 (一定义 对等网络(P2P网络是分布式系统和计算机网络相结合的产物,在应用领域和学术界获得了广泛的重视和成功,被称为“改变Internet的新一代网络技术”。 对等网络(P2P:Peer to Peer。peer指网络结点在: 1行为上是自由的—任意加入、退出,不受其它结点限制,匿名; 2功能上是平等的—不管实际能力的差异; 3连接上是互联的—直接/间接,任两结点可建立逻辑链接,对应物理网上的一条IP路径。 (二P2P网络的优势 1、充分利用网络带宽 P2P不通过服务器进行信息交换,无服务器瓶颈,无单点失效,充分利用网络带宽,如BT下载多个文件,可接近实际最大带宽,HTTP及FTP很少有这样的效果 2、提高网络工作效率 结构化P2P有严格拓扑结构,基于DHT,将网络结点、数据对象高效均匀地映射到覆盖网中,路由效率高 3、开发了每个网络结点的潜力 结点资源是指计算能力及存储容量,个人计算机并非永久联网,是临时性的动态结点,称为“网络边缘结点”。P2P使内容“位于中心”转变为“位于边缘”,计算模式由“服务器集中计算”转变为“分布式协同计算”。

4、具有高可扩展性(scalability 当网络结点总数增加时,可进行可扩展性衡量。P2P网络中,结点间分摊通信开销,无需增加设备,路由跳数增量小。 5、良好的容错性 主要体现在:冗余方法、周期性检测、结点自适应状态维护。 二、第一代混合式P2P网络 (一主要代表 混合式P2P网络,它是C/S和P2P两种模式的混合;有两个主要代表: 1、Napster——P2P网络的先驱 2、BitTorrent——分片优化的新一代混合式P2P网络 (二第一代P2P网络的特点 1、拓扑结构 1混合式(C/S+P2P 2星型拓扑结构,以服务器为核心 2、查询与路由 1用户向服务器发出查询请求,服务器返回文件索引 2用户根据索引与其它用户进行数据传输 3路由跳数为O(1,即常数跳 3、容错性:取决于服务器的故障概率(实际网络中,由于成本原因,可用性较低。

智能控制导论论文(人工神经网络)

智 能 控 制 导 论 论 文 ●系别: ●班级: ●学号: ●姓名: ●日期:

人工神经网络 关键词:人工神经网络、产生、发展、应用 内容摘要: 人工神经网络是二十世纪科学技术所取得的重大成果之一,是人类认识自然道路上的又一座里程碑。90年代以来,国际学术界掀起了研究人工神经网络的热潮,但是探讨其哲学思想方面的研究相对薄弱。我们知道,任何一门影响巨大、意义深远的科学技术,其发展过程必然揭示了科学技术发展的基本规律以及影响其发展的主要因素。 人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。人工神经网络是一门发展十分迅速的交叉学科,它是由大量处理单元组成的非线性大规模自适应动力系统,具有学习能力、记忆能力、计算能力以及智能处理能力,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。同时,人工神经网络具有非线性、非局域性、非定常性、非凸性等特点,因此在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、智能传感技术与机器人、生物医学工程等方面都有了长足的发展。 人工神经网络产生的背景 自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。 发展历史 人工神经网络的研究始于20世纪40年代,至今已有60多年的历史,其发展很不平衡,既有其繁花似锦、兴旺昌盛的高速发展期,又有其困难重重、步履维艰的低潮期,甚至曾经有人对此理论持悲观态度,认为该理论“已走入死胡同,无发展的余地”。

模糊控制与神经网络

BP神经网络 BP (Back Propagation)神经网络是一种神经网络学习算法,全称基于误差反向传播算法的人工神经网络。 如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,够成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。 在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。 BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。 神经网络 神经网络是: 思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面: (1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。 (2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。 (3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。 (4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。 纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。 【人工神经网络的工作原理】 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

六个主要的社会网络分析软件的比较UCINET简介

六个主要的社会网络分析软件的比较UCINET简介 UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一起的还有Pajek、Mage和NetDraw 等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage 和KrackPlot等软件作图。UCINET包含大量包括探测凝聚子群(cliques, clans, plexes)和区域(components, cores)、中心性分析(centrality)、个人网络分析和结构洞分析在内的网络分析程序。UCINET还包含为数众多的基于过程的分析程序,如聚类分析、多维标度、二模标度(奇异值分解、因子分析和对应分析)、角色和地位分析(结构、角色和正则对等性)和拟合中心-边缘模型。此外,UCINET 提供了从简单统计到拟合p1模型在内的多种统计程序。 Pajek简介 Pajek 是一个特别为处理大数据集而设计的网络分析和可视化程序。Pajek可以同时处理多个网络,也可以处理二模网络和时间事件网络(时间事件网络包括了某一网络随时间的流逝而发生的网络的发展或进化)。Pajek提供了纵向网络分析的工具。数据文件中可以包含指示行动者在某一观察时刻的网络位置的时间标志,因而可以生成一系列交叉网络,可以对这些网络进行分析并考察网络的演化。不过这些分析是非统计性的;如果要对网络演化进行统计分析,需要使用StOCNET 软件的SIENA模块。Pajek可以分析多于一百万个节点的超大型网络。Pajek提供了多种数据输入方式,例如,可以从网络文件(扩展名NET)中引入ASCII格式的网络数据。网络文件中包含节点列表和弧/边(arcs/edges)列表,只需指定存在的联系即可,从而高效率地输入大型网络数据。图形功能是Pajek的强项,可以方便地调整图形以及指定图形所代表的含义。由于大型网络难于在一个视图中显示,因此Pajek会区分不同的网络亚结构分别予以可视化。每种数据类型在Pajek中都有自己的描述方法。Pajek提供的基于过程的分析方法包括探测结构平衡和聚集性(clusterability),分层分解和团块模型(结构、正则对等性)等。Pajek只包含少数基本的统计程序。 NetMiner 简介 NetMiner 是一个把社会网络分析和可视化探索技术结合在一起的软件工具。它允许使用者以可视化和交互的方式探查网络数据,以找出网络潜在的模式和结构。NetMiner采用了一种为把分析和可视化结合在一起而优化了的网络数据类型,包括三种类型的变量:邻接矩阵(称作层)、联系变量和行动者属性数据。与Pajek和NetDraw相似,NetMiner也具有高级的图形特性,尤其是几乎所有的结果都是以文本和图形两种方式呈递的。NetMiner提供的网络描述方法和基于过程的分析方法也较为丰富,统计方面则支持一些标准的统计过程:描述性统计、ANOVA、相关和回归。 STRUCTURE 简介 STRUCTURE 是一个命令驱动的DOS程序,需要在输入文件中包含数据管理和网络分析的命令。STRUCTURE支持五种网络分析类型中的网络模型:自主性(结构洞分析)、凝聚性(识别派系)、扩散性、对等性(结构或角色对等性分析和团块模型分析)和权力(网络中心与均质分析)。STRUCTURE提供的大多数分析功能是独具的,在其他分析软件中找不到。MultiNet简介 MultiNet 是一个适于分析大型和稀疏网络数据的程序。由于MultiNet是为大型网络的分析而专门设计的,因而像Pajek那样,数据输入也使用节点和联系列表,而非邻接矩阵。对于分析程序产生的几乎所有输出结果都可以以图形化方式展现。MultiNet可以计算degree, betweenness, closeness and components statistic,以及这些统计量的频数分布。通过MultiNet,可以使用几种本征空间(eigenspace)的方法来分析网络的结构。MultiNet包含四种统计技术:交叉表和卡方检验,ANOVA,相关和p*指数随机图模型。

相关主题
文本预览
相关文档 最新文档