当前位置:文档之家› 无机纳米发光材料的研究进展

无机纳米发光材料的研究进展

无机纳米发光材料的研究进展
无机纳米发光材料的研究进展

无机纳米发光材料的研究进展

摘要:本文综述了无机纳米发光材料的研究进展,重点从材料的制备、性质进行论述,同时对材料应用进行举例,并对其发展趋势进行了展望。

关键词:纳米;发光材料;无机

纳米材料是指晶粒尺寸为纳米级的超细材料。其尺寸一般为1~100nm。是类介于原子簇和宏观物体之间的介观物质,其表面原子数与体系总原子数之比随粒径尺寸的减小而急剧增大。显示出明显的体积效应,表面效应和量子尺寸效应,因而具有独特的物理化学性质。因此纳米微粒在磁性材料、电子材料、光学材料、高致密度材料的烧结、催化、传感、陶瓷增韧等方面具有广阔的应用前景。

纳米发光材料是在纳米级范围内的发光材料,无机纳米发光材料主要包括纳米半导体发光材料以及稀土离子和过渡金属离子掺杂的纳米氧化物、硫化物、复合氧化物和各种无机盐发光材料。近年来有关掺杂离子纳米发光材料的研究逐渐深入,为纳米科学的研究开辟的新的领域,引起了广泛的重视。

1 无机纳米发光材料的制备

1.1 气相法

气相法制备无机纳米发光材料,是直接利用气体或其他手段将物质变为气体,使之在气体状态下发生反应,最后经过冷却凝聚长大形成纳米微粒。一般来说,用气相法反应制备的颗粒具有可控的尺寸和球形状态。气相法中又分有化学气相反应法、化学气相凝聚法、化学气相沉淀法等。Siever等人利用CO 辅助气溶液制备了YO∶Eu磷光体。Konrad等人用改进的化学气相沉淀法,首次报导了纳米晶YO∶Eu弱聚体的制备,其平均尺寸为10nm。

1.2 液相法

1.2.1 溶胶-凝胶法(sol-gel)

溶胶-凝胶技术是指金属有机或无机化合物经过溶液、溶胶、凝胶而固化,在经过热处理而形成氧化物或其他化合物固体的方法。改方法在制备材料初期就进行有效地控制,是颗粒均匀性可达到亚微米级、纳米级甚至是超分子级水平。以醇盐溶胶-凝胶法为例,包含2个过程:醇盐的水解和聚合。目前采用溶胶-凝胶法制备材料的具体技术或工艺过程很多,但按照机制划分可分为传统胶体型、无机聚合物型和络合物型。

此外,目前溶胶-凝胶法德起始原料也是十分灵活多变,许多无机盐也可以用作先驱物。故溶胶-凝胶法师比较常用的用来合成纳米材料的方法。例如采用溶胶-凝胶法制备ZnO:LiSiO 荧光体;纳米晶发光粉YSiO∶Eu可以用Y(NO)、Eu(NO) 和Si(OCH) 作起始物,通过溶胶-凝胶方法制备。

1.2.2 沉淀法

沉淀法即是在包含一种或者多种离子的可溶性盐溶液中,加入沉淀剂后,于一定温度下使溶液发生水解,形成不溶性的氢氧化物,水合氧化物或盐类从溶液中析出,将溶剂和溶液中原有的阴离子洗去,经热解或脱水即可获得所需的氧化物。制备发光材料的沉淀法包括直接沉淀法,共沉淀法和均匀沉淀法。直接沉淀

法是仅用沉淀操作从溶液中制备氢氧化物和氧化物的方法;共沉淀法是将沉淀剂加入到混合金属盐溶液中,促使各组分均匀混合沉淀,然后加热分解以获得产物。

例如用共沉淀法合成YO:Eu 和GdO:Eu 纳米晶,首先用反应物配成混合液,如尿素溶液稀释至一定的体积在用氨水调节pH值,反应后冰水淬冷,并把产物离心分离沉降,水洗数次,干燥。再在不同温度下灼烧产品。在900℃煅烧产品约30min即可得到YO:Eu 和GdO:Eu 纳米发光材料。此外沉淀剂的加入可能会使局部沉淀浓度过高,因此可以采用能逐渐释放沉淀剂NH4OH尿素的均匀沉淀法。

1.2.3 水热法

水热法也是近几年来研究无机发光材料中发明的又一新型的制备方法,水热法主要是在高压釜中制造一定的温度和压力,通过将反应体系加热至临界温(或接近临界温度),使物质在溶液中进行化学反应的一种无机制备方法。通过水热法可以制备出纯度高、晶型好,单分散以及大小可控的纳米颗粒。目前利用水热法已经合成了Tb 、SrAlO:Eu ,Dy 、NaGdF:Eu 等发光材料。

此外,在水热法的基础上,以有机溶剂代替水,采用溶剂热反应来制备纳米材料是水热法的一项重大改进,可用于一些非水反应体系的纳米材料制备,从而扩大了水热技术的适用范围。

1.2.4 喷雾热解法

对于发光体来说,最理想的颗粒形状是球形。球形的发光颗粒对于高亮度和高清晰度显示是十分必要的,同时球形的发光材料还可以获得较高的堆积密度,从而减少发光体的光散射。研究表明,喷雾热解法是制备球形纳米发光粉最有效最普遍的方法。

此方法是将前躯体溶液的雾流干燥、沉淀,然后再管式反应炉中分解以制备颗粒。由于喷雾热解法在制备各种复合组成,特别是组分精确的分体材料上有其突出的优点,且用该法制备的材料有非聚集、粉末具有球形形貌且粒径分布均匀,比表面积大,颗粒之间化学成分相同,分解温度低等特点,因而用该法制备发光材料具有特殊的优势。

1.3 燃烧法

用传统的方法制得的产品极大地影响制灯后荧光粉的二次特性,而燃烧法是在此不足的基础上产生的一种新方法。用这一方法制得的荧光粉能有效地吸收蓝紫光,制得的产品具有明显优势。

在这种方法中,金属的硝酸盐与有机染料在水溶液中混合,通过加热使水分蒸发进而发生爆炸性反应。反应产生的热量促进了目标产物的形成,而且由于反应速度很快而避免了颗粒的生长,这样便可以得到纳米级的产物。

实践证明,用燃烧法合成荧光粉,均能获得细小的颗粒,但其表面积很大,真密度偏小,故多倾向于卡巴胺或尿素等T (绝热火焰温度)较高的燃料,以改善发光强度。

2.描述半导体纳米材料的光学特性可以从以下两个方面进行:

1)吸光系数与吸收光谱

由实验结果可知,半导体纳米为例即使小到直径2nm左右,微观尺度结构不变,不论微粒大小,其每个为例具有相同的吸光率,其摩尔吸光系数大致在的程度。这个值很大。根据纳米微粒特性可知,微粒粒径越小,能带宽度越大,即表现出了所谓的量子尺寸效应。随着纳米微粒、分子团、分子和原子的构成原子

数减少,能带宽度一10 L/(mol?cm) 次扩大,逐渐形成了只吸收短波长的物质。一般纳米微粒的原子数在10~10 个,粒径为2~10nm。在该范围内,吸光度随其粒径变小而变窄。发光材料受到材料表面的影响,其表面状态非常敏感。直径5nm时40%的原子有表面,当巧妙地覆盖住这些原子的表面时,就可以得到反映能带宽度波长的高效率的发光。因此,Ⅱ-Ⅵ半导体材料经紫外线照射后因粒径变化可以发出从蓝色到红色的光。

2)发光辉度

发光辉度的定义式为:B=ηc/τ(η为发光效率;τ为发光寿命;c为纳米微粒的浓度)。表示单位体积在单位时间内所放出的光子数。可以看出,辉度与发光效率和浓度成正比,与发光寿命成反比。因此发光寿命越短,越加快了发光、吸光循环,则辉度增大。发光寿命长时,即使用强烈的激发光照射,激发状态的分布增加仅发生饱和现象,发光强度也不会增大。

因为Ⅱ-Ⅵ半导体纳米微粒在数纳米范围内,所发生的尺寸效应可实现浓度分散,因此在可见光领域内可以期望得到非常高的辉度。美国科学家Bhargava 用掺杂了Mn 的Zns纳米微粒,在保持着Mn 发光效率的同时发光寿命变为10,其辉度也在10 左右。这一现象叫做量子效果。Ⅱ-Ⅵ半导体纳米微粒显示出比其他材料更高的发光辉度,特别是通过掺杂可得到更好的光学特性。

3.无机纳米发光材料前景展望

随着纳米材料制备技术的不断发展和完善,人们已经用很多不同的物理和化学方法制备出不同尺寸、不同结构和不同组成的纳米发光材料,并对其发光特性进行了较为全面的研究。首先纳米材料具有的大的比表面积会影响到激活剂和缺陷在粒子的表面、界面和次级相间的分布,了解纳米材料中的这一分布情况对理解其块体材料的性质很有帮助。表面缺陷是影响发光效率的主要因素,因此通过表面修饰对纳米发光材料发光性质影响的研究,可以使人们掌握控制表面缺陷的方法,进而为发现新一代发光材料提供指导。

其次,纳米发光材料独特的性质具有广阔的应用前景,纳米发光材料如果能够实用化将带来发光材料领域的巨大变革,并带动相关纳米电子器件的发展。目前纳米发光材料发光性质发生变化的机理任然众说纷纭,没有定论,很值得做进一步深入研究。同时,如何在低温下制备出小颗粒、高晶度、分散均匀且发光强度强的纳米晶体仍是研究工作者努力的方向。最后,为使纳米发光材料获得真正的应用,如何把这些纳米颗粒组装成有序的薄膜也是广大纳米科学家面临的新挑战。

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

稀土无机发光材料:电子结构、光学性能和生物应用

中国科学: 化学 2014年第44卷第2期: 168 ~ 179 SCIENTIA SINICA Chimica https://www.doczj.com/doc/d43069455.html, https://www.doczj.com/doc/d43069455.html, 《中国科学》杂志社SCIENCE CHINA PRESS 专题论述 稀土无机发光材料: 电子结构、光学性能和生物应用 郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元* 中国科学院光电材料化学与物理重点实验室; 中国科学院福建物质结构研究所, 福州 350002 *通讯作者, E-mail: xchen@https://www.doczj.com/doc/d43069455.html, 收稿日期: 2013-10-08; 接受日期: 2013-10-31; 网络版发表日期: 2014-01-09 doi: 10.1360/N032013-00041 摘要目前, 稀土无机发光材料在激光、光通讯、平板显示、荧光生物标记和纳米光电子器件等领域具有广泛的应用前景. 稀土离子(从Ce到Yb)是一类性能优异的结构和光谱探针,其在不同介质材料中的光学性能主要取决于其局域态的电子结构和激发态动力学. 对稀土发光材料开展深入的光学和光电子学基础研究有助于发现新颖的光学性能或开辟新的应用领域. 依托研制的低温高分辨激光光谱和上转换量子产率等仪器, 本课题组致力于稀土无机发光材料电子结构与性能研究, 近年来在发光材料的控制合成、电子结构、光学性能及生物应用等方面取得了系列重要结果. 这些研究有望加快实现稀土无机发光材料在生物应用的突破, 实现稀土资源的高值利用. 关键词 稀土发光 电子结构 激发态动力学上转换 荧光生物标记 1 引言 稀土作为我国的战略资源, 实现稀土高值利用和产业链延伸一直是我国稀土产业长期发展的战略目标. 稀土离子是一类性能优异的结构和光谱探针, 稀土离子在不同介质材料中的光学性能主要取决于其局域态的电子结构和激发态动力学[1~3], 对稀土发光材料开展深入的光学和光电子学基础研究有助于发现新颖的光学性能或开辟新的应用领域. 依托研制的低温高分辨激光光谱和上转换量子产率等仪器, 本课题组致力于稀土无机发光材料电子结构与性能的研究, 近年来在发光材料的控制合成、电子结构、光学性能及生物应用等方面取得了系列重要结果. 这些研究有望加快实现稀土无机发光材料在生物应用的突破, 实现稀土资源的高值利用. 本文综述了本课题组近年来在稀土发光材料方面的研究工作, 包括发光材料的先进测试平台研制、发光材料的电子结构、激发态动力学与光学性能研究及其生物应用探索. 2 发光材料的电子结构 如何提高发光材料的量子产率和光/热稳定性等光学性能是材料实用化的关键. 稀土离子在不同介质材料中的光学性能主要取决于其局域态的电子结构和激发态动力学. 2.1 低温高分辨激光光谱测试系统的研制 为揭示发光材料的电子结构和激发态动力学, 本课题组研制了低温高分辨激光光谱测试系统. 与光电子材料的研发相比, 我国在高端光谱学测试仪器研制方面相对滞后. 商品化、一体化的荧光光谱仪分辨率 配位化学与功能材料专刊

稀土纳米发光材料

《电子信息材料》报告 姓名崔立莹 学号41230179 班级材料1206

稀土纳米发光材料 崔立莹 (北京科技大学材料1206 41230179) 摘要:随着科技的迅猛发展,稀土纳米材料在近几年得到广泛应用。稀土纳米发光材料作为一种重要的稀土纳米材料,与体相发光材料有着明显的区别。本文着重介绍了稀土纳米发光材料的定义、制备、应用以及研究前景。 关键词:纳米;稀土;材料 1、稀土纳米发光材料的定义 纳米材料作为新兴材料种类,近些年来研究进展颇丰。纳米发光材料是指颗粒尺寸在1~100 nm的发光材料,它包括纯的和掺杂离子的纳米半导体复合发光材料和具有分立发光中心的掺杂稀土或过渡金属离子的纳米发光材料。 所谓稀土纳米材料,即稀土掺杂无机纳米材料的优良光学性能(如荧光寿命长、光谱线宽窄、可调谐荧光发射波长等)及其在荧光生物标记等方面的潜在应用,已经引起了国内外学者的普遍关注,有望成为替代分子探针的新一代荧光生物标记材料[1]。 稀土发光材料的种类繁多,可以按照不同的方式进行分类,若按发光材料中稀土的作用分类,可以分为两类:1.稀土离子作为激活剂在基质中作为发光中心而掺入的离子称为激活剂。以稀土离子作为激活剂的发光体是稀土发光材料中最为重要的一类。2.稀土化合物作为基质材料常见的可作为攮质材料的稀七化合物有Y203、La203和Gd203等。 2、稀土纳米发光材料的制备[2] 为了制备具有良好发光性能的发光粉,人们尝试了各种方法。而随着交叉学科的发展和新技术的出现,发光材料的合成面临着不可多得的机遇和挑战,各种制备发光粉的方法更是层出不穷,各以其独特优点为发光材料的发展发挥着巨大

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

无机纳米材料简介

无机纳米材料简介 无机纳米材料是纳米材料从物质的类别来划分出的一种纳米材料。指其组成的主体是无机物质。 无机纳米材料主要包括:纳米氧化物、纳米复合氧化物、纳米金属及合金,以及其他无机纳米材料。 一、纳米氧化物: 纳米氧化物指的是粒径达到纳米级的氧化物,比如纳米二氧化钛 (T25),纳米二氧化硅(SP30),纳米氧化锌(JE01),纳米氧化铝(L30),纳米氧化锆,纳米氧化铈,纳米氧化铁等等。 纳米氧化物的基本技术指标包含:粒径,含量,比表面积,pH, 以及一些金属成分的含量。 纳米氧化物在催化领域的应用 纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2(如VK-SP30)、CaCO3、TiO2(如VK-T25)、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。国际现在企业主要有杜邦,德固赛,国内的有杭州万景等企业生产纳米氧化物系列的产品。 2.1 石油化工催化领域 由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

稀土掺杂纳米发光材料的研究发展

稀土掺杂纳米发光材料的研究发展 姓名:王林旭学号:5400110349 班级:经济107 摘要:本文先介绍了关于稀土纳米发光材料的有关基本概念及基本用途,让读者有个基本认识。文章重点对稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面做个简单的介绍 关键词:稀土发光材料稀土磷酸盐纳米发光材料 1.引言:短短半个学期的选修课学习,自己对纳米材料有了一定的了解,这篇论文的选题是“稀土掺杂纳米发光材料的研究发展”,查阅跟搜索了相关资料后,主要从稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面给以论述。 首先,先来了解几个基本概念。 1.1什么是稀土元素? 稀土元素包括钪、钇和57到71的镧系元素共17种元素。它们在自然界中共同存在,性质非常相似。由于这些元素发现的比较晚又难以分离出高纯状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。 稀土元素的电子组态是[Xe]4fDI15s25 ̄sao~6s2。镧系元素离子的吸收光谱或激发光谱,来源于组态内的电子跃迁,即f—f跃迁;组态间的能级跃迁,即4f一5d,4f一6s,4f一6p等跃迁:还有电荷迁移跃迁,即配体离子的电子向离子的跃迁,从高能级向低能级的跃迁就产生相应的发射光谱。由于稀土的这些特性,所以它可以做发光材料。发光材料包括半导体发光材料和稀土化合物发光材料两大类…1。稀土荧光材料以应用铕、铽、钆、钇等高纯中稀土为主要特色2。纳米稀土发光材料是指基质粒子尺寸在1—1oo哪的发光材料l3。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学特性,从而影响其中掺杂的激活离子的发光和动力学性质,如光吸收、激发态寿命,能量传递,发光量子效应和浓度猝灭等性质。在各种类型激发作用下能产生光发射的材料。 1.2什么是发光材料? 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂 1.3什么是稀土发光材料? 稀土发光是由稀土4f电子在不同能级间跃出而产生的,因激发方式不同,发光可区分为光致发光(photoluminescence)、阴极射线发光(cathodluminescence)、电致发光(electroluminescence)、放射性发光(radiation luminescence)、X射线发光(X-ray luminescence)、摩擦发光(triboluminescence)、化学发光(chemiluminescence)和生物发光(bioluminescence)等。稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外光的光谱,特别在可见光区有很强的发射能力等优点。稀土发光材料已广泛应用在显示显像、新光源、X射线增光屏等各个方面。 1.4什么是纳米材料? 纳米材料是指晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度和硬度增大、低密度、低弹性模量、高电阻、低热导

稀土发光材料的研究进展

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

量子点发光材料综述

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

光至发光材料的研究进展(精)

光至发光材料的研究进展 关键字光至发光材料荧光反光 Keyword photoluminescence material fluorescence listen 摘要;综述了光致发光材料的大致研究进展,阐述了光致发光材料的发光原理,常见的发光材料,并对未来光致发光材料发展趋势作了展望。 Abstract It is summarize the investigation of photoluminescence material. And tell us about the theory of photoluminescence material. And familiar photoluminescence material. Future development aspects of researches and applications about the material are proposed 前言 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。 光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。 1发展历史 光致发光材料的研究历史非常悠久。最早可追溯到1866 年法国人Sidot 制备的ZnS :Cu 上,它是第一个具有实际应用意义的长余辉蓄光材料。20 世纪初,Lenard 制备出了ZnS :M (M = Cu ,Ag ,Bi ,Mg 等) 发光材料,并研究了荧光衰减曲线,提出了“中心论”。但该类发光材料由于发光亮度不高,寿命短等缺点,人们往其中引入了放射性物质,虽然能解决以上问题,但又会危害人体安全、损害环境,因而人们将目光又投向了其他基质的发光材料领域。1934 年,Haberlandt 在研究天然CaF2 结构时发现,痕量Eu2+ 占据矿石中Ca2+ 的位置时,引起矿石发出蓝光。1964 年, Y2O3 : Eu , Y2O2S : Eu3+发光材料的研制发明,使彩色电视机得到迅速的推广。20 世纪80年代,石春山等对复合氟化物中的光谱特性进行研究,得出Eu2+ 的f - f 跃迁出现的若干判据,推进了我国发光材料的发展。20 世纪80 年代以后,一些制备发光材料的新工艺及一系列超长余辉发光材料的研究成功,为发光材料的应用开辟了广阔的领域。 2发光机理 2.1.反光与发光的区别 在生活中人眼睛能看看到的发光的材料分成两大类。1. 反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。所以反光材料和发光材料有很大的不同,发光机理不一样:光致发光材料是向外发光,而不是反射光。

无机纳米材料在聚合物改性中的作用

无机纳米材料在聚合物改性中的作用摘要:通过添加填料、组分对聚合物改性,能使聚合物的的刚性、耐热性、耐候行及化学特性得到一定程度的改善。随着高新技术的飞速发展,对材料的要求越来越高,特别是对聚合物材料的强度、韧性、耐热性等方面的要求更是愈来愈苛刻,愈来愈趋于综合化,但是大量研究及生产实践证实,在相同的填充条件下,超细填充体系的力学性能高于普通填料填充体系,即超细体系的填充改性效果更好,改性效率更高,因此超细填料获得了广泛的应用。纳米粒子的出现是制造技术的一大突破它的出现对高性能陶瓷、合金、塑料等复合材料的研制和开发产生了重大影响。由于纳米材料的纳米尺寸效应、大的比表面积、表面原子处于高度活化状态、与聚合物强的界面相互作用产生声、光、电、磁等性质,将其应用于聚合物的改性,开发新型的功能复合材料具有十分重要的意义。 1 纳米SiO2: 1.1 纳束SiO2/UP 玻璃钢虽具有质量轻、强度高、耐腐蚀等特点,但其耐磨性、硬度、耐热性、耐水性等性能仍需进一步改善。因此,人们开始研究利用纳米材料卓越的特殊功能来改善玻璃钢材料的性能缺陷。 未明等通过在UP中加入纳米SiO2,得到了耐磨性、硬度、强度、耐热、耐水等性能得到大幅度提高的玻璃钢。通过实验发现:当向UP中添加3~5的纳米SiO2后,其耐磨性可提高1 ~2倍;奠氏硬度从原来的2级左右提高到2.8 ~2.9级,接近天然大理石的硬度;拉伸强度从133 k g/c m 增加至277 k g/c m ,即大大增加了材料的韧性;耐水性能也明显改善。此外研究者还对纳米SiO2改性UP的改性机理进行了探讨,认为:( 1 ) 由于纳米SiO2颗粒尺寸小、比表面积大、表面原子数多、表面能高、表面严重配位不足,因此表面活性极强,易于与树脂中的氧起键合作用,提高分子在高分子键的空隙中,而其又具有较高的流动性,故使添加纳米SiO2的树脂材料强度、韧性、延展性均大大提高,即表现在拉仲强度、抗冲击性能等方面的提高。( 2 ) 由于纳米SiO2其分子状态是三维链状态的羟基,与树脂中氧键结合或镶嵌在树脂键中,可增强树脂硬度。由于纳米SiO2的小尺寸效应,使材料表面光洁度大大改善,摩擦系数减少,加入纳米颗粒的高强性,因此使材料耐磨性大大提高,且表面光洁度好。( 3 ) 由于纳米SiO2颗粒小,在高温下仍具有高强度、高韧、稳定性好等特点,可使材料的表面细洁度增加,使材料更加致密,同时也增加材料的耐水性和热稳定性。 葛曷一等通过比较不同粒径粒料对不饱和树脂改性作用的差异,得出微米级粒料对不饱和树脂无增韧作用;纳米级粒料对UP具有一定的增韧教果,粒径相同,比表面积越大的粒料对UP的增韧作用越大,作者通过研究发现,加入3%的比表面积较大的纳米SiO2可使UP的冲击韧性提高60%,由此说明,比表面积大的纳米材料表面缺陷少,非配对原子多,表面活性高,与UP发生物理或化学结合的可能性大,增强粒子与UP的界面结合.因而可承担一定的载荷,吸收大量冲击能,具有增强增韧的功效。从纳米SiO2加入量超过3%后,UP冲击韧性开始下降可以推断复合材料的韧性受超微细粉粒料的加入量影响可能与UP基体层厚度L和UP/粒料的L1有关。当2L1

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

无机纳米材料在生物医学的应用

无机纳米材料在生物医学的应用 班级:材料科学与工程(1)班 姓名:何丽莉 学号:201473030107

摘要:主要介绍了几种介绍了介孔二氧化硅、纳米碳等非金属类纳米材料,以及磁性铁、氧化铈、银纳米粒子、金纳米粒子、镍等金属类纳米材料,比较了不同来源无机纳米材料的发展、特点、优势,明确了无机纳米材料具有环境友好、成本低、生物相容性好及低毒性等特点,综述了无机纳米材料在生物医药、临床诊断、疾病预防等生物医学方面的研究与应用。 关键词:无机纳米材料生物医学 Abstract: This paper mainly introduces several kinds of the mesoporous silica, nano carbon and other non metal nano materials, and magnetic iron, cerium oxide, silver nanoparticles, gold nanoparticles, nickel and other metal nano materials, compared the development of different sources of inorganic nano materials, features, advantages, the inorganic nano material is environmentally friendly low cost, good biocompatibility and low toxicity characteristics, the application of inorganic nano materials in the biomedical, clinical diagnosis, disease prevention research and application in biomedicine. Keywords: inorganic nano materials biomedicine

发光材料

发光材料 连新宇豆岁阳董江涛陈阳郭欣高玮婧 北京交通大学材料化学专业100044 摘要:本文简要介绍了发光材料的发光机理,并根据机理分类介绍了几种典型的发光材料。补充介绍了新型发光材料并对发光材料的现状进行了介绍对其应用和发展前景做了展望。 关键词:发光材料分类新型展望 1 引言 发光材料已成为人们日常生活中不可缺少的材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示器、X射线透射仪等。目前发光材料主要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。最近,有机材料在电致发光上获得了重要应用。[1] 2 发光材料 发光是一种物体把吸收的能量,不经过热的阶段,直接转换为特征辐射的现象。发光现象广泛存在于各种材料中,在半导体、绝缘体、有机物和生物中都有不同形式的发光。 发光材料分为有机和无机两大类。通常把能在可见光和紫外光谱区发光的无机晶体称为晶态磷光体,而将粉末状的发光材料称为荧光粉。[2] 常用的发光材料按激发方式分为: (1) 光致发光材料,由紫外光、可见光以及红外光激发而发光,按照发光性能、应用范 围的不同,又分为长余辉发光材料、灯用发光材料和多光子发光材料。 (2) 阴极射线发光材料,由电子束流激发而发光的材料,又称电子束激发发光材料。 (3) 电致发光材料,由电场激发而发光的材料,又称为场致发光材料。 (4) X射线发光材料,由X射线辐射而发光的材料。 (5) 化学发光材料,两种或两种以上的化学物质之间的化学反应而引起发光的材料。 (6) 放射性发光材料,用天然或人造放射性物质辐照而发光的材料。 2.1光致发光材料 2.1.1光致发光材料的定义 发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。光致发光材料一个主要的应用领域是照明光源,包括低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一个重要的应用领域是等离子体显示。

夜光发光材料

夜光发光材料Glow in the Dark Material 一、发光形式: 夜光材料可于黑暗处自动发光的材料,主要成分为稀土,属于无机类颜料。 长效夜光发光颜料先吸收各种光和热,转换成光能储存,然后在黑暗中自动发光,通过吸收各种可见光实现发光功能,该品不含放射性元素,并可无限次数循环使用,,尤其对450纳米以下的短波可见光、阳光和紫外线光(UV光)具有很强的吸收能力。 二、基本型态: 长效夜光粉有长效型6色,普通型 1 色,可添加各色荧光剂调色,各色夜光粉可相互混合调色。 三、应用参考颜色: 黄绿光,蓝绿光,天蓝光、紫光、白光、红光、可利用荧光颜料、染料,调整发光前后的颜色,荧光剂添加比例约为夜光粉的的 1%~5%,也可使用一般染、颜料调色,但会减低发光效果。 四、产品特性: ●长效型夜光粉,余辉发光时间比普通型夜光粉多10倍以上,耐候性好 ,户内、户外都可使用。 ●长效型夜光粉仗用的主要禁忌有三: 1. 避免与水份接触。 2. 避免与金属直接接触。 3. 避免高温直接摩擦,普通型夜光粉则无此禁忌。 ●长效型夜光粉比重为3.6,材料为稀土元素,材料本身无毒无害,不含 放射性物质,吸光时间长,放光时间也长。 ●普通型夜光粉比重为 4.1,材料为硫化锌:铜(ZnS:Cu),吸光和放光时 间较短。 ●夜光粉可适用于显示夜间物体、钟表、电话按键、按钮、野外仪器或 指示器、收音机、照相机、电影院座位号码、交通指示牌、一般饰品 、服装制品、电源开关、钓鱼器具、建筑装潢,消防紧急逃生系统辨 识、军事设备、运输工具使用……等等。 五、在涂料与网印油墨应用注意事项: ●使用中性或弱碱性透明树脂。

相关主题
文本预览
相关文档 最新文档