当前位置:文档之家› 岩石力学重点总结

岩石力学重点总结

岩石力学重点总结
岩石力学重点总结

岩石岩体区别:岩石可以看作是一种材料,岩体是岩石与各种不连续面的组合体;岩石可以看作是均质的,岩体是非均质的(在一定的工程范围内);岩石具有弹、塑、粘弹性,岩体受结构面控制,性质更复杂,强度更低;岩体通常是指一定工程范围内的地质体,岩石则无此概念。

岩石力学是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。又称岩体力学,是力学的一个分支。研究目的在于解决水利、土木工程等建设中的岩石工程问题。它是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学等知识,并与这些学科相互渗透。

研究对象:对象:岩石—对象—岩石材料—地壳中坚硬的部分;

复杂性:地质力学环境的复杂性(地应力、地下水、物理、化学作用等)

研究的基本内容:

基本理论岩体地应力

材料实验——三大部分→岩体的强度

工程应用岩体的变形

裂隙水力学

研究方法:物理模拟→岩石物理力学性质常规实验,地质力学模型试验;

数学模型→如有限元等数值模拟;

理论分析→用新的力学分支,理论研究岩石力学问题;

由于岩石中存在各种规模的结构面(断裂带、断层、节理、裂隙)→致使岩石的物理力学性质→不连续、不均匀、各向异性→因此,有必要引入刻划不均一程度的参数。

各向异性:指岩石的强度、变形指标(力学性质)随空间方位不同而异的特性。

岩石的基本物理力学性质

岩石力学问题的研究首先应从岩石的基本物理力学性质研究入手,

1.岩石的容重:指单位体积岩石的重量。

2.比重(Gs)指岩石干重量除以岩石的实体积(不含孔隙体积)的干容重与4?c水的容重的比值。

3.孔隙率(n%)指岩石内孔隙体积与总体积之比。

4.天然含水量:指天然状态下,岩石的含水量与岩石干重比值的百分比。

5.吸水率:指岩石在常温条件下浸水48小时后,岩石内的含水量与岩石干容重的比值。

6.饱和含水率:指岩样在强制状态(真空、煮沸或高压)下,岩样最大吸水量与岩石干重量比值。

7.饱水

分数:指岩石吸水率与饱水率的比值百分率。8.抗冻系数。9.软化系数。10.渗透系数K和吕容系数Lu。

岩体的工程分类:岩体质量指标RQD,RQD值的大小,反映了岩体完整程度→岩体分类。

岩石的水理性质:岩石遇水后会引起某些物理、化学和力学性质的改变,岩石的这种性质称为岩石的水理性。1、岩石的吸水性2、岩石的软化性3、岩石的膨胀性4、岩石的崩解性5、岩石的抗冻性6、岩石的透水性

岩石的碎胀性、

岩石的强度

岩石的强度:重要性(工程安全、经济效益)【岩石由固体,水,空气等三相组成。】

复杂性:岩石的强度包括岩块的强度和结构面的强度,以及耦合效益+地质环境因素影响(地应力、地下水等)岩石的破坏形式:1、脆性破坏:岩石发生破坏时,变形很小,明显声响,一般发生在单轴或低围压坚硬岩石。

2、塑性破坏:破坏时,变形较大,有明显的“剪胀”效应,一般发生在较软弱岩石或高围压坚硬岩石

3、沿软弱结构面(原生)剪切破坏。

岩石的抗剪强度:岩石沿原生结构面或已被剪断的破裂面,剪切滑动时的“摩擦阻力”

室内试验方法:一)直剪试验;二)楔形剪切(交角剪)试验;三)三轴压缩试验;

莫尔-库仑准则→将岩石视为连续均匀介质――――――宏观强度理论

Griffith基本观点:岩石中存在许多空隙、裂缝等→在外部应力作用下→缝端产生应力集中→缝端扩展(破裂)→串通→形成宏观破坏。

岩石的强度特性:(1)屈服:岩石受荷载作用后,随着荷载的增大,由弹性状态过渡到塑性状态,这种过渡称为屈服。(2)破坏:把材料进入无限塑性增大时称为破坏。(3)岩石的强度:是指岩石抵抗破坏的能力。岩石在外力作用下,当应力达到某一极限值时便发生破坏,这个极限值就是岩石的强度。

岩石的变形

岩石的变形特性:弹性:指物体在外力作用下发生变形,当外力撤出后变形能够恢复的性质。

塑性:指物体在外力作用下发生变形,当外力撤出后变形不能恢复的性质。

脆性:物体在外力作用下变形很小时就发生破坏的性质。

延性:物体能够承受较大的塑性变形而不丧失其承载能力的性质。

粘性(流变性):物体受力后变形不能在瞬间完成,且应变速度(dε/dt)随应力大小而变化的性质。

扩容----所谓扩容,是指岩石受外力作用后,发生非弹性的体积膨胀。

岩石的流变性是指岩石应力应变关系随时间而变化的性质。

蠕变现象——当应力保持恒定时,应变随时间增长而增大。

松弛现象——当应变保持恒定时,应力随时间增长而逐渐减小的现象。

弹性后效——加载或卸载时,弹性应变滞后于应力的现象。

岩石的流变本构模型:用于描述岩石应力-应变关系随时间变化的规律。它是通过试验-理论-应用证实而得到的。

本构模型分类:1、经验公式模型:【根据不同试验条件及不同岩石种类求得的数学表达式】2、积分模型:【采用积分的形式表示应力-应变-时间关系的本构方程】3、组合模型:【将岩石抽象成一系列简单元件】

粘性介质及粘性元件(牛顿体)具有粘性流动的特点。【塑性介质及塑性元件(圣维南体)】塑性元件具有刚塑性体变形(塑性变形也称塑性流动)的特点。

粘性流动:只要有微小的力就会发生流动。

塑性流动:只有当应力σ达到或超过屈服极限σs才会产生流动。

粘弹性体:研究应力小于屈服极限时的应力、应变与时间的关系;

粘弹塑性体:研究应力大于屈服极限时的应力、应变与时间的关系;

马克斯威尔模型具有瞬时变形、蠕变和松弛的性质,可模拟变形随时间增长而无限增大的力学介质。

凯尔文模型能模拟稳定蠕变,不能模拟瞬时弹性变形。开尔文模型是一种粘弹性模型。

影响岩石力学性质的因素:矿物成分、岩石的结构构造、水、温度、加载速度、受力状态、风化。

库伦准则:1773年库伦提出了一个重要的准则(“摩擦”准则)。库伦认为,材料的破坏主要是剪切破坏,当材料某一斜面上的剪应力达到或超过该破坏面上的粘结力和摩擦阻力之和,便会造成材料沿该斜面产生剪切滑移破坏。莫尔强度理论的基本思想:莫尔强度理论是建立在试验数据的统计分析基础之上的。1910年莫尔提出材料的破坏是剪切破坏,材料在复杂应力状态下,某一斜面上的剪应力达到一极限值,造成材料沿该斜面产生剪切滑移破坏,且破坏面平行于中间主应力σ2作用方向(即σ2不影响材料的剪切破坏),破坏面上的剪应力τ f 是该面上法向应力σ的函数。

格里菲斯强度理论的基本思想:(1)在脆性材料内部存在着许多杂乱无章的扁平微小张开裂纹。在外力作用下,这些裂纹尖端附近产生很大的拉应力集中,导致新裂纹产生,原有裂纹扩展、贯通,从而使材料产生宏观破坏。(2)

裂纹将沿着与最大拉应力作用方向相垂直的方向扩展。

1962年,麦克.克林脱克等人认为,当应力σy达到某一临界值时,裂纹便闭合,在裂纹表面产生法向应力和摩擦力,影响新裂纹的发生和发展。这种摩擦力恰恰是于是格里菲斯断裂理论没有考虑到的。因此对原始的格里菲斯理论进行了修正。

屈列斯卡准则在金属材料中应用很广。该准则是Tresca于1864年提出的。他认为:当最大剪应达到某一数值时,岩石开始屈服,进入塑性状态。

米赛斯(Mises)屈服准则:米赛斯认为:当应力强度达到某一数值时,岩石开始屈服,进入塑性状态。

德鲁克-普拉格屈服准则考虑了中间主应力的影响,又考虑了静水压力(平均应力σm)的作用,克服了Mohr-Coulomb准则的主要弱点,可解释岩土材料在静水压力下也能屈服和破坏的现象。该准则已在国内外岩土力学与工程的数值计算分析中获得广泛的应用。

地应力及其测量

地应力是存在于地壳中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。

岩体初始应力包括岩体自重应力、岩体构造应力、水压力、温度压力等。

地应力的分布规律:1、地应力是一个相对稳定性的非稳定应力场,且是时间和空间的函数;

2、实测垂直应力基本等于上覆岩层的重量

3、水平应力普遍大于垂直应力

4、平均水平应力与垂直应力的比值随深度增加而减小

5、最大水平主应力与最小水平主应力也随深度呈线性增长关系

6、最大水平主应力与最小水平主应力之值一般相差较大,显示出很强的方向性

7、地应力的上述分布规律还会受到地形、地表剥蚀、风化、岩体结构特征、岩体力学性质、温度、地下水等因素的影响,特别是地形和断层的扰动影响最大。

地应力测量方法:直接测量法:1扁液压千斤顶法 2.水压致裂法间接测量法:全应力解除法、局部应力解除法

围岩是洞室四周围绕的岩石,这个洞室可以是人工开凿的(例如各种隧道、地下仓库等等),也可以是天然形成的(例如山洞、溶洞等等)。

围岩压力:指引起地下开挖空间周围岩体和支护变形或破坏的作用力。它包括由地应力引起的围岩力以及围岩变形受阻而作用在支护结构上的作用。

岩石力学重点总结

岩石岩体区别:岩石可以瞧作就是一种材料,岩体就是岩石与各种不连续面的组合体;岩石可以瞧作就是均质的,岩体就是非均质的(在一定的工程范围内);岩石具有弹、塑、粘弹性,岩体受结构面控制,性质更复杂,强度更低;岩体通常就是指一定工程范围内的地质体,岩石则无此概念。 岩石力学就是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的 学科。又称岩体力学,就是力学的一个分支。研究目的在于解决水利、土木工程等建设中的岩石工程问题。它就是 一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学 等知识,并与这些学科相互渗透。 研究对象:对象:岩石—对象—岩石材料—地壳中坚硬的部分; 复杂性:地质力学环境的复杂性(地应力、地下水、物理、化学作用等) 研究的基本内容: 基本理论岩体地应力 材料实验——三大部分→岩体的强度 工程应用岩体的变形

裂隙水力学 研究方法: 物理模拟→岩石物理力学性质常规实验,地质力学模型试验; 数学模型→如有限元等数值模拟; 理论分析→用新的力学分支,理论研究岩石力学问题; 由于岩石中存在各种规模的结构面(断裂带、断层、节理、裂隙)→致使岩石的物理力学性质→不连续、不均匀、各 向异性→因此,有必要引入刻划不均一程度的参数。 各向异性:指岩石的强度、变形指标(力学性质)随空间方位不同而异的特性。 岩石的基本物理力学性质 岩石力学问题的研究首先应从岩石的基本物理力学性质研究入手, 1.岩石的容重:指单位体积岩石的重量。2、比重(Gs)指岩石干重量除以岩石的实体积(不含孔隙体积)的干容重与4?c 水的容重的比值。3、孔隙率(n%)指岩石内孔隙体积与总体积之比。4、天然含水量:指天然状态下,岩石的含水量与岩石干重比值的百分比。5、吸水率:指岩石在常温条件下浸水48小时后,岩石内的含水量与岩石干容重的比值。6、饱与含水率:指岩样在强制状态(真空、煮沸或高压)下,岩样最大吸水量与岩石干重量比值。7、饱水分数:指岩石吸水

简论岩石力学及其工程应用的发展战略

简论岩石力学及其工程应用的发展战略 近三十年来,特别是近十余年,无论国内和国外,岩石力学及其工程应用获得了突 飞猛进的发展,学术交流空前活跃,许多相邻学科的工作者被吸引到岩石力学领域中来.一方面,岩石力学的许多分支领域得到不同程度的探索和发展;另一方面,岩石力 学与其相邻学科的相互结合也在向纵深发展.这当然是很可喜的. 当前岩石力学的主要成就似可归纳如下: ——开展了大量的试验研究工作,取得了一大批有价值的经验数据,并丰富了岩石 力学模型的研究: ——开展了岩石力学的大量的数值分析计算工作,积累了大批计算软件,可以考虑 岩石的弹性、塑性、粘性和断裂等各种特性的多种情况; ——发展了现场观测和监测技术,为工程的安全和岩石力学理论的检验,提供了相 当坚实的物理基础; ——发展了岩石力学模型试验和模拟技术(包括计算机模拟试验),为探索天然岩 石的整体特性作出了有意义的努力; ——拓展了岩石力学的研究领域和应用范围,例如水利工程风险分析中的水库诱发 地震预测问题,核电站的环境分析中的核废料的储存和处理问题,都被包括在岩石力学 研究范围之内. 岩石力学的研究现状表明,它的确还有许多不足之处,如不认真研究改进,最终将会阻碍岩石力学的进一步发展。 首先,目前岩石力学研究工作,绝大多数只限于天然岩石的单项研究,这种研究虽然是非常需要的,但必须与天然岩石的整体特性的研究结合起来.这是因为局限于天然岩石的单项研究.并不能很好地反映岩石在天然状态下的整体性质,因为后者并不是前者的简单的叠加.很遗恨,这方面并没有获得完满的解决,一个突出的例子,就是计算参数的取得,目前多只凭经验,还没有一套公认的准则可供遵从. 共次.岩石不能只认为是单相(固相)的,从这一点出发而建立的岩石力学模型当然是不完善的(尽管当前的研究成果多是如此).因为这与事实不符.天然岩石是一种三相(固相、液相和气相)介质,虽然有时可以当作单相介质来考虑而没有太夹的误差, 但在许多情况下是不可以这样做的.例如水工建设和水下探矿中,大多数场合是不能忽视水的作用的;在油气田开发中,还必须进一步考虑气相的作用. 第三,目前研究岩石静力学方面的多,研究岩石动力学方面的太少.不仅因为工程上常常遇到动力学问题,例如爆破,振动、地震等,而且有许多课题,表面上看似乎是可以当作静力学问题来研究,实际上却是与动力学密切相关的问题.例如岩质边坡的失稳,就是一个由静态转化为动态的问题。Vajont滑坡直到现在还被人们所研究,就是因为这一滑坡为什么会有这样高速滑落问题一直没有获得很好解决的原故. 第四,坦率地说,目前岩石力学的研究,还没有真正走到工程设计中去.其中的原因是多方面的,但重要韵是,没有能够发展出一整套岩石工程技术与方法供工程设计人员应用,因而还不能完全取代原有的~·套技术和方法显示出自己特有的优越性来.岩石力学的工程应用不够这一不足之处,直接危及岩石力学向纵深发展.因为岩石力学的工程应用的广泛深入,反过来会促进岩石力学不断地向深度和广度进军. 因此,岩石力学及其工程应用的发展战略,笔者认为,必须按照天然岩石的实际情况,并服务于工程建设的需要这一基本原则来进行. 例如,天然岩石不仅是多相的,而且是处在一种系列状态中:在地表,它受风化和众多裂隙切割而多处于松散状态,普氏理论适用这种情况;在较浅处,主要受裂隙控制,因而

《岩石力学与工程》蔡美峰版总结

《岩石力学与工程》内容概要总结 地应力是存在于地层中的为受工程扰动的天然应力。也称为岩体初始应力、绝对应力或原岩应力。 地质软岩:单轴抗压强度小于25MPa的松散、破碎、软化及风化膨胀性一类岩体的总称。 工程软岩:工程力作用下能产生显著性变形的工程岩体。声发射:材料在受到外载荷作用时,其内部贮存的应变能快速释放产生弹性波,发生声响。 岩石岩石地下工程:地下岩石中开挖并临时获永久修建的各种工程。 围岩:在岩石地下地下工程中,由于受开挖影响而发生应力状态改变的周围岩体。 锚喷支护:锚杆与喷射混凝土联合支护的简称。 边坡:岩体、土体在自然重力作用或人为作用而形成一定倾斜度的临空面。 岩石:自然界各种矿物的集合体,是天然地质作用的产物。 容重:岩石单位体积的重量。根据含水情况将岩石的容重分为天然容重、干容重、饱和容重。孔隙性:天然岩石中包含着数量不等、成因各异的孔隙和裂隙。 孔隙率:指岩石孔隙的体积与岩石总体积的比值,以百分数表示。分为总孔隙率、总开孔隙率、大开孔隙率、小开孔隙率、和闭孔隙率。孔隙率愈大,岩石力学性能越差。 水理性:岩石与水相互作用时所表现的性质。 包括岩石的吸水性、透水性、软化性和抗冻性。 岩石强度:岩石在各种载荷作用下达到破坏时所能承受的最大应力。 单轴抗压强度:岩石在单轴压缩载荷作用下达到破坏前所能承受的最大压应力。 岩石破坏形式:x状共轭斜面剪切破坏。这种破坏形式是最常见的破坏形式;单斜面剪切破坏。这两种破坏都是由于破坏面上的剪应力超过极限引起的。 拉伸破坏:横向拉应力超过岩石抗拉极限引起的。 流变破坏:岩石的三轴抗压强度:岩石在三向荷载作用下,达到破坏时所能承受的最大压应力。 莫尔强度包络线:同一种岩石对应各种应力状态下破坏莫尔应力圆外公切线。直线型、抛物线型、双曲线型。 点载荷试验:试验所获得的强度指标值可以用做岩石分级的一个指标。点载荷实验装置是便携式的,可带到岩土工程现场去做实验。点载荷试验对试件的要求不严格。缺点是要根据经

岩体力学的发展展望及发展方向

岩体力学的发展展望及发展方向 张永伟学号:201020407 岩石力学是研究岩石和由它组成的地质体在外力作用下力学行为的一门应用固体力学学科。岩体力学是在岩石力学的基础上发展起来的一门新兴学科,是一门的年轻的学科,特别是在中国前景广阔,“岩石力学的未来在中国”。 岩体力学作为岩土工程三大基础学科(岩体力学、土力学、基础工程学)之一,在工程设计和施工中,岩体力学问题往往具有决定性的作用,例如:英吉利海底隧道,日本青函海底隧道,美国赫尔姆斯水电站地下厂房,加拿大亚当贝克水电站地下压力管道,巴西伊太普水电站,尼亚加拉水电站,以及我国葛洲坝水利工程等的新建,都提出了许多岩体力学方面的棘手问题,而这些问题对工程的进行具有决定意义。因此,岩体力学的发展直接关系到工程开发的深度和广度。 一、岩体力学的发展 岩体力学是在岩石力学的基础上发展起来的一门学科,一般认为它形成于20世纪50年代末,其主要标志是1957年法国的J.Talobre 所著的《岩石力学》的出版,以及1962年国际岩石力学学会的成立。岩体力学的发展经历了如下几个阶段:(一)连续介质岩石力学阶段。二次世界大战之前至20世纪60年代为岩体力学的产生与早期发展阶段。在此阶段,人们仅简单地将岩体看作一种连续介质材料,利用固体力学理论进行岩体的力学特性分析,将岩体力学等同于材料力学,处理实际问题主要靠经验,往往效果较差。(二)裂隙岩体力学阶段。

大约在20世纪60-70年代,国际上正式将裂隙岩体的力学性质研究作为岩体力学的一个中心课题,并且提出了(碎裂)岩体力学概念,将岩体力学研究推向了一个崭新的阶段,即裂隙岩体力学阶段。(三)岩体结构力学阶段。20世纪60年代末,人们提出了“岩体结构”的概念,及至70年代中期“岩体结构”便在岩体力学研究中起指导作用,并且由此诞生了“岩体结构的力学效应”这一具有划时代意义的科研命题。(四)地质工程岩体力学阶段。随着各种大型或特大型岩体工程的兴建,例如超过300 m的高坝及跨海大桥或其他高架工程等,它们的规模、形状、分布及组合等变化很大,往往引出不少岩体力学问题,而要解决这些问题又涉及到很多地质问题,有时可能关系到面积超过十平方公里、深达几公里的地质体。而今的岩体力学与地质研究工作密切相关,必须是多学科协同操作,方能有所作为。因此岩体力学的发展进入地质工程岩体力学阶段。 二、岩体力学在地质灾害防治中的应用 今年舟曲泥石流地质灾害再次引起了人们对地质灾害的重视。 岩体力学在地质灾害防治中的应用,作为研究方向,开展崩塌、滑坡、泥石流和采空地面塌陷等地质灾害方面的研究,是岩体力学重要的发展方向之一,对于保护人民群众生命财产安全具有重要的意义。 地质灾害监测与预警、地质灾害危险性评估、地质灾害防治等都需要岩体力学的知识和手段。 对于山东省而言由于地下采矿而产生的采空地面塌陷,近几年频

岩石力学复习资料

9.结构面的剪切变形、法向变形与结构面的哪些因素有关? 答:结构面的剪切变形、法向变形与岩石强度、结构面粗糙性和法向力有关。 10.结构面力学性质的尺寸效应体现在哪几个方面? 答:结构面试块长度增加,平均峰值摩擦角降低,试块面积增加,剪切应力呈现出减小趋势。此外,还体现在以下几个方面:(1)随着结构面尺寸的增大,达到峰值强度时的位移量增大;(2)试块尺寸增加,剪切破坏形式由脆性破坏向延伸破坏转化;(3)尺寸增加,峰值剪胀角减小,结构面粗糙度减小,尺寸效应也减小。 12.具有单结构面的岩体其强度如何确定? 答:具有单结构面的岩体强度为结构面强度与岩体强度二者 之间的最低值。结构面强度为: σ1 =σ3 + 2 ? (C j+σ3?tgφj ) (1 -tgφj ctgβ ) ? sin 2β 岩体强度为: σ=1 + sin φσ+ 2 ?C? cosφ 1 - sin φ 3 1 - sin φ1 18.岩体质量分类有和意义? 答:为了在工程设计与施工中能区分岩体质量的好坏和表现在稳定性上的差别,需要对岩体做出合理分类,作为选择工程结构参数、科学管理生产以及评价经济效益的依据之一,也是岩石力学与工程应用方面的基础性工作。

19.CSIR 分类法和Q 分类法各考虑的是岩体的哪些因素? 答: 岩体地质力学分类是由岩体强度、RQD 值、节理间距、单位长度的节理条数及地下水5种指标分别记分,然后累加各项指标的记分,得出该岩体的总分来评价该岩体的质量。CSIR=A+B+C+D+E+F A——岩体强度(最高15 分); B——RQD 值(最高分20 分); C——节理间距(最高分 20 分) D——单位长度的节理条 数(最高分30 分) E——地下水条件(最高分 15 分)。 F——节理方向修正分(最低- 60,见表2-17b) 巴顿岩体质量(Q)分类 由Barton 等人提出的分类方法: Q =RQ D ? J r ? J w

《岩石力学》复习资料

《岩石力学》复习资料 1.1简述岩石与岩体的区别与联系。 答:岩石是由矿物或岩屑在地质作用下按一定的规律聚集而形成的自然物体,力学性质可在实验室测得;岩体是指由背诸如节理、裂隙、层理和断层等地质结构面切割的岩块组成的集合体,力学性质一般在野外现场进行测定,因此更接近岩体的实际情况,反映岩体的实际强度。 1.2岩体的力学特征是什么? 答:(1)不连续性:岩体受结构面的隔断,多为不连续介质,但岩块本身可作为连续介质看待; (2)各向异性:结构面有优先排列位向的趋势,随着受力岩体的结构趋向不同力学性质也各异; (3)不均匀性:结构面的方向、分布、密度及岩块的大小、形状和镶嵌状况等在各部位都很不一致,造成岩体的不均匀性; (4)岩块单元的可移动性:岩体的变形破坏往往取决于组成岩体的岩石块单元体的移动,这与岩石块本身的变形破坏共同组成岩体的变形破坏; (5)力学性质受赋存条件的影响:在一定的地质环境中,岩体赋存有不同于自重应力场的地应力场、水、气、温度以及地质历史遗留的形迹等。 1.3岩石可分为哪三大类?它们各自的基本特点是什么? 答:(1)岩浆岩:由岩浆冷凝形成的岩石,强度高、均匀性好; (2)沉积岩:由母岩在地表经风化剥蚀后产生,后经搬运、沉积和结硬成岩作用而形成的岩石,具有层理构造,强度不稳定,且具有各向异性; (3)变质岩:由岩浆岩、沉积岩或变质岩在地壳中受高温、高压及化学活动性流体的影响发生变质而形成的岩石。力学性质与变质作用的程度、性质以及原岩性质有关。 1.4简述岩体力学的研究任务与研究内容。 研究任务:①建模与参数辨别;②确定试验方法、仪器与信息处理;③现场测试;④实际应用; 研究内容:①岩石与岩体的物理力学性质(岩石的物质组成和结构特征,岩石的物理、水理性质,岩块在不同应力状态作用下的变形和强度特征,结构面的变性特征和强度参数的确定等);②岩石和岩体的本构关系(岩块的本构关系,岩体结构面分类和典型结构面本构关系,岩体的本构关系);③工程岩体的应力、变形和强度理论(岩体初始应力测量及分布规律,岩体中应力、应变和位移计算,岩体破坏机理、强度理论和工程稳定性维护与评价):④岩石(岩块)室内

完整版重庆大学岩石力学总结

重庆大学岩石力学总结第一章 1岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。2岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。3岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。5岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。6矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。7岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。8岩石的孔隙率是指岩石孔隙的体积与岩石总体积的

比值。9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。包括岩石的吸水性,透水性,软化性和抗冻性。 10 岩石的天然含水率w m w m w表示岩石中水的质量,岩石的烘干质量m rd m rd 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。它取决于岩石孔隙的数量,大小,开闭程度和分布情况。表征岩石吸水性的指标有吸水率,饱和吸水 率和饱水系数。岩石吸水率w a m o m dr. m dr为岩石烘干质量,m o为岩石浸 m dr 水48 小时后的总质量。 12岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。13岩石的透水性:岩石能被水透过

的性能。可用渗透系数衡量。主要取决于岩 石孔隙的大小,方向及相互连通情况。q x k dh A K 为岩石的渗透系数,h 为 dx 水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。透 水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。 14岩石在反复冻融后强度降低的主要原因:1构成岩石的各种矿物的膨胀系数不同,当温度变化时,由于矿物的胀缩不均而导致岩石结构的破坏。2当温度降到0℃以下时,岩石孔隙的水结冰,体积增大约%9,会产生很大的膨胀压力,使岩石的结构发生改变甚至破坏。15进行岩石强度实验选用的试件必须是完整岩块,而不应包含节理裂隙。16岩石强度指标值受下列因素影响:①试件尺寸②试件形状③试件三维尺寸比例④加载速率(加载速率越多,所测岩石强度指标值越高⑤湿度

岩石力学研究的现状和未来

岩石力学研究的现状和未来 引言 岩石力学是运用力学原理和方法来研究岩石的力学以及与力学有关现象的 一门新兴科学。它不仅与国民经济基础建设、资源开发、环境保护、减灾防灾有密切联系,具有重要的实用价值,而且也是力学和地学相结合的一个基础学科。 岩石力学的发生与发展与其它学科一样,是与人类的生产活动紧密相关的。早在远古时代,我们的祖先就在洞穴中繁衍生息,并利用岩石做工具和武器,出现过“石器时代”。公元前2700年左右,古代埃及的劳动人民修建了金字塔。公元前6世纪,巴比伦人在山区修建了“空中花园”。公元前613-591年我国人民在安徽淠河上修建了历第一座拦河坝。公元前256-251年,在四川岷江修建了都江堰水利工程。公元前254年左右(秦昭王时代)开始出钻探技术。公元前218年在广西开凿了沟通长江和珠江水系的灵渠,筑有砌石分水堰。公元前221-206年在北部山区修建了万里长城。在20世纪初,我国杰出的工程师詹天佑先生主持建成了北京-张家口铁路上一座长约1公里的八达岭隧道。在修建这些工程的过程中,不可避免地要运用一些岩石力学方面的基本知识。但是,作为一门学科,岩石力学研究是从20世纪50年代前后才开始的。当时世界各国正处于第二次世界大战以后的经济恢复时期,大规模的基本建设,有力地促进了岩石力学的研究与实践。岩石力学逐渐作为一门独立的学科出现在世界上,并日益受到重视。

目前国际上已建和正建的大坝,高度超过300m,地下洞室的开挖跨度超过50m,矿山开采深度超过4000m,边坡垂直高度达1000m,石油开采深度超过9000m,深部核废料处理需要考虑的时间效应至少为1万年,研究地壳形变涉及的深度达50-60km,温度在1000oC以上,时间效应为几百万年。今后,随着能源、交通、环保、国防等事业的发展,更为复杂、巨大的岩石工程将日益增多。但是,国际上有许多工程由于对岩石力学缺乏足够的研究,而造成工程事故。其中最的是法国马尔帕塞(Malpasset)拱坝垮坝及意大利瓦依昂(Vajont)工程的大滑坡。 马尔帕塞薄拱坝,坝高60m,坝基为片麻岩,XXXX年左坝肩沿一个倾斜的软弱面滑动,造成溃坝惨剧,400余人丧生。瓦依昂双曲拱坝,坝高261.6米,坝基为断裂十分发育的灰岩。XXXX年大坝上游左岸山体发生大滑坡,约有2.7-3.0亿立米的岩体突然下塌,水库中有5000万立米的水被挤出,击起250米高的巨大水浪,高150米的洪波溢过坝顶,死亡3000余人。近年来,虽然岩石力学得到突飞猛进的发展,但与岩体失稳有关的大坝崩溃,边坡滑动,矿山瓦斯爆炸,围岩地下水灾害等惨剧仍时有发生。诸如此类的工程实例,都充分说明能否安全经济地进行工程建设,在很大程度上取决于人们是否能够运用近代岩石力学的原理和方法去解决工程上的问题。当前世界上正建和拟建的一些巨型工程及与地学有关的重大项目都把岩石力学作为主要研究对象。第一节国际岩石力学与岩石工程发展动态一、国际岩石力学学会成立前(XXXX)的概况 在国际岩石力学学会成立前,尤其是上世纪二战以后,为适应经济发展的迫切需要,各国都相继建立了一些机构对岩石力学进行专题研究。当时各国有代表性的研究机构如下:美国:(1)美国军部工程兵团(ACE,ArmyCorpsofEngineersU.S.A).

《岩石力学》复习资料

《岩石力学》复习资料 1.1 简述岩石与岩体的区别与联系。 答:岩石是由矿物或岩屑在地质作用下按一定的规律聚集而形成的自然物体,力学性质可在实验室测得;岩体是指由背诸如节理、裂隙、层理和断层等地质结构面切割的岩块组成的集合体,力学性质一般在野外现场进行测定,因此更接近岩体的实际情况,反映岩体的实际强度。 1.2 岩体的力学特征是什么? 答:(1)不连续性:岩体受结构面的隔断,多为不连续介质,但岩块本身可作为连续介质看待; (2)各向异性:结构面有优先排列位向的趋势,随着受力岩体的结构趋向不同力学性质也各异; (3)不均匀性:结构面的方向、分布、密度及岩块的大小、形状和镶嵌状况等在各部位都很不一致,造成岩体的不均匀性; (4)岩块单元的可移动性:岩体的变形破坏往往取决于组成岩体的岩石块单元体的移动,这与岩石块本身的变形破坏共同组成岩体的变形破坏; (5)力学性质受赋存条件的影响:在一定的地质环境中,岩体赋存有不同于自重应力场的地应力场、水、气、温度以及地质历史遗留的形迹等。 1.3 岩石可分为哪三大类?它们各自的基本特点是什么? 答:(1)岩浆岩:由岩浆冷凝形成的岩石,强度高、均匀性好; (2)沉积岩:由母岩在地表经风化剥蚀后产生,后经搬运、沉积

和结硬成岩作用而形成的岩石,具有层理构造,强度不稳定,且具有各向异性; (3)变质岩:由岩浆岩、沉积岩或变质岩在地壳中受高温、高压及化学活动性流体的影响发生变质而形成的岩石。力学性质与变质作用的程度、性质以及原岩性质有关。 1.4 简述岩体力学的研究任务与研究内容。 研究任务:①建模与参数辨别;②确定试验方法、仪器与信息处理;③现场测试;④实际应用; 研究内容:①岩石与岩体的物理力学性质(岩石的物质组成和结构特征,岩石的物理、水理性质,岩块在不同应力状态作用下的变形和强度特征,结构面的变性特征和强度参数的确定等);②岩石和岩体的本构关系(岩块的本构关系,岩体结构面分类和典型结构面本构关系,岩体的本构关系);③工程岩体的应力、变形和强度理论(岩体初始应力测量及分布规律,岩体中应力、应变和位移计算,岩体破坏机理、强度理论和工程稳定性维护与评价):④岩石(岩块)室内实验(室内实验是岩石力学研究的基本手段);⑤岩体测试和工程稳定监测(岩体原位力学实验原理和方法,岩体结构面分布规律的统计测试,岩体的应力、应变、位移检测方法及测试数据的分析利用,工程稳定准则和安全预测理论与方法)。 1.5 岩体力学的研究方法有哪些? 研究方法是采用科学实验、理论分析与工程紧密结合的方法。 ①对现场的地质条件和工程环境进行调查分析,掌握工程岩体的组构规律和地质环境;

岩石力学复习提纲

岩体力学复习提纲 一.概念题 1.名词解释: (1)岩石;(2)岩体;(3)岩石结构; (4)岩石构造;(5)岩石的密度;(6)块体密度; (7)颗粒密度;(8)容重;(9)比重; (10)孔隙性;(11)孔隙率;(12)渗透系数; (13)软化系数;(14)岩石的膨胀性;(15)岩石的吸水性;(16)扩容;(17)弹性模量;(18)初始弹性模量;(19)割线弹性模量;(20)切线弹性模量;(21)变形模量; (22)泊松比;(23)脆性度;(24)尺寸效应; (25)常规三轴试验;(26)真三轴试验;(27)岩石三轴压缩强度;(28)流变性;(29)蠕变;(30)松弛; (31)弹性后效;(32)岩石长期强度;(33)强度准则。 2.岩石颗粒间连接方式有哪几种? 3.何谓岩石的水理性?水对岩石力学性质有何影响? 4.岩石受载时会产生哪些类型的变形?岩石的塑性和流变性有什么不同?从岩石的破坏特征看,岩石材料可分为哪些类型? 5.岩石在单轴压缩下典型的应力—应变曲线有哪几种类型,并用图线加以说明。 6.简述循环荷载条件下岩石的变形特征。 7.简述岩石在三轴压缩条件下的变形特征与强度特征。 8.岩石的弹性模量与变形模量有何区别? 9.岩石各种强度指标及其表达式是什么? 10.岩石抗拉强度有哪几种测定方法?在劈裂法试验中,试件承受对径压缩,为什么在破坏面上出现拉应力破坏? 11.岩石抗剪强度有哪几种测定方法?如何获得岩石的抗剪强度曲线? 12.岩石的受力状态不同对其强度大小有什么影响?哪一种状态下的强度较大? 13.简述影响岩石单轴抗压强度的因素。 14.岩石典型蠕变可划分为几个阶段,图示并说明其变形特征? 15.岩石流变模型的基本元件有哪几种?各有何特征?

岩石力学总结

第一章 岩块:是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体 结构面:是指地质历史发展过程中,在岩体内部形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。(结构面根据地质成因不同分为原生,构造和次生结构面)(结构面对工程岩体的完整性、渗透性、物理力学性质及盈利传递等都有显著地影响) 岩体:是指在地质历史过程中形成的,由岩石单元体(或称岩块)和结构面网络组成的,具有一定的结构并赋存予一定的天然应力状态和地下水等地质环境中的地质体。 第三章 渗透系数的物理意义是介质对某种特定流体的渗透能力,岩石的参透系数表征的就是岩石对水的渗透能力,其取决于岩石的物理性质和结构特征例如岩石中孔隙和裂隙的大小 岩石遇水后体积增大的特性成为岩石的膨胀性 岩石的膨胀性大小主要通过膨胀力和膨胀率两个指标来体现,测定方法由平衡加压法,压力恢复法和加压膨胀法 第四章 弹性指物体在外力作用下发生变形,而当撤除外力后能够恢复原状的性质(线性,非线性) 塑性是指物体在外力的作用下发生不可逆变形的性质 脆性是指物体在力的作用下变形很小时即发生破坏的性质 延性是指物体在力的作用下破坏前能够发生大量的应变的性质,其中主要是塑性变形 黏性指的是在力的作用下物体能够抑制瞬间变形,使变形因时间效应而滞后的性质 岩石单轴压缩试验的目的:通过测定岩石试件在单轴压缩应力条件下的应变值,绘制应力-应变曲线,分析岩石的变形特性,并计算岩石的变形指标 岩石的应变可分为三种:轴向应变εa(试样沿压力方向长度的相对变化)、横向应变εc(试样在垂直于压力的方向上长度的相对变化)和体应变εv(试样体积的相对变化) 岩石典型的全应力-应力曲线:1.微裂隙闭合阶段(OA段)2.弹性变形至微破裂稳定发展阶段(ABC 段)3.裂隙非稳定发展和破坏阶段(CD段)4.破坏后阶段(D点以后) 岩石典型的全应力-应力曲线决定于岩石的矿物质成分和结构特征 岩石记忆:逐级一次循环加载条件下,其盈利-应变曲线的外包线与连续加载条件下的曲线基本一致,说明加、卸过程并未改变岩石变形的习性,这种现象成为~ 回滞环:每次加荷、卸荷曲线都不重合,且围成一环形面积,成为~ 疲劳强度:岩石的破坏产生在反复加、卸荷曲线与应力-应变全过程交点处。这时的循环加、荷试验所给定的应力,成为疲劳强度。 岩石流变力学特性主要包括以下几个方面:(1)蠕变现象:当应力保持恒变时,应变随时间逐渐增长的过程(2)应力松弛:当应变保持恒定时,应力随时间逐渐减小的过程(3)流动特征:时间一定时,应变速率与应力大小的关系(4)长期强度:在长期何在持续作用下岩体的强度 蠕变是指岩石在恒定的荷载作用下,变形随时间逐渐增大的性质 蠕变分为稳定蠕变和非稳定蠕变稳定蠕变型是岩石在较小的恒定应力作用下,变形随时间增加到一定程度后就趋于稳定,最后变形保持一个常数,不在随时间增大。非稳定蠕变型是岩石承受的恒定荷载比较大,当超过某一临界值时,变形随时间的增加不仅不会保持常数,反而变形速率逐渐增加,最终导致岩体的整体失稳破坏了 一个典型的非稳定型蠕变曲线分为瞬间弹性变形阶段、一次蠕变阶段、二次~、三次~ 岩石的强度是指岩石对荷载的抗力,或者成为岩石抵抗破坏的能力 岩石的强度有:抗压强度、抗拉强度和抗剪强度。抗剪强度又有抗剪断强度,抗切强度和弱面的剪切强度三种。 岩石的破坏形式:脆性、延性、弱面剪切破坏 岩石的抗压强度是指岩石试件在单轴压力作用下,抵抗破坏的极限能力,他在数值上等于破坏时的最大压应力

岩石力学课后思考题

岩石:是由各种造岩矿物或岩屑在地质作用下按一定规律组合而形成的多种矿物颗粒的集合体,是组成地壳的基本物质。 岩体:是相对于岩块而言的,是指地面或地下工程中范围较大的、由岩块(结构体)和结构面组成的地质体。 岩石结构:是指岩石中矿物颗粒的大小、形状、表面特征、颗粒相互关系、胶结类型特征等。岩石构造:是指岩石中不同矿物集合体之间及其与其他组成部分之间在空间排列方式及充填形式。 岩石的密度:是指单位体积岩石的质量,单位为kg/ 3 m。 块体密度:是指单位体积岩石(包括岩石孔隙体积)的质量。 颗粒密度:是岩石固相物质的质量与其体积的比值。 孔隙性:把岩石所具有的孔隙和裂隙特性,统称为岩石的孔隙性。 孔隙率:岩石试件中孔隙体积与岩石试件体积之比 渗透系数:岩石渗透系数是表征岩石透水性的重要指标,渗透系数K 在数值上等于水力梯度为 1 时的渗流速度,单位为cm/s 或m/d。 软化系数:软化系数K R 为岩石试件的饱和抗压强度σ cw (MPa)与干抗压强度σ c (MPa)的比值。 岩石的膨胀性:是指岩石浸水后发生体积膨胀的性质。 岩石的吸水性:岩石在一定的实验条件下吸收水分的能力,称为岩石的吸水性,其吸水量的大小取决于岩石孔隙体积的大小及其敞开或封闭的程度等。 扩容:是指岩石在外力作用下,形变过程中发生的非弹性的体积增长。 弹性模量:是指在单向压缩条件下,弹性变形范围内,轴向应力与试件轴向应变之比,即E =σ ε 。 变形模量:是指岩石在单轴压缩条件下,轴向应力与轴向总应变(为弹性应变ε e 和塑性应变ε p 之和)之比。 泊松比:在单向载荷作用下,横向应变( ε x = ε y )与轴向应变( ε z )之比。 脆性度:通常把抗压强度与抗拉强度的比值称为脆性度,n = c t δ δ 尺寸效应:岩石试件的尺 寸越大,则强度越低,反之越高,这一现象称为尺寸效应。 常规三轴试验:常规三轴试验的应力状态为σ 1 > σ 2 = σ 3 > 0 ,即岩石试件受轴压和围压作用,试验主要研究围压(σ 2 = σ 3 )对岩石变形、强度或破坏的影响。 真三轴试验:真三轴试验的应力状态为σ 1 > σ 2 > σ 3 > 0 ,即岩石试件在三个彼此正交方向上受到不相等的压力,试验的主要目的是研究中间主应力(σ 2 )的影响。 岩石三轴压缩强度:是指岩石在三轴压缩荷载作用下,试件破坏时所承受的最大轴向压应力。流变性:是指介质在外力不变条件下,应力或应变随时间而变化的性质。 蠕变:是指介质随在大小和方向均不改变的外力作用下,介质的变形随时间的变化而增大的现象。 松弛:是指介质的变形(应变)保持不变时,内部应力随时间变化而降低的现象。 弹性后效:是指对介质加载或卸载时,弹性应变滞后于应力的现象。其是一种延迟发生的弹性变形和弹性恢复,外力卸除后最终不留下永久变形。 岩石长期强度:岩石的强度是随外载作用时间的延长而降低,通常把作用时间t → ∞ 的强度(最低值)S ∞ 称为岩石长期强度。 强度准则:它表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,一般可以用破坏条件下(极限应力状态)的应力间关系σ 1 = f (σ 2 , σ 3 ) 或τ = f (σ ) 来表示。通过强度准则判断岩石在什么样应力、应变条件下破坏。 岩石结构与岩石构造有何区别?并举例加以说明。岩石结构是指岩石中矿物颗粒的大小、形状、表面特征、颗粒相互关系、胶结类型特征等。岩石颗粒间连接方式分为结晶连接和胶结连接两类。岩石构造是指岩石中不同矿物集合体之间及其与其他组成部分之间在空间排列方式及充填形式。如层理、片理、流面等。 岩石颗粒间连接方式有哪几种?岩石颗粒间连接方式分为结晶连接和胶结连接两类。

岩石力学考试的题目复习重点

岩石力学考试重点题型分析 第一题:对下列的名词进行解释 1.岩体质量指标RQD 2.岩石的弹性模量和变形模量 3.地应力与次生应力 4.岩石的蠕变与松弛 5.地基承载力 6.弹性变形 7. 等应力轴比 8. 极限承载力 9. 塑性变形 10.岩石本构关系 第二题:填空题 1.根据结构面的成因,通常将其分为三种类型:原生结构面、构造结构面及次生结构面。 2.同一岩石各种强度中最大的是单轴抗压强度,中间的是抗剪强度,最小的是单轴抗拉强度。 3.岩石的抗剪强度用凝聚力C和内摩擦角Φ来表示 4.隧(巷)道轴线方向一般应与最大主应力平行(一致)。弹性应力状态下,轴对称圆形巷道围岩切向应力σr径向应力σθ的分布和角度无关,应力大小与弹性常数E、υ无关。 5.岩石的变形不仅表现为弹性和塑性,而且也具有流变性质,岩石的流变包括蠕变、松弛和弹性后效。 6.D-P准则是在C-M准则和塑性力学中的Mises准则基础上发展和推广而来的,应力第一不变量I1=__。 7.边坡变形主要表现为松动和蠕动。 8.边坡按组成物质可分为土质边坡和岩质边坡。

9.岩坡的失稳情况,按其破坏方式主要分为崩塌和滑坡两种。 10.地基承载力是指地基单位面积上承受荷载的能力,一般分为极限承载力和容许承载力。 11.路基一般分为路堤和路堑两种,高于天然地面的填方路基称为路堤;低于天然地面的挖方路基称为路堑。 第三题:简述题 1.岩石力学的研究内容及研究方法。 2.地下水对岩体的物理作用体现在哪些方面? 3. 简述地应力分布的基本规律。 4.喷砼的支护特点。 5.边坡稳定性的影响因素。 6.岩石的强度指标主要有哪些?各指标是如何定义的? 7.地应力对岩体力学性质的影响体现在哪些方面? 8.边坡平面破坏计算法的假定条件。 第四题:论述题 1.结合下图,说明重力坝坝基深层滑动稳定性计算中:①不按块体极限状态计算的等K 法;②按块体极限状态计算的等K 法的计算思路(块体中各种作用力可以用符号代表)(图见书上424页图8-14a )(第四题) 2. 推导平面问题的平衡微分方程 (图见书上181页图4-2) 3. 根据莫尔—库仑强度理论,推证岩石单轴抗压强度σc 与单轴抗拉强度σt 满足下式: φ φσσsin 1sin 1+-= c t 第五题:计算题: 1. 已知岩样的容重γ=2 2.5kN/m 3,比重80.2=s G ,天然含水量%80=ω,试计算该岩样的孔隙率n ,0=+??+??X y x yx x τσ0 =+??+??Y x y xy y τσ

(完整版)重庆大学-博士、硕士岩石力学考题2

重庆大学二零零五年博士生(秋季)入学考试试题一、论述岩石的流变特性以及蠕变变形曲线特征。 (20分) 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺 点。(20分) 三、什么是初始地应力?试论述初始地应力的成因及其分布 规律。(20分) 四、评述岩石在复杂应力条件下的的变形特性。 (20分) 五、论述在单轴压缩载荷作用时岩石试件的端部约束效应。 (20分) 重庆大学博士生入学考试试题答案

一、论述岩石的流变特性以及蠕变变形曲线特征(20分) 所谓岩石的流变性质就是指岩石的应力-应变关系与时间因素有关的性质,包括蠕变、松弛与弹性后效三个方面。所谓蠕变是指当载荷不变时,变形随着时间而增长的现象;所谓松弛是指当应变保持不变时,应力 随着时间增长而减小的现象;所谓弹性后效是指当加载或卸载时,弹性应变滞后于应力的现象。 岩石的蠕变变形特性曲线可以通过单轴或三轴压缩、扭转或弯曲等蠕变实验来进行研究。实验表明,在恒定载荷作用下,只要有充分长的时间,应力低于或高于弹性极限均能产生蠕变现象。但在不同的恒 定载荷下,变形随时间增长的蠕变曲线却有差异。岩石的蠕变曲线不仅与应力大小、性质及岩石种类有 关、而且还与其所在的物理环境如温度、围压、湿度等因素有关,上图为岩石的一典型蠕变曲线。当在 岩石试件上施加一恒定载荷,岩石立即产生一瞬时弹性应变ε e (OA段)。这种变形往往按声速完成,可 以近似认为在t=0完成,其应变为ε e =σ/E。若载荷保 持恒定且持续作用,应变则随时间缓慢地增长,进入到 蠕变变形阶段,将蠕变变形一般可分成三个阶段:(1)第 一蠕变阶段(AB段),也称过渡蠕变阶*段,在这个阶段内, 蠕变为向下弯曲的形状,也就是说曲线的斜率逐渐变小, 若在这一阶段之中(曲线上某一点E)进行卸载,则应变沿 着曲线EFG下降,最后应变为零、其中EF曲线为瞬时弹 性应变之恢复曲线,而FG曲线表示应变随时间逐渐恢复 为零;(2)第二蠕变阶段(BC段), 也称稳定蠕变阶段,蠕 变变形曲线近似一倾斜直线,即蠕变应变率保持常量, 一直持续到C点。若在这一阶殷中进行卸载,则应变沿 曲线HIJ逐渐恢复趋近于一渐近线,最后保留一定永久应变;(3)第三蠕变阶段(CD段),也称加速蠕变阶段,应变率由C点开始迅速增加,达到D点,岩石即发生破坏,这一阶段完成时间较短,严格地说,这 一阶段可分为两个区间:即发育着延性变形但尚未引起破坏的阶段(CP段)和微裂隙剧烈发展导致变形剧 增和引起破坏的阶段(PD段),它相当于褶皱形成后的断裂形成阶段。 同一种岩石,其载荷值越大,在第二阶段持续的时间也就越短,第三阶段破坏出现也就越快。在载 荷很大的情况下,几乎加载之后立即产生破坏。一般中等载荷,所有的三个蠕变变形阶段表现得十分明 显。任何一个蠕变变形阶段的持续时间,都取决子岩石类型、载荷值及温度等因素。 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺点(20分)。 摩尔假定是摩尔于1900年提出的一种剪切破坏理论,该理论认为岩石受压后产生的破坏主要是由 于岩石中出现的最大有效剪应力所引起,并提出当剪切破坏在一平面上发生时,该破坏平面上的法向应 力σ和剪应力τ由材料的函数特征关系式联系: |τ|=f(σ) 按摩尔假定可以看出:①岩石的破坏强度是随其受力条件而变化的,周向应力越高破坏强度越大; ②岩石在三向受压时的破坏强度仅与最大和最小主应力有关,而与中间主应力无关;③三向等压条件下,摩尔应力圆是法向应力σ轴上的一个点圆,不可能与摩尔包络线相切,因而岩石也不可能破坏;④岩石 的破裂面并不与岩石中的最大剪应力面相重合,而是取决于其极限摩尔应力圆与摩尔包络线相切处切点 的位置,这也说明岩石的破裂不仅与破裂面上的剪应力有关,也与破裂面上出现的法向正应力和表征岩 性的内聚力和内摩擦角有关。 摩尔判据的优点是:①在判断复杂应力状态下岩石是否发生破坏以及破坏面的方向时,很简单,也 很方便;②能比较真实地反映岩石的抗剪特性;③可以解释为什么在三向等拉时会发生破坏,而在三向 等压时不会发生破坏。但其缺点是:①只考虑了最大主应力和最小主应力对岩石破坏强度的影响,而忽 略了中间主应力的作用,实验表明中间主应力对岩石破坏强度是有一定程度影响的;②摩尔判据不适用 于含有结构面的岩石试件,尽管岩石中的结构面会严重地影响岩石试件的破坏强度;③摩尔判据只适用 于剪切,对受拉区研究不够充分,不适于膨胀或蠕变破坏。 三、什么是初始地应力?试论述初始地应力的成因及其分布规律(20分)。 回答要点: 初始地应力 初始地应力是指未受到任何工程扰动的岩体在天然状态下所具有的内应力,主要由岩体自重及地质 构造作用所引起,地形、地质构造、地震力、水压力、热应力等也会在一定的时间和空间范围内一定程 度上影响到岩体中的初始地应力。

高等岩石力学试题答案1

1. 简述岩石的强度特性和强度理论,并就岩石的强度理论进行简要评述。 答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a. Coulomb-Navier 准则 Coulomb-Navier 准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即: ?στtan +=C 式中?为岩石材料的内摩擦角,σ为正应力,C 为岩石粘聚力。 b. Mohr 破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即: ()στf = 此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr 强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论: () 3211t b b σσσασ=+--α ασσσ++≤1312 ()t b b σασσσ=-++31211 αασσσ++≥1312 式中α和b 为两个材料常数,是岩石单轴抗拉强度。在主应力空间里,上式代表一个以静水应力轴为中心轴具有不等边十二边形截面的锥体表面。 (2). 屈服强度准则 a. Tresca 屈服准则

岩石力学发展史

岩石力学是伴随着采矿、土木、水利、交通等岩石工程的建设和数学、力学等学科的进步而逐步发展形成的一门新兴学科,按其发展进程可划分四个阶段: (1)初始阶段(19世纪末~20世纪初) 这是岩石力学的萌芽时期,产生了初步理论以解决岩体开挖的力学计算问题。例如,1912年海姆(A.Heim)提出了静水压力的理论。他认为地下岩石处于一种静水压力状态,作用在地下岩石工程上的垂直压力和水平压力相等,均等于单位面积上覆岩层的重量,即γH。朗金(W.J.M.Rankine)和金尼克也提出了相似的理论,但他们认为只有垂直压力等于γH,而水平压力应为γH乘一个侧压系数,即λγH。朗金根据松散理论认为;而金尼克根据弹性理论的泊松效应认为。其中,λ、υ、φ分别为上覆岩层容重,泊松比和内摩擦角,H为地下岩石工程所在深度。由于当时地下岩石工程埋藏深度不大,因而曾一度认为这些理论是正确的。但随着开挖深度的增加,越来越多的人认识到上述理论是不准确的。 (2)经验理论阶段(20世纪初~20世纪30年代) (3)该阶段出现了根据生产经验提出的地压理论,并开始用材料力学和结构力学的方法分析地下工程的支护问题。最有代表性的理论就是普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论。该理论认为,围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于冒落拱内岩石的重量,仅是上覆岩石重量的一部分。于是,确定支护结构上的荷载大小和分布方式成了地下岩石工程支护设计的前提条件。普氏理论是相应于当时的支护型式和施工水平发展起来的。由于当时的掘进和支护所需的时间较长,支护和围岩不能及时紧密相贴,致使围岩最终往往有一部分破坏、塌落。但事实上,围岩的塌落并不是形成围岩压力的惟一来源,也不是所有的地下空间都存在塌落拱。进一步地说,围岩和支护之间并不完全是荷载和结构的关系问题,在很多情况下围岩和支护形成一个共同承载系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作用。因此,靠假定的松散地层压力来进行支护设计是不合

相关主题
文本预览
相关文档 最新文档