当前位置:文档之家› 生物基磺酸盐-硫酸盐合成新工艺及绿色减水剂开发

生物基磺酸盐-硫酸盐合成新工艺及绿色减水剂开发

(完整word版)木质素磺酸钠

木质素磺酸钠 木质素磺酸的钠盐即为木质素磺酸钠(sodium ligninsulfonate)是一种天然高分子聚合物,阴离子型表面活性剂。具有很强的分散能力,适于将固体分散在水介质中。由于分子量和官能团的不同而具有不同程度的分散性,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。在工业上,木质素磺酸钠广泛地用作分散剂和润湿剂。印染工业中使用的分散剂-NNO 即是以木质素磺酸钠为主要原料复配的。 质素磺酸钠是一种阴离子表面活性剂,是木浆与二氯化硫水溶液和亚硫酸盐反应产物,是生产纸浆的副产物,一般为4-羟基-3-甲氧基苯的多聚物。由于木材种类不同,磺化反应的差异,木质素磺酸盐的分子量由200到10000不等,化学结构尚未确定。一般说低分子木素质磺酸盐,多为直链,在溶液中缔合在一起;高分子木质素磺酸盐多为支链,在水介质中显示出聚合电介的行为。粗制的木质素磺酸盐大量用于在动物饲料的粒化,精制木质素磺酸盐用于石油钻井泥浆的分散剂;矿石浮选剂,矿泥、染料、农药的分散剂;对重金属,尤其是铁、铜、亚锡离子有较好的螯合能力,是有效的螯合剂。 中文名木质素磺酸钠 外文名 Sodium Ligninsulfonate 分子式 C 20H 24 Na 2 O 10 S 2 分子量 534.5 Cas 8061-51-6 彩色分子结构图:CAS NO.8061-51-6 中文别名分散剂CMN;改性木质素磺酸钠;木素磺酸钠;木素磺酸钠盐;分散剂M-9;木质磺素钠;木质磺酸钠 英文别名ahr2438b;banirexn;betz402;dispergatorreax;dispergatorufoxane;lignosite458 一、理化性质 1、有良好的扩散性能,能溶于任何硬度的水中,水溶液化学稳定性好,可生物降解。 2、木质素磺酸盐又称亚硫酸盐木质素,是相对分子质量不同,结构也不尽相同,即具有多分散性的不均匀阴离子聚电解质。固体产品为黄棕色自由流动的粉末,具有吸湿性。易溶于水,并不受PH值变化的影响,但不溶于乙醇、丙酮及其他普通的有机溶剂。水溶液为棕色至

最新镀锌液配方优化设计1000例与生产新工艺新技术及质量检验鉴定测试实用手册

《最新镀锌液配方优化设计1000例与生产新工艺新技术及质量检验鉴定测试实用手册》.. 作:本书编委会 北方工业出版社 2007年3月 16开精装 4册 光盘:0 定价:1098元 优惠:549元 .. 详细: 货到付款

.............................................. 最新镀锌液配方优化设计1000例与生产新工艺新技术及质量检验鉴定测试实用手册 目录: 第一篇镀锌基础知识 第一章金属腐蚀与防护 第二章镀锌层基础知识 第三章镀前处理 第二篇氯化物镀锌液配方优化设计200例与生产新工艺新技术 第一章氯化物镀锌工艺流程 第二章氯化物镀锌的工艺配方 第三章氯化物镀锌液中各成分的作用及合理选用 第四章氯化物镀锌的工艺条件及其控制原则 第五章氯化物镀锌溶液的配制 第六章氯化物镀锌溶液的维护 第七章氯化物镀锌工艺常见故障及解决方法 第八章氯化物镀锌工艺对设备的要求 第三篇锌酸盐镀锌液配方优化设计200例与生产新工艺新技术 第一章锌酸盐镀锌工艺流程 第二章锌酸盐镀锌的工艺规范 第三章锌酸盐镀锌液的配制 第四章锌酸盐镀锌各成分的作用及合理选用 第五章操作条件及其影响

第六章不溶性阳极的选择 第七章复杂零件的工装设计 第八章镀锌液的维护 第九章锌酸盐镀锌常见质量故障及解决方法 第十章镀液常见故障及解决方法 第十一章不合格镀锌层的退除 第十二章锌酸盐镀锌中对设备的要求 第四篇硫酸盐镀锌液配方优化设计200例与生产新工艺新技术第一章硫酸盐镀锌工艺流程 第二章镀锌溶液的配方及操作条件 第三章镀液中各组分的作用及合理选用 第四章硫酸盐镀锌操作条件及控制原则 第五章镀槽结构及其辅助设备 第六章镀锌液的配制与维护 第七章硫酸盐镀锌常见故障及解决办法 第八章镀锌铁丝电流的确定 第五篇电镀锌液配方优化设计200例与生产新工艺新技术 第一章概述 第二章氰化镀锌 第三章镀锌层的铬酸纯化处理 第四章镀锌层的无铬钝化 第五章镀锌层的着色

磺酸盐类表面活性剂

磺酸盐类表面活性剂简述 表面活性剂,凡加入少量而能显著降低液体表面张力的物质,统称为表面活性剂。它们的表面活性是对某特定的液体而言的,在通常情况下则指水。无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基(如—OH、—COOH、—NH2、—SO3H等),有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”.表面活性剂分子因而也常被称作“双亲分子”。由于其特具的结构特点,因此给这类物质带来许多特性, 如乳化、分散、润湿、渗透、去污、起泡、消泡、防水、抗静电、柔软、杀菌等。 表面活性剂的分类方法很多,根据其分子构成的离子性分成离子型、非离子型等,阴离子表面活性剂, 特别是磺酸盐类阴离子表面活性剂, 在所有表面活性剂中较为重要。本文以常用的磺化剂为线索, 叙述了磺酸盐类表面活性剂制备方法、产品的主要性质和在各行各业中的主要用途。 一.磺酸盐类活性剂的合成及其主要用途 1 石油磺酸盐和烷基苯基磺酸盐 这两种传统的磺酸盐表面活性剂的合成及性质有大量的文献进行了报道。石油磺酸盐是由富芳烃原油或馏分磺化得到的产物, 烷基苯基磺酸盐包括烷基磺酸盐、烷基苯基磺酸盐、重烷基苯基磺酸盐等。在磺酸盐型阴离子表面活性剂中, 以石油磺酸盐型最为普遍。石油磺酸盐作为化学采油用剂具有表面活性高、原料易得、生产工艺简单、成本较低、配伍性好等特点, 受到普遍关注, 进入了先导性实验。烷基碳数为C14 ~ C16的重烷基苯磺酸盐可与我国大多数油田的原油形成超低界面张力体系, 因而成为重要的驱油用表面活性剂。 2 链烃磺酸盐 2. 1 A-烯烃磺酸盐(AOS) 它的主要成分是: 烯烃磺酸盐和羟基磺酸盐。早在20世纪60年代末, A-烯烃磺酸盐就已经通过烯烃的SO3 磺化反应而工业化了, 产物组成为: RCH CH CH 2 SO3Na , 约60%; RCHOHCH 2CH2 SO3N a, 约30%; 二磺酸盐, 约10%。AOS与钙镁离子生成的盐仍然是一种较好的表面活性剂, AOS具有抗盐性好、油/水界面张力低、良好的起泡力和泡沫稳定性等特点, 其生物降解性比烷基苯磺酸盐好, 与烷基硫酸盐( AS)接近, 因而对人体和环境温和, 尤其适用于配制重垢低磷或无磷洗衣粉。此外, 又由于AOS 热稳定性好、乳化能力强, 在工业清洗、石油开采及输送等领域具有相当可观的应用前景。 2. 2 链烃磺酸盐 以石蜡为原料磺化得到的磺酸盐通常是单磺酸、二磺酸或多磺酸的混合物。Buschmann 等用1, 2-二醇或烷基内酯,实验室合成了十二烷双磺酸盐。且实验表明,以石蜡烃为原料磺化产物中单磺酸盐的活性最高。 3 脂肪酸( 酯)磺酸盐 3. 1 磺基琥珀酸酯 磺基琥珀酸酯盐按酯基个数可分为两大类: 单酯盐和双酯盐。磺基琥珀酸酯表面活性剂的合成所用原料主要为顺丁烯二酸酐、脂肪酸及亚硫酸盐等。合成工艺比较成熟:( 1)顺酐与羟基(或胺基)化合物酯化( 缩合); ( 2)酯(或胺) 与亚硫酸盐或亚硫酸氢盐加成( 磺化) 。单酯类表面活性剂对皮肤比较温和, 因而其衍生类的磺基琥珀酸( 酰胺)活性剂在日用化学品中的应用非常广泛。双酯盐产品因具有较低的表面张力( 其水溶液表面张力可达27~ 35 mN /m ), 并以其优良的渗透和润湿分散性作为渗透剂、分散剂、抗静电剂而广泛应用于农业、皮革、纺织、化妆品、金属去垢、合成树脂、洗涤等方面。 3. 2 脂肪酸羟基乙烷磺酸盐 近年来研究的椰油基羟基乙烷磺酸盐是一种温和的阴离子表面活性剂, 结构像两性表面活性剂,Frosch等研究表明, 该表面活性剂具有优良的起泡、乳化、洗涤和分散性能, 不伤皮肤、眼睛。由于其pH 稍显酸性, 它比肥

改性木质素磺酸盐处理工业废水研究

改性木质素磺酸盐处理工业废水研究 木质素磺酸盐是从碱法制浆废水中提取出来的具有苯丙烷结构 的三维网状高分子化合物,是造纸工业的主要副产物,由于其结构比较复杂,衍生物种类繁多,过去很长一段时间被当做造纸污染物处理,这部分资源没有得到合理的利用。随着研究的不断深入发现木质素磺酸盐本身就是一种亲水性的阴离子表面活性剂,加之其分子结构上的羟基、羧基、羰基、醇羟基、甲氧基、酮基等多种活性官能团,因此具有一定的分散、螯合、吸附及絮凝性能,作为水处理剂具有一定的理论依据,同时这些官能团也为木质素磺酸盐的改性提供了可能。常见的木质素磺酸盐包括木质素磺酸钠、木质素磺酸钙和木质素磺酸镁。木质素磺酸盐属可再生资源,改性后的木质素磺酸盐中的官能团增多,分子量增大,絮凝、吸附及螯合能力进一步增强,工业废水处理效果得到很大的提升。以改性木质素磺酸盐处理工业废水能达到以废治废的目的,降低了工业废水的处理成本,目前改性木质素磺酸盐在电镀、印染、造纸及制药废水处理中效果甚好,因此开发改性木质素磺酸盐水处理剂具有一定的现实意义。 1工业废水处理机理研究 改性木质素磺酸盐中多个基团上的氧原子的未共用电子对能与 金属离子形成配位键,产生螯合作用,生成木质素的金属螯合物,再利用其他物理化学方法将其沉淀就能将水体中的重金属清除,同时还

具有一定的吸附、脱色等作用。改性木质素磺酸盐用作水处理剂通过吸附、絮凝、缓蚀、阻垢等多重作用来达到工业废水处理效果,改性后的木质素磺酸盐表面的阴离子增多,疏松结构表面使吸附和絮凝效果进一步增强,再加上其本身良好的缓蚀及阻垢性能作为水处理剂得到了研究者多方位的证实。化学改性中的酚化、羟甲基化、氧化、环氧化、酚醛化、脲醛花、聚酯化等功能性改性均能提高木质素磺酸盐的吸附能力。木质素磺酸盐的絮凝效果的提高主要通过交联及缩合反应引进的具有絮凝性能的官能团来实现,交联反应是用柔软的链段将多个木质素磺酸盐分子连接起来形成大分子,木质素磺酸盐的活性吸附点增多;同时还可通过羟甲基化、氧化、缩合、缩聚等反应来改变木质素磺酸盐的分子构型,增大分子量来提高絮凝效果。接枝共聚是改性木质素磺酸盐研究最多的改性方法,在引发剂的作用下木质素磺酸盐骨架上会产生活性反应点,将具有絮凝及吸附性能的官能团在活性中心的作用下引发聚合形成支链,也可以通过辐射来提高接枝效率,接枝到的活性官能团越多,絮凝及吸附性能就越好。纳米改性木质素磺酸盐是近年来改性木质素磺酸盐的又一新的研究领域,此方面的报道不多。 2工业废水处理效果研究 改性木质素磺酸盐具有良好的吸附、絮凝和螯合作用,作为水处理剂可有效除去废水中的金属离子、悬浮物及有色物质,而且资源丰富,处理效果较好,在工业废水处理中具有很大优势。 2.1处理造纸废水造纸废水主要分为蒸煮废水、中段废水及造纸

20140319木质素磺酸盐在肥料方面的应用研究综述

木质素磺酸盐在肥料方面的应用研究综述 张玉娟20140319 木质素作为地球上每年生长的数量仅次于纤维素的第二大天然高分子聚合物,仅国内制浆造纸工业每年大约就有5000吨左右的木质素副产品,制浆废液中除含有大量的木质素、半纤维素等有机物质外,还含有植物生长所必需的大量营养元素,如氮、磷、钾、硫等,若加以综合利用,则可变废为宝,带来可喜的环境效益和社会效益。目前(2012.7)仅有安徽天一纸业、山东泉林纸业等少数企业实现了综合利用,在众多中小型造纸企业成为污染环境的废物。实现制浆黑液的资源化利用,拓宽木质素的应用领域,推动中小型造纸企业资源化回收黑液中的木质素,由此中小型造纸厂可通过出售木质素或其它衍生产品,收回全部木质素分离投资成本,显著降低污水处理成本,从而改善生态环境。因此,制浆黑液中木质素资源化利用不论是从解决造纸工业污染的角度出发,还是从可再生资源综合利用的角度出发,都是一个重要课题。[1] 木质素及其衍生物木质素磺酸盐等是一种具有网状结构的天然高分子有机化合物,具有大量的活性基团和较强的吸附能力,能与作物生长所必须的氮、磷、钾等经特定的化学反应以及物理吸附合成有机-无机复混肥。肥料中的养分释放是随着木质素在自然界的腐解而进行的,而木质素在土壤中降解缓慢,因此这种肥料具有较强的缓释特性。我国是一个农业大国,农业市场广阔,若能将木质素产品开发与农业生态环境保护相结合起来,既可解决制浆造纸工业的污染问题,又能促进生态农业的发展,是一条极具特色且发展潜力巨大的有效途径。[2] 近年来,研究者们正致力于腐植质类缓释或控释氮肥的开发,目的是要提高肥料的利用率和减少对环境的影响。木质素是土壤中形成腐植质物质的重要先体,已经通过不同的方法广泛用于缓释或控释氮肥的制备研究。[3] 一、木质素磺酸盐作包膜剂类有机-无机复混缓释肥 中国农业科学院土壤肥料研究所张夫道等2005年发明了“有机-无机复混缓释肥料生产方法”,以干基40%发酵腐熟的规模化畜禽场粪便或风化煤(腐殖酸含量50%以上)与60%的化肥(氮、磷、钾可按不同作物需求进行不同配比)为原料,使用有机复混肥干基量0.5%-1%的造粒粘结剂CF2生产有机-无机复混肥,筛选要求粒径1-5mm。采用不同时段释放养分的包膜剂:磺化木质素胶结包膜剂、腐殖酸类混聚物胶结包膜剂、废弃塑料-淀粉混聚物胶结包膜剂、粘土-聚酯混聚物胶结包膜剂包膜,生产有机-无机复混缓释肥料,从而延长复混肥料中氮素的释放时间,适用于各种作物施用。包膜的生产方法:复混肥经皮带输送至旋转包膜圆筒的包膜室,一边在旋转圆筒内转动上扬,一边喷洒雾状包膜剂,至复混肥表面完全湿润为止(包膜剂母液使用量为复混肥干基质量的1%-3%),然后进入扑粉干燥室,湿润的肥料颗粒一边转动、上扬和滚动,一边沾上一层滑石粉(过200目筛孔),最后再干燥、筛选、装袋。[4] 为了评价各肥料氮素养分的缓释性能,采用土柱间歇淋洗法结果如下: 土柱中氮素累积淋出率(%)

电镀工艺总结

电镀工艺总结 随着芯片集成度的不断提高,铜互连己经取代铝互连成为超大规模集成电路制造中的主流互连技术。作为铝互连线的替代技术,铜互连线可以降低互连阻抗,提高集成度、器件密度和时钟频率,降低功耗及成本。由于对铜的刻蚀异常困难,因此铜互连采用双嵌入式工艺,又称双大马士革工艺(Dual Damascene),1)首先沉积一层薄的氮化硅作为刻蚀终止层和扩散阻挡层;2)接着在氮化硅上面沉积一定厚度的氧化硅;3)光刻出微通孔(Via);4)对微通孔进行部分刻蚀;5)光刻出来沟槽;6)继续刻蚀出完整的通孔和沟槽;7)溅射扩散阻挡层(TaN/Ta)和铜种籽层(Seed Layer)。Ta的作用是增强与铜的粘附性,种籽层的作用是作为电镀时的导电层;8)铜互连线的电镀工艺;9)退火和化学机械抛光(CMP),对铜镀层进行平坦化处理和清洗。铜互连双嵌入式工艺示意图如图所示: 铜互连双嵌入式工艺示意图 电镀是完成铜互连线的最主要的工艺。集成电路中的铜电镀工艺一般采用硫酸盐体系的电镀液,镀液由硫酸、硫酸铜和水组成,颜色呈淡蓝色。当电源加在硅片(阴极)和铜(阳极)之间时,溶液中就会产生电流并形成电场。阳极的铜发生反应转化成为铜离子和电子,同时阴极也发生反应,阴极附近的铜离子与电子结合形成镀在硅片表面的铜,铜离子在外加电场的作用下,由阳极向阴极定向移动并补充阴极附近的铜浓度损耗。电镀的主要目的是在硅片上沉积一层致密、无缝隙、无孔洞及其它缺陷,分布均匀的铜。 集成电路电镀铜工艺示意图

脉冲电镀的工作原理主要是利用电流(或电压)脉冲的张弛增加阴极的活化极化和降低阴极的浓差极化。当电流导通时,接近阴极的金属离子充分地被沉积; 当电流关断时,阴极周围的放电离子恢复到初始浓度。这样周期的连续重复脉冲电流主要用于金属离子的还原,从而改善镀层的物理化学性能。 脉冲电镀参数主要有:脉冲电流密度、平均电流密度、关断时间、导通时间、脉冲周期(或脉冲频率)、占空比。 脉冲电镀波形繁多,很多种类都还有待开发,但一般可分为单脉冲电镀(正弦波脉冲电镀、锯齿波脉冲电镀、方波脉冲电镀、多波形脉冲电镀)和双脉冲电镀(周期换向脉冲电镀)。在实际使用中,方波脉冲电镀使用较为普遍。 采用脉冲电流,由于存在着瞬时的反向电流,这无疑会对粗大的晶粒起到整平的作用,同时也会增加阴极极化,从而加快晶核形成速度、降低成长速度使镀层结晶致密而减少空隙的形成。随着集成电路的互连线由铜取代铝,电镀铜技术就被广泛应用于集成电路互连线中。根据集成电路的发展需要,铜互连线对电镀沉积所形成的薄膜的要求也越也越来越高。如何提高电镀铜技术以得到满足集成电路互连要求的铜镀层是研究的方向之一。此外,电镀铜在印制电路板中生产中也有广泛应用,对于柔性互连中电镀铜膜的要求也不断提高,脉冲电镀以其优于直流电镀的特点在柔性互连线制作中越发显示出它的优势。 脉冲电镀是20世纪60年代发展起来的一种电镀技术,因为它的应用范围极广,不但在各种常规镀种的高速电镀上应用,而且在印制板高密度互连通孔酸性镀铜上,在制造纳米晶、纳米多层膜时,应用脉冲电镀都比直流好,因此脉冲电镀发展非常迅速。脉冲电镀的研究主要集中在印刷电路板的通孔镀铜技术上,近几年来,随着信息技术的快速发展对高性能印制电路板(PrintingCircuitBoard,PCB)技术及品质要求不断提高,电路的设计要求趋向于细导线、高密度、小孔径,特别是HDI印制板中的微小盲孔,现今的直流电镀难以满足要求,高厚径比小孔电镀技术就是其关键问题之一。随着脉冲电镀原理研究的进一步成熟、新方法的诞生(如脉冲换向电流电镀将提供更多的可独立调节的脉冲参数)和更高电流密度电源的出现,脉冲电镀将能够解决更多直流电镀不能解决的一些问题,有助于它在非贵金属电镀领域取得更到的发展,再加上脉冲电镀能够借助关断时间内扩散层的松弛克服自然传递的限制,使金属离子浓度得到恢复,对金属离子共沉积十分有利,这将对脉冲电镀在合金电镀领域提供更大的发展空间。同时,因为直流沉积时,电极表面的金属离子消耗得不到及时补充,放电离子在电极表面浓度低,电极表面形成晶核速度小,晶粒的长大较快,而在脉冲条件下,由于电沉积反应受扩散控制,镀层中晶粒长大速度很慢,对纳米晶材料生成十分有利,所以,这也将是脉冲电镀发展的一个主要方向。 在电镀过程中,由于镀层的形成可认为是晶核的形成与成长过程,如果晶核的形成速度大于成长速度则镀层致密,空隙率低。采用脉冲电流,由于存在着瞬时的反向电流,这无疑会对粗大的晶粒起到整平的作用,同时也会增加阴极极化,从而加快晶核形成速度、降低成长速度使镀层结晶致密而减少空隙的形成。脉冲电镀特点主要体现在以下四个方面: l)能够得到孔隙率低、致密、导电率高的沉积层,因此具有良好的防 护能力; 2)降低浓差极化,提高了阴极的电流密度,从而达到提高镀速的作用; 3)消除氢脆,镀层内应力得以改善;

新型芳基烷磺酸表面活性剂的合成及表化性能研究

第3卷第4期2004年8月 江南大学学报(自然科学版)Journal of Southern Yangtze U niversity(N atural Science Edition) V ol.3 N o.4 Aug. 2004  文章编号:1671-7147(2004)04-0419-04 收稿日期:2004-02-18; 修订日期:2004-04-22. 作者简介:刘忠云(1972-),女,吉林梅河口人,应用化学专业硕士研究生. 李在均(1964-),男,四川苍溪人,副教授,硕士生导师.主要从事有机合成方面的研究. 新型芳基烷磺酸表面活性剂的合成及表化性能研究 刘忠云, 李在均, 殷福珊 (江南大学化学与材料工程学院,江苏无锡214036) 摘 要:研究了苯基十四烷基磺酸钠(S odium phenyltetracane sulfonate ,SPTS )、苯基双十四烷基二磺 酸钠(S odium phenylditetracane disulfonate ,S DDS )和十二烷苯基十四烷基磺酸钠(s odium dodecylphenyltetracane sulfonate ,S DPS )3种芳基烷磺酸阴离子表面活性剂的合成及表化性能.以α2十 四烯烃磺酸(α2tetracenesulfonic acid ,C 14?AOS acid )和苯为原料,在150℃反应6h 制得苯基十四烷基磺酸,经中和、纯化和干燥得苯基十四烷基磺酸钠;利用苯基十四烷基磺酸在150℃左右继续与α2十四烯烃磺酸常压反应6h 制得苯基双十四烷基二磺酸,经中和、纯化和干燥得苯基双十四烷基二磺酸钠;以十二烷基苯和α2十四烯烃磺酸为原料,在180℃反应6h 制得十二烷苯基十四烷基磺酸,经中和、纯化和干燥得十二烷苯基十四烷基磺酸钠.对产品的表面性能、泡沫、乳化及硬水稳定性测定表明,3种芳基烷磺酸类阴离子表面活性剂有良好的表面活性,尤其是苯基双十四烷基二磺酸钠. 关键词:合成;芳基烷基阴离子表面活性剂;“Berger ”法;表化性能中图分类号:O 647.2 文献标识码:A Study on the Synthesis of N e w Anionic Alkylaryl Surfactants and Their Surface Chemistry Properties LI U Zhong 2yun , LI Z ai 2jun 3, YI N Fu 2shan (School of Chemical and Material Engineering ,S outhern Y angtze University ,Wuxi 214036,China ) Abstract :The synthesis of new alkylaryl anionic surfactants including s odium phenyltetracane sulfonate (SPTS ),s odium phenylditetracane disulfonate (S DDS )and s odium dodecyl 2phenyltetracane sulfonate (S DPS )and their surface chemistry properties were studied.α2T etracenesulfonic acid reacted with benzene to form phenyltetracane sulfonic acid for six hours with stirring under 150℃in a high pressure reactor.It was neutralized by s odium hydroxide ,s odium tetracylbenzene sulfonate was purified and dried.Phenyltetracane sulfonic acid continued to react with α2tetracenesulfonic acid to form phenylditetracane disulfonic acid for six hours with stirring under 150℃in a three 2necks flask.It was neutralized by s odium hydroxide ,s odium tetracylbenzene sulfonatewas purified and dried.Dodecylbenzene reacted with α2tetracenesulfonic acid for six hours to form dodecylphenyltetracane sulfonic acid with stirring under 180℃in a three 2necks flask.It was neutralized by s odium hydroxide.S odium dodecylphenyltetracane sulfonate was purified and dried.In addition ,s ome surface chemistry properties such as surface tension ,foaming ,emulsification and stability againt

第十六章杂环化合物生物碱

第十六章 杂环化合物、生物碱 杂环化合物的定义:在环状有机化合物中,构成环的原子除了碳原子外还含有其他原子,这环状种化合物就叫做杂环化合物(heterocyclic compound )。除碳以外的其他原子叫做杂原子。常见的杂原子有:氮、氧、硫。 第一节 杂环化合物的分类和命名 一、 分类 按照环的大小和环的数目可分为: 杂环 单杂环 五元环 六元环 苯环与单杂环的稠合杂环(苯并杂环) 两个或两个以上单杂环的稠合杂环O S N H 稠杂环 N N N N N H N 二、 命名 1、音译法:根据外文译音,选用同音汉字,加“口”字旁表示杂环。 O S N H 吡咯呋喃噻吩吡啶N pyrrole furan thiophene pyridine N H 吲哚indole N N 咪啶pyrimidine 取代杂环的命名: ① 杂环的编号从杂原子起依次1,2,3 ……(或:α,β,γ……)。 ② 如环上不止一个杂原子时,则从O 、S 、N 的顺序依次编号。 ③ 有两个相同杂原子的,应从连有H 原子或取代基的开始编号。 ④ 编号时注意杂原子或取代基的位次之和最小。 ⑤ 稠杂环是特定的母体和固定的编号。 N S 5 1 2 4 3 5-乙基噻唑N N H 1 23454-甲基咪唑 CH 3 C 2H 5 N CH 31 23 4563-甲基吡啶 2、根据结构命名:

即根据相应于杂环的碳环来命名,把杂环看作是相应的碳环中的碳原子被杂原子置换而形成的。例如,吡啶可看作是苯环上一个碳原子被氮原子置换而成的,所以叫做氮杂苯。 O S N H N 茂 (环戊二烯)氮茂 氧茂 硫茂 N N 苯氮苯 1,3-二氮苯 第二节 一杂五元杂环化合物 含有一个杂原子的典型五元杂环是呋喃、噻吩、吡咯。 O S N H 一、 呋喃、噻吩、吡咯的结构 1、据现代物理方法证明: ① 呋喃、噻吩、吡咯都是一个平面的五元环结构,即成环的四个C 原子和一个杂原子都是以SP 2杂化轨道成键的。 ②环上每个碳原子的P 轨道有一个电子,杂原子P 轨道上有两个电子。 ③ P 轨道垂直于五元环的平面,互相侧面重叠而形成一个与苯环相似的闭合共轭体系。 ④ 五元环的六个π电子分布在包括环上五个原子在内的分子轨道。 2、分子结构符合休克尔(Huckel)规则(4n+2=6,n=1),π电子数为6。具有芳香性。但芳性比苯弱,环的稳定性差。 3、芳香性秩序: 苯 > 噻吩 > 吡咯 > 呋喃 呋喃的芳香性最弱,实际上它可以进行双烯加成反应,表现出共轭二烯烃的性质。 4、它们的键长数据如下[单位(ppm )]: O S N 140 145 135 172 143 137 138144 135 137 5、吡咯、呋喃、噻吩环上杂原子氮、氧、硫的未共用电子对参与环的共轭体系,使环上的电子云密 度增大。因此,它们都比苯活泼,比苯容易进行亲电取代反应,而且它们进行亲电取代反应的活泼性顺序是: 吡咯 > 呋喃 > 噻吩 > 苯 X +(CF 3CO)2O X COCF 3 +CF 3COOH 三氟乙酐酰化 二、 呋喃、噻吩、吡咯的性质 1、亲电取代反应——主要在杂原子的α位: 它是呋喃、吡咯、噻吩的典型反应。由于它们环上的电子云密度比苯大,比苯容易发生亲电取代反应。同时环稳定性比苯差,因此反应条件与苯不同,需要在较温和的条件下反应,以避免氧化、开环或聚合等副反应。

电镀锌铁合金工艺

电镀锌铁合金工艺 (2007-01-04 17:14:36) 转载▼ 分类:商业资料 人们通过研究得到不同合金比例的性能各异的锌铁合金镀层。锌铁合金镀层中铁的质量分数10%~20%时,镀层的抗斑点腐蚀和抗孔隙腐蚀性能最好;铁的质量分数80%~90%的高铁合金镀层抗蠕变、耐水、涂装性能较好。锌铁合金具有比锌镀层更好的防护性和上漆性,优良的加工性能及可焊性能,成本较低。其耐蚀性是纯锌的5~20倍,硬度在110~130HV。因此,在汽车、家用电器工业得到广泛应用,并进行大量研究,目前已有许多专利应用于生产。 镀液类型 目前研究应用的锌铁合金镀液主要有3类:硫酸盐体系,镀层中铁含量高,难以钝化,通常要采用磷化和涂有机膜层以提高耐蚀性;碱性锌酸盐体系,镀层中铁的质量分数0.4%~1.0%,由于镀层中铁的质量分数比较低,故可以进行常规的钝化,从而提高耐蚀性;氯化物镀液体系,镀层中铁的质量分数<1%,耐蚀性好。另外,焦磷酸盐体系、甲醇溶液体系、低毒性的乙酸溶液体系也有研究应用。 添加剂 3.1络合剂Fe3+、Fe2+的氢氧化物溶度积极低,在碱性镀液中铁不能以简单水合离子状态存在于强碱性镀液中。可供选择的络合剂有醇胺,如单乙醇胺、二乙醇胺和三乙醇胺;胺基羧酸盐,如1、2 二胺基环己四醋酸盐、腈三乙酸盐、乙二胺四醋酸盐;聚胺类,如乙烯二胺、二乙烯三胺、三乙烯四胺;羟基羧酸盐,如柠檬酸盐、酒石酸盐、葡糖酸盐;乙醇酸盐多元醇,如三梨醇、季戊四醇、硫脲等。在酸性镀液中,常规络合剂有柠檬酸、葡糖酸、酒石酸、抗坏血酸、马来酸、己二烯二酸、戊二酸、谷氨酸、醇酸、天门冬氨酸及其碱金属盐。另外,氨三乙酸、乙二胺四乙醇、乙二胺四乙酸及其盐也是合适的络合剂。 3.2表面活性剂在碱性锌酸盐镀液中,表面活性剂可以增加阴极极化,合金镀层晶粒细化、致密。如有机胺环氧氯丙烷、胺与表卤代醇化合物、芳香醛类。 3.3光亮剂

木质素磺酸盐合成工艺

木质素磺酸盐合成工艺 目前工艺: 配料表: 水············12吨 亚硫酸钠······1900公斤 木钠··········5760公斤 液碱··········500公斤 甲醛··········1600公斤 在生产前,一般会把原料木钠堆放一段时间(一般为2个月以上),之后做成的木质素磺酸盐扩散力,高温分散性会优于刚买来的原料木钠所生产的木质素磺酸盐。(推测,像松油脂之类的物质会随着时间慢慢挥发,但扩散力也会提高,目前还不知道原因。) 目前检测木钠主要是检测原料的含固量,硫酸钠含量,PH值。 1、放底水12吨于打浆锅内; 2、放毕,开启搅拌,边搅拌边投亚硫酸钠(约半小时投毕);(亚 硫酸钠溶解) 3、投毕,开始投木钠(约45分钟投毕); 4、投毕,搅拌30分钟取样测含固量(约30%左右); 5、浆料打入反应釜(约1小时); 6、打毕,加液碱调PH至10——11;(调制磺化时的PH值)

7、加入甲醛(约10分钟);(用于缩合反应) 8、加毕,升温; 9、约用2小时升至70℃,保温1.5小时,一般会到72℃; 10、继续升温,约1.5小时升至97℃,保温5小时,一般会到100℃; 11、冷却至70℃——80℃,放料至中转槽; 12、储槽放料至振动筛过滤,过滤后泵入储槽。 原生产工艺,现无具体操作规程。 主要是:刚买来的木钠原料,经过与水打浆后进压滤板,再经热水漂洗至PH中性,拆卸下来的滤饼再用现生产工艺进行生产木质素磺酸盐。做出来的木质素磺酸盐扩散力与目前工艺相差不大,但高温分散性会好些。

目前所面临的问题及改进思路: 1、鉴于目前木质素磺酸盐高温分散性没以前好,打算经过小试恢 复到原先工艺,既木钠先经过打浆洗涤再生产; 2、现工艺最后是用250目丝网过滤,改用500目丝网时很难过 滤;目前该方法还有待小试摸索改进; 3、目前有些公司直接用造纸厂的黑浆、草浆进行生产木质素磺酸 盐,质量基本与我们现有方法生产的木质素磺酸盐相当或略好。 (该原料黑浆、草浆比较便宜,采用此方法可大幅度降低成本) 胡老师,以上是我对现有工艺的了解,或许不是很详细,有待胡老师点拨指导。我们期待能与胡老师合作,帮我们改善现有原料的木质素生产工艺;更期待能用黑浆或草浆所生产的木质素磺酸盐的先进工艺。

生物碱习题剖析

3 生物碱的碱性与哪些有关 (1)氮原子的杂化类型:随杂化度升高而增强;②诱导效应:氮原子所连接的基团如为供电基团则碱性增强,如为吸电基团则碱性减弱;③诱导一场效应:使生物碱的碱性降低;④共轭效应:若生物碱分子中氮原子孤对电子成P-兀共轭体系时,通常情况下,其碱性较弱;⑤空间效应:若生物碱的空间环境不利于氮原子接受质子,其碱性减弱;反之,则碱性增强;⑥分子内氢键形成:若生物碱分子结构中氮原子附近存在羟基、羰基等取代基团,碱性增强。 4.生物碱类化合物的鉴别方法①沉淀反应:大多数生物碱能和某些酸类、重金属盐类以及一些较大分子量的复盐反应,生成单盐、复盐或络盐沉淀。如与碘化铋钾试剂的反应; ②显色反应:用于生物碱的冠色试剂很多,它们往往因生物碱的结构不同而显示不同的颜色,Mandelin试剂(1%钒酸铵的浓硫酸溶液);③成盐反应:绝大多数生物碱可与酸形成盐类,但不同类型的生物碱与酸成盐的形式不同,主要有:季铵生物碱的成盐反应、含氮杂缩醛生物碱的成盐反应、具有烯胺结构生物碱的成盐反应、涉及氮原子跨环效应生物碱的成盐反应。 5.生物碱类化合物的提取一般从天然药物巾提取总生物碱通常采用溶剂法、离子交换法、沉淀法等提取分离方法。①对于脂溶性生物碱可采取酸水提取法、醇类溶剂提取法、亲脂性有机溶剂提取法;②对于水溶性生物碱可采取沉淀法、溶剂萃取法。 6.生物碱类化合物的分离对于生物碱的分离通常分为系统分离与特定分离。一般的方法是先对总碱进行初步分离,将性质相近的生物碱分成几个类别或部位。然后再按各成分的碱度、极性或功能团的差异分离生物碱单体。①总生物碱的初步分离:根据总生物碱中各成分理化性质的差异,可将其初步分离为强碱性的季铵碱、中等强度碱性的叔胺碱及其酚性碱、弱碱性生物碱及其酚性碱等几个部分;②生物碱单体的分离:利用生物碱碱性的差异、利用生物碱极性的差异或生物碱盐的溶解度差异、利用生物碱特殊官能团、利用色谱法进行分离。 7.生物碱类化合物的结构鉴定①色谱法:色谱法在生物碱鉴别中的应用主要体现在天然药物及天然药物制剂中有无生物碱存在的检识、指导生物碱的分离、检查生物碱的纯度及对已知生物碱的鉴定等多个方面,主要有:薄层色谱法、纸色谱法、高效液相色谱法、气相色谱法;②谱学法:目前,在生物碱结构鉴定工作中,最常用的分析方法有紫外光谱(U V)、红外光谱(IR)、质谱(M S)和核磁共振 (N M R)。 【习题】 一、名词解释 1.生物碱 2.两性生物碱 3.生物碱沉淀反应 4.诱导效应 5.共轭效府 6.空间效应 7.诱导一场效应 8.氢键效应 二、填空题 1.小檗碱呈黄色,而四氢小檗碱则无色,其原因在于。 2.弱碱性生物碱在植物体内是以状态存在。 3.在生物碱的色谱检识中常用的显色剂是,它与生物碱斑点作用常显色。 4.Mayer’s试剂的主要成分为;Dragendorff’s试剂的主要成分为。 5.总生物碱的提取方法大致有以下三类:、、。 6.麻黄碱和伪麻黄碱的分离可利用它们的——盐在水中的溶解度不同,在水中溶

农药用分散剂木质素磺酸盐的制备与应用

农药用分散剂木质素磺酸盐的制备与应用 摘要 文章介绍了自然界木质素的形成,工业木质素的来源,木质素磺酸盐的生产工艺和流程;分析了木质素磺酸盐的分散机理,热稳定性机理,及影响分散和热稳的诸多因素;同时,对国产木质素磺酸盐的现状做了概述,对国产木质素磺酸盐在农药上的应用提出很好的建议。 一,前言 木质素磺酸盐作为分散剂历史悠久,早在1909年,人们发现木质素可以作为分散剂用于染料加工中。但当时所谓分散剂是用造纸废液中直接使用,它的质量和化学性质较差。 最早(60年前),我国在农药上使用,也是把亚硫酸制浆废液在用“液体”和“粉体”农药上,叫“展着剂”,起到分散和粘结作用。随着科学技术的进步,农药工业的发展和剂型加工技术的提高,对农药质量,特别是农药加工水平提出了更高的要求。70年代国内企业对亚硫酸制浆废液经过一系列化学改性后生产的木质素分散剂质量有明显改善,大量用于可湿性粉剂的加工。 80年代末到90年代初期,国外的木质素分散剂相继进入中国,包括:美国Westvaco 公司,牛皮浆的磺化木质素磺酸钠分散剂,挪威Borrgaard公司,亚硫酸法制浆的木质素磺酸盐分散剂,两个世界上生产和销售木质素磺酸盐产品最大和最主要的公司,由于木质素分散剂的品种很多,有的和染料分散剂是通用的。 目前,由于木质素分散剂绿色,环保,可降解,是用来加工农药剂型的主要助剂,已经得到业内人士的共识。已知,生产农药可湿性粉剂,一般性能的木质素分散剂就可以满足要求,国内的亚硫酸盐法木质素磺酸盐分散剂已经大量使用。对于近年发展的悬浮剂,水分散颗粒剂,干悬浮剂上用的木质素分散剂质量要求高,必须采用高质量的木质素磺酸盐分散剂。主要是经过进一步处理的木质素分散剂可与多种农药有良好的相容性,无论在常温下还是高温下都可以有良好的分散效果。 长期以来,高端木质素分散剂市场,有国外公司的产品占优。他们进入中国的分散剂都是以木材为原料生产的木质素产品。国内的木质素磺酸盐,由于各种原料复杂,有稻草的,有芦苇的,有木材的,质量参差不齐,所以很难做到高性能的农药分散剂。 在市场经济的大浪淘沙中,我国仅有的三家木材为原料的亚硫酸盐制浆的企业,转产的一家,关停的一家,仅剩下在吉林省靠近俄罗斯和朝鲜的边陲小镇的“延边石岘双鹿实业有限责任公司”,其前身是中国第一造纸厂,延边石岘白麓纸业有限公司(上市公司)。现在已经完全私有化。公司新开发的几只农药木质素分散剂能满足高质量农药剂型的需要,制备高标准可湿性粉剂,水分散颗粒剂,干悬浮剂性能优良。质量和国外产品具有可比性。 木质素分散剂加工剂型农药有如下优点:1.加工各种制剂都有好的分散性和润湿性,2.与农药活性成分有良好的相容性,3.绿色环保,完全可生物降解,4.资源丰富,价格低廉,5.具有抗沉淀和保护胶体作用,6.与金属离子有螯合作用,7.增强悬浮剂的抗硬水能力,其缺点是:1.降低表面张力、润湿性和渗透力方面较差,2.带有颜色,不能制备白色和浅颜色剂型,3.脱糖不彻底的产品有吸潮性。 二,木质素磺酸盐的制备 1.木质素形成与特性 在自然界的植物中二氧化碳通过光合作用生成D-葡萄糖,进一步生成莽草酸,再进一步生成芳香基的搁氨酸和对-羟基肉桂酸,然后再进一步生成木质素的典型单体结构,苯基丙烷。它们是:丁香醇(硬木),松柏醇(软木),香豆醇(草类),统称“苯基丙烷”。如图

含铬电镀废水处理方案

6T/h含铬电镀废水 设 计 方 案 设计编号:ZH20110829 宜兴市中汇环保设备 联系人:史建忠联系: 地址:省宜兴市屺亭镇 214213 Fax: 00 E-mail:yxzhgs163.

1、总论 1.1项目背景 铬是常见的重金属元素,广泛用于冶金、化工、电镀等工业中,同时也产生了大量的含铬废水,最终排入水体。 铬化合物浓度过高时会有毒性,其毒性与化学价态和用量有关,二价铬一般被认为是无毒的,而铬主要以六价和三价两种形态存在,六价铬更容易被人体吸收,六价铬对人体皮肤有刺激和过敏作用。六价铬经过切口和擦伤处进入皮肤,会因腐蚀作用而引起铬溃疡,六价铬对呼吸系统的损害也很大。 电镀中铬主要以六价铬的形态存在,对我们的环境污染很严重,为发展经济,保护环境,需要将生产废水进行集中处理后才能达标排放。 受建设单位委托,我们在综合比较分析国外电镀废水治理情况的基础上,结合我们在类似企业废水处理过程中的实际经验,采用成熟的化学法处理电镀废水工艺,供专家和领导审查决策。 1.2编制依据 1.2.1《电镀污染物排放标准》GB21900-2008; 1.2.2《污水综合排放标准》(GB8978-1996); 1.2.3《室外排水设计规》GB50101-2005; 1.2.4《电镀废水治理设计规》GBJ136-90; 1.2.5建设单位提出的设计要求和提供的其它基础资料; 1.2.6我公司电镀废水处理工程实例及工程实践经验; 1.2.7国电镀污水处理厂类比调研结果

1.3设计原则 1.3.1工艺设计充分考虑电镀废水成分复杂、管理难度大、分水困难,水量、水质变化大,达标处理难度大,电镀污泥作为危险废物,处理难度大,易造成二次污染的特点,根据我公司对投入运营的电镀污水处理调研结果及处理工艺的对比分析,选用工艺成熟稳妥、适应能力强、达标稳定性高、相对处理成本低、污泥产量低的污水处理工艺。 1.3.2考虑运行管理要求,在设计中加强自动控制,提高污水处理设施的现代化,降低劳动强度并保持污水处理系统连续稳定的运行。 1.4设计围 本方案设计包括从集水池进水口开始到标准排放口出水排放为止的污水处理站的污水处理工艺、总图、电气、自控等的设计;设备选型与非标设备设计;污泥处理工艺设计等。 2、废水来源、废水特点、废水分类 2.1电镀生产工艺及废水来源 电镀是将金属通过电解方法镀到制品表面的过程,常用的镀种有镀镍、镀铜、镀铬、镀锌等,其电镀工艺大体相同,在电镀过程中,除油、酸洗和电镀等操作之后,都用水清洗;电镀废水来源于电镀生产过程中的镀件清洗、镀液过滤、废镀液、渗漏及地面冲洗等,其中镀件清洗水占80%以上。 大多数电镀厂系综合性多镀种作业,涉及铬、镍、锌、铜等多镀

电镀锌的原理和工艺

回到主页 电镀锌的原理和工艺 电镀:就是利用电解,在制件表面形成均匀、致密、结合良好的金属或合金沉积 层的过程。 一. 电镀锌: (一)概述 与其他金属相比,锌是相对便宜而又易镀覆的一种金属,属低值防蚀电镀层.被 广泛用于保护钢铁件,特别是防止大气腐蚀,并用于装饰.镀覆技术包括槽镀(或挂 镀)、滚镀(适合小零件)、自动镀和连续镀(适合线材、带材). 目前,国内按电镀溶液分类,可分为四大类: 1.氰化物镀锌: 由于(CN)属剧毒,所以环境保护对电镀锌中使用氰化物提出了严格限制,不断促 进减少氰化物和取代氰化物电镀锌镀液体系的发展.要求使用低氰(微氰)电镀液. 采用此工艺电镀后,产品质量好,特别是彩镀,经钝化后色彩保持好. 2.锌酸盐镀锌: 此工艺是由氰化物镀锌演化而来的.目前国内形成两大派系,分别为: a)武汉材保所的”DPE”系列 b)广电所的”DE”系列. 都属于碱性添加剂的锌酸盐镀锌;PH值为12.5~13. 采用此工艺,镀层晶格结构为柱状,耐腐蚀性好,适合彩色镀锌. 典型配方: NaOH-------------110~120g/l ZnO---------------11~12g/l 94------------------5~7g/l 94为产品代号是”DPE-Ⅱ”和乙醇胺的结合物. 注意:产品出槽后—>水洗—>出光(硝酸+盐酸) —>水洗—>钝化—>水洗—>水 洗—>烫干—>烘干—>老化处理(烘箱内80~90oC). 3.氯化物镀锌 此工艺在电镀行业应用比较广泛,所占比例高达40%. 钝化后(兰白)可以锌代铬(与镀铬相媲美),特别是在外加水溶性清漆后,外行人 是很难辩认出是镀锌还是镀铬的. 此工艺适合于白色钝化(兰白,银白).在客户无特殊要求时,最好是选择银白钝 化(色泽保持较稳定). 典型配方: KCl----------------------180~220g/l ZnCl---------------------65~75g/l H 3BO 3 -------------------25~30g/l(缓冲剂). PH值:5~5.5 CI-87--------------------15~20g/l(光亮剂). 4.硫酸盐镀锌

相关主题
文本预览
相关文档 最新文档