当前位置:文档之家› 涡轮螺旋桨发动机

涡轮螺旋桨发动机

涡轮螺旋桨发动机
涡轮螺旋桨发动机

涡轮螺旋桨发动机

涡桨发动机是用燃气轮机驱动螺旋桨,同时还利用了喷气作推力。可分为直接传动式和自由涡轮式两种类型。涡轮需要通过减速器带动螺旋桨,减速器的作用是将高转速低扭矩变为低转速高扭矩并送到螺旋桨,减速比一般为5-15.推力由两部分组成,一部分螺旋桨产生,一部分发动机是喷气推进力。85%-95%燃气能量在涡轮中转换成机械能带动螺旋桨。

涡轮喷气发动机由进气道、压气机、燃烧室、涡轮和尾喷管组成。其原理简单的来说,空气进入进气道,在压气机的作用下增大压力,然后在燃烧室与燃料充分燃烧,带动涡轮旋转,产生高温高压燃气,然后在尾喷管中继续膨胀,从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。

涡轮风扇发动机是在涡轮喷气发动机基础上改进而来,因为涡轮喷气发动机在低速状态下油耗大,航程低。其原理是在进气道之后,压气机之前加了一排或者几排风扇,然后在压气机外围有一个管壁,直接通向加力燃烧室,称为外涵道;压气机至加力燃烧室这一段称为内涵道。空气进入进气道后,经过风扇,一部分空气进入外涵道直接进入加力燃烧室,另一部分空气则和涡喷发动机一样经过压力机加压,燃烧室燃烧,涡轮转动之后进入加力燃烧室,这样的好处就是低速时一部分空气未经燃烧直接与燃烧后的燃气混合排出,相比涡喷更加省油;高速加力时一部分未经燃烧的空气又可以在加力燃烧室与喷

出的油料充分的燃烧,相比涡喷更可以获得更大的推力。

涡扇发动机的内外涵道空气流量之比称为涵道比,涵道比的高低对发动机性能影响很大。涵道比大,其低速性能好,省油,但高速性能差。反之则相反。

涡轮螺旋桨发动机可以理解成一个超大涵道比的涡轮风扇发动机,其外部的风扇就相当于涡扇发动机的外涵道。由于涵道比超大,尾喷口产生的推力只有总推力的一点点,而且相对于涡扇发动机更加省油,在低速状态下拥有更好的性能,但由于螺旋桨的制约,速度只能维持在900KM以下。涡桨发动机由于具有省油,低速性能好的特点,被广泛应用于巡逻,灭火,反潜,运输,及民用领域。

螺旋桨

螺旋桨 螺旋桨负责把引擎的功率转变为向前的推力,重要性不言而喻,螺旋桨推进飞机的原理与火箭、导风扇飞机、喷射机不同,也与船用螺旋桨不同,火箭等前进是因为动量守恒的关系,如果飞机也是靠动量守恒的原理前进,那螺旋桨就要把空气尽量快尽量多往后吹去,那螺旋桨的形状就应该像电扇叶片一样宽且短,而不是像现在我们看的细细长长的,导风扇扇叶形状类似船用螺旋桨,效率却很差,因为导风扇引擎、加速管及支撑等物件挡住了不少气流,而且导风扇后送的空气速度不够快,质量更不够多。 我们应该把桨叶看成一片小型的机翼,引擎转动的速度加上飞机前进的速度,使桨叶对空气产生相对的速度,桨叶的截面本来就是一个翼型,然后因伯努利定律产生升力,只是此时的升力是向前的,称为推力,使飞机向前,历史上有名的竞速机GeeBee,得过很多次世界冠军,也有不少模型像真机,请读者注意其螺旋桨与机身的比例,它螺旋桨向后的气流三分之二以上被引擎及机身偏折,根本没往正后方吹,使人不禁怀疑它怎麼飞,可是它还是世界竞速冠军呢,所以记得螺旋桨的风大不大与推力毫无关系。 螺旋桨可依不同方式分类,我们真正有兴趣的是直径与螺距,将於下节讨论,其余分类如下: 依桨叶数: 单桨:竞速机常用,可避免吃到前叶的尾流,效率最佳,但另一端要配平。 双桨:最常见的型式,合理的效率,容易平衡。 三桨以上:像真机或桨叶长度受限时使用,效率稍差。 依推力方向: 拉力桨:即正桨,从飞机前面产生拉力使飞机向前。 推力桨:即反桨,从飞机后面产生推力使飞机向前,少数引擎可逆转,双引擎飞机其中一个引擎逆转用反桨以抵销反扭力。 依材值: 木桨:刚性好,重量轻,但易损坏。

塑胶桨:便宜,选择性多,较不易损坏。 碳纤桨:最好,最贵。 第二节螺旋桨的选择 我们仔细看一支螺旋桨 上面除了公司的标志外如:[APC],另外还有一组数字12x9,这是选择螺旋桨最 重要的一组数字,12代表这支螺旋桨直径是12英寸,9代表螺距是9英寸,另一组数字305x227是公制,单位是mm,代表意义完全一样,直径的意思大家 都了解,螺距的意思是螺旋桨旋转一圈,依螺旋桨的角度,理论上螺旋桨前进的距离,当螺旋桨旋转时桨上的点因距离轴心的不同,行走的距离也不同[=2 x 3.1416 x r],现在的螺旋桨都是定螺距桨,就是旋转一圈桨上每一点的螺距都 一样,所以越靠近轴心,桨叶角越大,桨尖部分角度就比较小,当然还有一种定螺角桨,这种桨桨上每一点角度都一样,当旋转一圈桨上每一点的螺距都不一样,越靠桨尖越大,最常见的就是竹蜻蜓,相信大家都玩过,另外也常见於初级橡皮筋动力飞机,因为制作非常简单。 你买一个新引擎,引擎的说明书会建议你,试车时用多大的桨,像真机用多大的桨,特技机又用多大的桨,弄得你迷迷糊糊,在这里说明一下,试车时用的桨一般都比较大,是防止万一不小心转数过高,使新引擎烧毁,没其他意思,像真机及特技机用的桨不同,最主要是因为飞机速度不同的关系,特技机一般飞行速度比较快,希望螺旋桨在高速飞行时比较有效率,像真机一般来说翼面负载大,希望螺旋桨在低速时比较有效率,起飞、降落时才不会出差错,没人会管它极速快不快,我们假设引擎输出的最大功率是一定值,输出功率在螺旋桨到达恒定转速时要克服的是螺旋桨的阻力,我们前面说过应该把桨叶看成一片小型的机翼,螺距越大就是桨叶角越大,相当於机翼攻角越大,当然阻力就越大,螺旋桨越长,面积及桨端切线速度也越大,阻力也越大,既然最大功率是一定值,我们只好在直径与螺距上作妥协。 特技机希望螺旋桨在高速飞行时比较有效率,像真机希望螺旋桨在低速时比较有效率,我们再提醒一次应该把桨叶看成一片小型的机翼,既然是机翼,同样就会有攻角、失速问题,甚至诱导阻力情形也一样,为了找出最佳攻角,请参看,合成的气流速度等於螺旋桨的切线速度加上飞机前进的速度[假如你对向量不熟悉的话,因为是相对运动,你可以假设你是一只蚂蚁趴在螺旋桨前缘,你不动,让气流来吹你,想像一下因螺旋桨旋转加上飞机前进,你脸上吹的是那方向来的风],

分析涡轮增压发动机和自然吸气发动机的优劣

分析涡轮增压发动机和自然吸气发动机的优劣 ——从工程热力学角度分析 一、对比分析两发动机工作原理 (1)涡轮增压发动机 指的是配备涡轮增压器的发动机。涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。 (2)自然吸气发动机 自然吸气式是没有增压器的,指空气单纯经过空气滤清器——节气门(我们俗称的“油门”)——进气歧管——到达“汽缸”,汽油是通过喷油嘴直接喷射在进气歧管里的。 以四缸发动机为例,一个活塞作一次功有四个行程:下行(进气门打开,存在压力差,空气和燃油的混合气在压力差的作用下进入汽缸)——上行(进气门关闭,压缩混合气,活塞上行到最高点时点火)——又下行(混合气燃烧膨胀,推动活塞对外作功,输出动力)——又上行(排气门打开,排气)。自然吸气式就是指在上面第一个行程中,混合气是靠自然形成的压力差进行吸气,增压式就是指先把气体压缩,提高气体的压力和密度,当气门打开的时候靠压力差和气体自身的高压来增加进气量,提高功率。 综上对比分析两发动机工作原理不难发现,涡轮增压发动机的进气量相比自然吸气发动机的进气量要大很多,从而燃烧所获得的热量也就相应增多,这决定了涡轮增压发动机的功率要大于自然吸气发动机的功率。而之所以涡轮增压发动机的进气量大,主要是因为其中空气压缩机的作用,下面将从工程热力学角度分析空气压缩机的工作原理。

涡轮发动机基础前五章复习题0405无答案讲解

第1章概述 1.燃气涡轮发动机具体包括:涡轮喷气发动机、涡轮螺旋桨发动机以及: A. 涡轮风扇发动机和涡轮轴发动机 B. 涡轮风扇和冲压发动机 C. 涡轮轴发动机和冲压发动机 D. 涡轮轴发动机和活塞发动机 2. 是热机同时又是推进器的是: A. 活塞发动机 B. 涡喷发动机 C. 带涡轮增压的航空活塞发动机 D. 涡轮轴发动机 3. 涡轮喷气发动机的主要部件包括: A. 压气机、燃烧室、尾喷管、排气混合器、消声器 B. 压气机、涡轮、尾喷管、排气混合器、燃烧室 C. 压气机、涡轮、反推装置、消声器、进气道 进气道、压气机、涡轮、尾喷管、燃烧室D. 4.涡扇发动机的总推力来自: A. 仅为内涵排气产生 B. 仅为外涵排气产生 C. 由内外涵排气共同产生 内涵排气和冲压作用产生D. 5. 涡扇发动机的涵道比是指: A. 外涵空气流量与内涵空气流量之比 B. 外涵空气流量与进气道空气流量之比 C. 内涵空气流量与外涵空气流量之比 D. 内涵空气流量与流过发动机的总空气流量之比 6. 以下哪两类燃气涡轮发动机是靠排气来获得推力的: A. 涡轮螺旋桨发动机和涡轮轴发动机 B. 涡轮喷气发动机和涡轮螺旋桨发动机 C. 涡轮喷气发动机和涡轮风扇发动机 涡轮风扇发动机和涡轮轴发动机D. 7.涡轮轴发动机、涡轮螺旋桨发动机与涡轮喷气、涡轮风扇发动机相比: A. 都是靠排气来产生推力 B. 都比后者的推进效率要高

C. 都有核心机 17 / 1 推力更大D. 8. 燃气涡轮发动机的核心机包括: A. 压气机、涡轮、尾喷管 B. 压气机、燃烧室、涡轮 C. 压气机、燃烧室、加力燃烧室 压气机、涡轮、反推力装置D. 9. 喷气发动机进行热力循环,所得的循环功为: A. 加热量与膨胀功之差 B. 加热量与压缩功之差 C. 加热量 D. 加热量与放热量之差 10. 单位质量的空气流过喷气发动机所获得的机械能为: A. 空气在燃烧室里所获得的加热量 B. 空气在压气机的所获得的压缩功 C. 燃气在涡轮里膨胀所做的膨胀功 燃气的排气动能与空气的进气动能之差D. 11.认为燃气在尾喷管完全膨胀,流过发动机的空气流量与燃气流量相等,则涡轮喷气发动机的推力)有直接关系大小与(A. 空气流量、排气速度与进气速度之差 B. 空气流量、膨胀效率大小 C. 空气流量、排气速度高低 空气流量、飞行马赫数大小D. 12. )有直接关系(若喷气发动机在地面台架试车,则推力大小与:A. 空气流量、飞行马赫数大小 B. 空气流量、排气速度高低 C. 空气流量、排气速度与进气速度之差 空气流量、膨胀效率大小D. 13. 可以表示为:N 喷气发动机的循环功率A. 空气流量与每千克空气动能差的乘积 B. 空气流量乘以每千克空气的排气动能 C. 空气流量乘以每千克空气的进气动能 每千克空气的动能差D. 14. 喷气发动机的推进效率为: A. 推进功率与循环功率之比 B. 推进功率与加热量之比 C. 推进功与循环功率之比 推进功与加热量之比D.

发动机涡轮增压器的特点及使用注意事项

发动机涡轮增压器的特点及使用注意事项 汽车发动机涡轮增压器主要由涡轮机罩、压气面罩及增压壳等组成。 废气涡轮增压就是利用柴油机排出的能量来驱动涡轮机,从而带动压气机,来提高进气压力增加充气量。增加发动机的进气压力,主要是靠装在发动机上的一个径流式废气涡轮增压器来实现。当发动机运转时,利用发动机排出的废气流经涡轮机的力量,迫使涡轮机叶轮高速旋转。因涡轮机叶轮与压气机叶轮同在一根轴上,所以在涡轮机叶轮高速旋转的同时,也带动压气机叶轮做相应的调整旋转,从而使通过压气机内的空气速度和压力增加。又因压气机出气口是和发动机进气支管相连接的,所以,这些经过增压后的空气,也就能顺利地进入发动机的燃烧室以供燃油燃烧。 柴油机采用废气涡轮增压不仅可提高功率,还可减少单位功率质量、缩小整机外形尺寸、降低燃油消耗。 1、废气涡轮增压的优点 1.1增压器与发动机只有气体管路连接而无机械传动,因此增压方式结构简单,不需要消耗功率。 1.2在发动机重量及体积增加很少的情况下,发动机结构无需做重大改动,便很容易提高功率20%-50%。 1.3由于废气涡轮增压回收了部分能量,故增压后发动机经济性也有明显提高,再加上相对减小了机械损失和散热损失,提高了发动机的机械效率和热效率,使发动机涡轮增压后燃油溺消耗率可降低5%-10%。 1.4涡轮增压发动机对海拔高度变化有较强的适应能力,因此装有废气涡轮增压的汽车在高原地区具有明显的优势。 2、废气涡轮增压器在使用中应注意一下几点: 2.1增压器的转子轴转速高达80000-100000r/min,若用一般机械中的轴承将无法正常工作。因此,增压器普遍采用全浮动轴承。全浮动轴承与转子轴和壳体轴承之间均有间隙,当转子轴高速旋转时,具有0.25-0.4Mpa压力的润滑油充满这两个间隙,使浮动轴承在内外两层油膜中随转子轴同向旋转,但其转速却比转子轴低得多,从而使轴承相对轴承孔和转子轴的相对线速度大幅度下降。由于有双层油膜,可以双层冷却,并产生双层阻尼。由此可知,浮动轴承具有高速轻载下工作可靠等优点,但同时也发现浮动轴承对润滑油的要求很高。必须注意按规定牌号加注润滑油。 2.2所用润滑油必须清洁,否则将加速轴承磨损,甚至导致增压器及发动机性能恶化。因此,必须严格按照保养规定,定期清洗机油滤清器滤芯。15000km磨合期更换一次机油和滤芯,以后每10000km更换一次机油。 2.3应按保养规定定期清洁空气滤清器,每两年便更换一次空气滤清器滤芯或按行驶里程定期更换。使用中应经常检查进气系统和排气系统的密封性。 2.4为确保浮动轴承的润滑,发动机刚起动时,应怠速运转几分钟(至少30s),因为机油的压力以及机油循环至浮动轴承处需要一定时间,否则浮动轴承的润滑条件得不到保障,加剧轴承磨损,甚至发生卡死故障。停机时也同样如此,逐渐减少负荷,直至怠速运转几分钟后方可停机。 2.5增压器在使用了2000-2500h后,应在发动机不解体的状态下测量转子轴的轴向移动量。测量前应先将进、排气管从增压器上拆下,把千分表触点顶在转子轴上,然后轴向推动叶轮进行测量,移动量应为0.10-0.30mm。若超差则应将增压器拆下检修,或更换增压器。

涡轮发动机基础期中习题

第一章 1. 燃气涡轮发动机具体包括:涡轮喷气发动机、涡轮螺旋桨发动机以及:A A. 涡轮风扇发动机和涡轮轴发动机 B. 涡轮风扇和冲压发动机 C. 涡轮轴发动机和冲压发动机 D. 涡轮轴发动机和活塞发动机 2. 是热机同时又是推进器的是:B A. 活塞发动机 B. 燃气涡轮发动机 C. 带涡轮增压的航空活塞发动机 D. 火箭发动机 3. 涡轮喷气发动机的主要部件包括:D A. 压气机、燃烧室、尾喷管、排气混合器、消声器 B. 压气机、涡轮、尾喷管、排气混合器、燃烧室 C. 压气机、涡轮、反推装置、消声器、进气道 D. 进气道、压气机、涡轮、尾喷管、燃烧室 4. 涡扇发动机的总推力来自:C A. 仅为内涵排气产生 B. 仅为外涵排气产生 C. 由内外涵排气共同产生 D. 内涵排气和冲压作用产生 5. 涡扇发动机的涵道比是指:A A. 外涵空气流量与内涵空气流量之比 B. 外涵空气流量与进气道空气流量之比 C. 内涵空气流量与外涵空气流量之比 D. 内涵空气流量与流过发动机的总空气流量之比 6. 以下哪两类燃气涡轮发动机是靠排气来获得推力的:C A. 涡轮螺旋桨发动机和涡轮轴发动机 B. 涡轮喷气发动机和涡轮螺旋桨发动机 C. 涡轮喷气发动机和涡轮风扇发动机 D. 涡轮风扇发动机和涡轮轴发动机 7. 涡轮轴发动机、涡轮螺旋桨发动机与涡轮喷气、涡轮风扇发动机相比:B A. 都是靠排气来产生推力 B. 都比后者的推进效率要高 C. 都有核心机 D. 推力更大 8. 燃气涡轮发动机的核心机包括:B

A. 压气机、涡轮、尾喷管 B. 压气机、燃烧室、涡轮 C. 压气机、燃烧室、加力燃烧室 D. 压气机、涡轮、反推力装置 9. 喷气发动机进行热力循环,所得的循环功为:D A. 加热量与膨胀功之差 B. 加热量与压缩功之差 C. 加热量 D. 加热量与放热量之差 10. 单位质量的空气流过喷气发动机所获得的机械能为:D A. 空气在燃烧室里所获得的加热量 B. 空气在压气机的所获得的压缩功 C. 燃气在涡轮里膨胀所做的膨胀功 D. 燃气的排气动能与空气的进气动能之差 11. 认为燃气在尾喷管完全膨胀,流过发动机的空气流量与燃气流量相等,大小与: 则涡轮喷气发动机的推力()有直接关系A A. 空气流量、排气速度与进气速度之差 B. 空气流量、膨胀效率大小 C. 空气流量、排气速度高低 D. 空气流量、飞行马赫数大小 12. 若喷气发动机在地面台架试车,则推力大小与:()有直接关系B A. 空气流量、飞行马赫数大小 B. 空气流量、排气速度高低 C. 空气流量、排气速度与进气速度之差 D. 空气流量、膨胀效率大小 13. 喷气发动机的循环功率N 可以表示为:A A. 空气流量与每千克空气动能差的乘积 B. 空气流量乘以每千克空气的排气动能 C. 空气流量乘以每千克空气的进气动能 D. 每千克空气的动能差 14. 喷气发动机的推进效率为:C A. 推进功率与循环功率之比 B. 推进功率与加热量之比 C. 推进功与循环功率之比 D. 推进功与加热量之比 15. 推进效率的高低取决于:D A. 排气速度高低 B. 飞行速度高低 C. 推进功率的大小 D. 排气速度与飞行速度之比的大小

普惠PT6涡桨、涡轴发动机结构及参数

PT6系列发动机是加拿大普惠公司的产品,包括涡桨和涡轴变种,是当前使用最为广泛的输出轴功率的航空发动机之一。在美国军用编号中,PT6的相应型号分别被命名为T74和T101。 与首台在1963年面世的450SHP轴马力的PT6A发动机相比,如今PT6发动机系列的功率增加了四倍,功重比提高了40%,燃油消耗率降低了20%。 据了解,PT6发动机已生产了52000多台,并被应用在130个不同领域,PT6发动机所在机队的飞行时间已累计多达3.9亿小时。在全球航空领域普遍进行的重要任务中都能找到PT6发动机,从救援工作到预定的客运服务,从货运服务到要客接送,从农业应用到军事飞行培训、从消防救火到搜救任务。PT6A发动机高可靠性也加速了20世纪80到90年代的单发涡桨飞机的发展。

PT6A 是涡桨发动机,PT6B 和PT6C 是涡轴发动机。PT6发动机的各变种及参数如下: PT6A http://www.pwc.ca/en/engines/pt6a PT6A 家族包括了一系列自由涡轮涡桨发动机,输出功率500-1940shp (433-1447 kW ) Thermodynamic Power Class* (ESHP***) Mechanical Power Class* (SHP) Propeller Speed (Max. RPM) Height** (Inches) Width** (Inches) Length** (Inches) PT6A 'Small' (A-11 to A-140) 600 to 1075 500 to 900 1,900 to 2,200 21 to 25 21.5 61.5 to 64 PT6A 'Medium' (A-41 to A-62) 1,000 to 1,400 850 to 1,050 1,700 to 2,000 22 19.5 66 to 72 PT6A 'Large' (A-64 to A-68) 1,400 to 1,900 700 to 1,700 1,700 to 2,000 22 19.5 69 to 75.5 The PT6A family is a series of free turbine turboprop engine providing 500 to 1,940shp (433 to 1,447 kW) Small

涡轮增压技术现状及发张趋势

车用涡轮增压技术现状及发张趋势分析 自涡轮增压技术概念提出至今已有百年时间了,在这百年的时间里,涡轮增压技 术经历了轴流式、径流式、混流式及配置放气阀、电机等自身的不断改进,其在航天、航海及陆地机械上得到了广泛的应用。特别是车辆的广泛应用及当前人们对车辆节能、功率和环保要求的不断提高,为车用涡轮增压技术的应用、发展和进步提供了广阔的空间和需求。 发展背景与环境 随着排放法规的日益严格和能源危机的加剧, 在满足发动机排放要求的前提下 改善发动机燃油经济性显得格外迫切。在近来各厂家采用的发动机新技术中, 增压技术当仁不让的成为了各厂家追逐的对象增压指的是能够将进人发动机气缸 新鲜空气或者混合气的压力、密度提高到高于周围大气压力、密度的方法, 其可以明显地提高发动机的动力性、经济性及排放性, 并且可以降低发动机重量和尺寸( 给定功率下) 。。一般来说, 汽车的最高车速越高, 需要装备的发动机功率就越大, 那么发动机增压的意义也就越大。增压技术对于中高级汽油机轿车来说, 是很有实际的意义。目前, 国外有相当数量的汽油机轿车都采用了增压技术, 而在国产轿车中只有个别车型的汽油机采用增压技术, 但是国内各大汽车主机厂 都在加快汽油机增压技术的开发应用。 近20年,随着涡轮增压技术的普及、深入, 有关涡轮增压方面的新技术、新工艺、新材料、新理念开始不断涌现。可以说,正是由于各种排放、噪声法规的大量出台和人们对涡轮增压技术的更高要求,特别是涡轮增压技术对高原发动机的功率补偿,车用涡轮增压技术迎来了发展的黄金时期。 涡轮增压技术的现状 传统的增压器很难在发动机高低负荷下均与之合理配合,而增压器与发动机的良好匹配是保证燃油消耗率以及排放性能的关键,因而近些年来采用各种设计理念的增压系统已经成功得到应用。 2.1.1 相继增压(STC) 在研制高压比、流量的增压器同时,涡轮增压器的可靠性、寿命也不断提高,其制造工艺也相应的简化。如ABB 采用了一种新的润滑油泵,它能利用离心力的作用分离出润滑油中的杂质,从而提高轴承的寿命。再如三菱的 SUPER MET 涡轮增压器采用新的进气消音器后使压气机效率提高 1.5%~3.5%。相继增压 STC 的基本原理是采用多个小流量的增压器,随着柴油机工况的提升,依次投入运行。它改变了增压系统在低工况时废气能量不足而引起的涡轮转速下降,增压压力不足,从而引起的增压器喘振、柴油机功率下降等问题。在柴油机额定工况下,每台增压器都在高效区运行;而在柴油机部分负荷时,减少投入使用的增压器数量,使得投入运行的增压器运行线仍处在高效区附近,从而改善柴油机的经济性及排放性能。 2.1.2 可变截面涡轮增压 可变截面涡轮增压是柴油机废气通过喷嘴环时,根据涡轮增压柴油机外界负荷的变化来改变喷嘴环叶片的角度,使流入涡轮叶片的气流参数改变,通过涡轮焓降的变化实现涡轮做功的变化,进而让压气机出口的增压压力发生变化,从而使得

详细讲解VGT可变截面涡轮增压器

详解VGT可变截面涡轮增压器 2010年11月27日 08:12 来源:Che168类型:转载编辑:胡正暘 随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。 『废气带动涡轮,涡轮再带动叶轮对空气进行增压,从而有效增大进气量』 涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,即使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。

『BMW的并联双涡轮技术』 虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(Turbo lag)”现象。

详解航空涡轮发动机

详解航空涡轮发动机(一) 【字体大小:大中小】引言 古往今来,人类飞上天空的梦想从来没有中断过。古人羡慕自由飞翔的鸟儿,今天的我们却可以借助 飞机来实现这一理想。鸟儿能在天空翻飞翱翔,靠的是有力的翅膀;而飞机能够呼啸驰骋云端,靠的是强劲的心脏航空涡轮发动机。 航空涡轮发动机,也叫喷气发动机,包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机等几大类,是由压气机、燃烧室和涡轮三个核心部件以及进气装置、涵道、加力燃烧室、喷管、风扇、螺旋桨和其它一些发动机附属设备比如燃油调节器、起动装置等组成的。其中,压气机、燃烧室和涡轮这三大核心部件构成了我们所说的”核心机"。每个部件的研制都要克服巨大的技术困难,因而航空涡轮发动机是名副其实的高科技产品,是人类智慧最伟大的结晶,其研制水平是一个国家综合国力的集中体现。目前世界上只有美、俄、法、英等少数几个国家能独立制造拥有全部自主知识产权的航空涡轮发动机。 2002年5月,中国自行研制的第一台具有完全自主知识产权、技术先进、性能可靠的航空涡轮发动机一一”昆仑"涡喷发动机正式通过国家设计定型审查,它标志着我国一跃成为世界第五大航空发动机设计生产国。”昆仑"及其发展型完全可以满足今后若干年内我军对中等偏大推力涡喷发动机的装机要求,将来在其基础上发展起来的小涵道比涡扇发动机还可以满足我国未来主力战机的动力要求,是我国航空涡轮发动机发展史上的里程碑。 要了解航空涡轮发动机,首先要从它的最关键部分--核心机开始。核心机包括压气机、燃烧室和涡轮 三个部件,它们都有受热部件,工作条件极端恶劣,载荷大,温度高,容易损坏,因此航空涡轮发动机的设计重点和瓶颈就在于核心机的设计。 详解航空涡轮发动机(二) 【字体大小:大中小】压气机 压气机的作用是将来自涡轮的能量传递给外界空气,提高其压力后送到燃烧室参与燃烧。因为外界空气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的含氧量。所以如果外界空气不经过压缩, 那么发动机的热力循环效率就太低了。 在航空涡轮发动机上使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类 是轴流式压气机。离心式压气机的外形就像是一个钝角的扁圆锥体。由于其迎风面积大,现在已经不在主流航空涡喷/涡扇发动机中使用了,仅在涡轴发动机中有一些应用。轴流式压气机因其中主流的方向与压气 机轴平行而得名,它是靠推动气流进入相邻叶片间的扩压信道来实现气流增压的。轴流式压气机具有体积小、流量大、效率高的特点,虽然轴流式压气机单级增压比不大(约 1.3?1.5),但是可以将很多级压气 机叶片串联起来,一级一级增压,其乘积就是总的增压比。轴流式压气机的这些优点,使其成为现代航空涡轮发动机的首选。 压气机的主要设计难点在于要综合保证效率、增压比和喘振裕度者三大主要性能参数满足发动机的要求。 压气机效率是衡量压气机性能好坏的重要指标,它反映了气流增压过程中产生能量损失的大小,如果效率太低,能量损失过大,压气机就是岀力不讨好。 增压比是指压气机岀口气压与进口气压之比,这个参数决定了压气机给后面的燃烧室提供的”服务质量"的好坏以及整个发动机的热力循环效率。目前人们的目标是提高压气机的单级增压比。比如在GE公司的J-79涡喷发动机上用的压气机风扇有17级之多,平均单级增压比为1.16,这样17级叶片的总增压比大约在12.5左右;而F-22的F-119涡扇发动机的压气机中,3级风扇和6级高压压气机的总增压比就达到了25左右,平均单级

自然吸气和涡轮增压的区别与作用

自然吸气和涡轮增压的区别与作用 涡轮增压近年来是一个热门话题,早些年主要是大众汽车推出了一些涡轮增压车型,比如宝来,比如帕萨特车型就都是涡轮增压的典型代表。最近两年,涡轮增压有方兴未艾之势,不仅大众以及通用品牌推出了小排量的1.4TSI涡轮增压和1.6T涡轮增压动力,就连一些自主品牌也纷纷大打涡轮增压的好牌。比如荣威(微博)1.8T,中华1.8T,甚至于奇瑞G5也推出2.0T涡轮增压。在涡轮增压的大趋势下,不少初次购买汽车的消费者开始有些迷惑了。似乎没有涡轮增压,就缺乏了高技术,也缺乏了选车的眼光,更和经济油耗远离。到底事实是否如此,自然吸气动力真的没有希望吗?我们希望通过实际用车以及一些对于技术方面的理解来回答某些消费者的购车疑问。 一、涡轮增压的原理以及利弊 我们平常所说的涡轮增压装置其实就是一种空气压缩机,通过压缩空气来增加发动机的进气量,一般来说,涡轮增压都是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入汽缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了我们如果平常留心一下汽车尾气的话,会发现尾气从消声器排出带有动力,如果利用好这种废气能力就可以冲击涡轮叶片从而在进气时压缩更多的空气进入汽缸。其实我们还只是察觉到尾气的已经从消声器中排出的能量,在消声器之前,这种废气带来的能量是相当大的。假如给我们一台平常的自然吸气发动机加上了涡轮增压部件,那就成了涡轮增压发动机了,有时候道理就这么简单。就好比以前的手动步枪,打一枪需要手动退子弹壳,然后再上膛,这样就很麻烦了。后来聪明的武器发明家悟出了一个心得,何不利用发射子弹的后坐力完成退子弹壳以及上膛功能,因此手动步枪也逐步演化出半自动步枪和全自动枪械。涡轮增压发动机也一样,利用了发动机排气能量增加进气压力。当然涡轮增压不仅仅是废气一种形式,还有机械式增压以及废气/机械式复合增压形式。不管是什么涡轮增压形式,增加进气压力的原理是一样的。 涡轮增压最早是用在上个世纪20年代,主要给老式的活塞式飞机发动机提供高空飞行时更多进气量。现在移植到了汽车上,其技术结构经受了近百年考验,算得上比较成熟的技术,也是欧洲机械工业和汽车制造偏爱的发动机类型。所以提起涡轮增压,也不是那么神秘,随便街上了解一下,很多汽柴油货车/客车都采用了涡轮增压结构。即便是购买了普通自然吸气车型,我们也可以根据自己车辆的具体性能和结构采取后期增添涡轮增压部件的改车举措 大众2.0l自然吸气发动机 涡轮增压发动机相比普通自然吸气发动机的优势主要是以下两点:首先是涡轮增压可以在排量较 小的情况下提供更大的功率和扭矩。其次是涡轮增压也在理论层面上提供更好的油耗表现。为何 说理论上,下面我们会有一个具体分析。 有利也有弊,涡轮增压发动机的主要两个不足也比较突出。首先是保养费用较高,相比普通自然 吸气车型,涡轮增压车辆的保养费用一般都要更高一些。其次是那么涡轮轮增压部件有使用寿命 周期,比如早期的帕萨特和宝来就是6万公里必须更换。这在随车说明书上都有特意标注的(老 宝来或帕萨特车主可以回忆一下)。需要更换涡轮增压部件这一个流程,不仅在工序上比较繁琐,

螺旋桨知识

空气螺旋桨把发动机旋转作功形式转变为直线作功形式;把发动机的功率转变为拉动飞机前进的有效功率。它的工作效率及与发动机有配合程度,直接影响模型飞机的性能。在航模竞技比赛中,出于追求动力组极限水平的需要,对螺旋桨的要求更为“苛刻”;因此以“量体裁衣”手工方式制作螺旋桨的好处显而易见。航模初学者能够扎实地掌握这一手艺很有必要。 本文以一个直径(D)200mm、几何桨距(H)120mm的两叶等距螺旋桨(适用于装有1.5cc 压燃式发动机或2.5cc电热式发动机的特技模型飞机)为例,介绍削制螺旋桨的方法。一、螺旋桨的一些基础概念 当我们把螺旋桨看成是一个一面旋转一面前进的机翼时,就能借助已知的空气动力学常识,直观地理解螺旋桨的基本工作原理。 1.桨距、动力桨距和几何桨距 桨距:从广义而言,可以理解为螺旋桨旋转一周沿桨轴方向所通过的直线距离。习惯上螺旋桨70%半径处的桨距值为“称呼值”,它具有标示意义。 动力桨距(Hg):桨叶旋转一周模型飞机所通过的距离(见图1)。设计螺旋桨时首先要确定动力桨距值。 几何桨距:(H):桨叶弦线迎角为零时,螺旋桨旋转一周所前进的距离(也见图1)。它体现了桨叶角的实际大小,是“看得见、摸得着”的实际参数。航模图纸上一般都标出几何桨距,是消制螺旋桨的主要依据。 2.动力桨距和几何桨距的关系 由于螺旋桨工作在接近于有利迎角下,与零度迎角之间的角差的存在,因此动力桨距值必然小于几何桨距值。几何桨距和动力桨距的关系是:几何桨距(H)= 1.1 ~ 1.3倍动力桨距(Hg)。也就是说,设计模型飞机时,动力桨距确定后,可以通过上述公式概略估算出螺旋桨的几何桨距。 3.通常使用的螺旋桨是各段几何桨距值相等的所谓等距桨。它的优点是设计、制作比较容易;缺点是工作效率劣于不等距桨。由于不等距桨各段的几何桨距值和桨角均不一样,尽管其效率高,但制作的难度大。故初学者从削等距桨起步较为稳妥。 4.桨叶角(β):桨叶角是指桨叶剖面弦线与旋转平面之间的夹角。 5.几何桨距和桨叶角的关系 几何桨距和桨叶角直接关联,是同一个问题的两种表达方式。几何桨距强调的是总体,桨叶角强调的是局部。就等距螺旋桨而言,桨叶角随其在螺旋桨半径方向上所处位置的不同而异;随着由桨根到桨尖方向的逐渐位移,桨叶角渐渐有规律地减小。(图2)

涡轮增压发动机的构造、原理及使用

论文封面成绩:青岛科技大学2015-2016学年第1学期 《过程装备与控制专业概论》 班级:装控153 学号:1505020312 姓名:张明海 开课学院:机电工程学院任课教师:栾德玉、翟红岩

过程装备与控制工程概论论文 涡轮增压发动机的构造、原理及改进 摘要 涡轮增压简称Turbo,我们经常可以在汽车尾部看到Turbo或者T的标志,这些标志表明该车采用的发动机是涡轮增压发动机。本文介绍了涡轮增压器的构造和原理,对它的保养及使用进行了阐述,同时,通过分析常见故障,对改进措施以及发展方向有了一定的看法。 关键词:涡轮增压废气常见故障改进措施 【引言】 涡轮增压器,一个近十年出现的词语。人们只知道汽车排量后面带T的车辆就是带有涡轮增压器的发动机,汽车的加速就会快,性能也好。 涡轮增压器会产生更大的扭矩以满足驾驶乐趣。为了满足发动机不同转速下的需求,1989年出现了可变增压的涡轮增压器(VNT)。在发动机低速时,涡轮增压器减小喉口,提高增压;在发动机全速运转时,涡轮增压器喉口增大,保证增压不会超出需求。喉口可用真空管控制。优点是提高了发动机低速时的加速性能。目前,涡轮增压器已经占到了50%,在亚洲、美国也都在增长。现代涡轮增压器也改变了人们对柴油机的看法,涡轮增压器已经成为提高动力性能的主流方向。 一.涡轮增压器的作用和构造以及工作原理 (一)作用 涡轮增压器按增压方式分为废气涡轮增压器、复合式废气涡轮增压器和组合式涡轮增压器。他们的作用分别如下: 1.废气涡轮增压器是利用发动机排出的具有一定能量的废气进入涡轮并膨胀做功,废气涡轮的全部功率用于驱动与涡轮机同轴旋转的压气机工作叶轮,在

航空发动机基础知识

航空发动机基础知识 航空发动机基础知识 涡轮喷气发动机的诞生 涡轮喷气发动机的诞生 二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。 这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。 早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气

推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。 涡轮喷气发动机的原理 涡轮喷气发动机的原理 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。 随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。 高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化

如何确定模型发动机螺旋桨基本参数(精)

。 , , ——摘自 2005年第三期航空模型 如何确定模型发动机螺旋桨基本参数 刘文智 近来, 市售的模型发动机的螺旋桨以及相应的各种发动机日益增多, 使爱好者选择的地域不断扩大, 枝致使自制螺旋桨者越来越少。对于某种发动机所适用的螺旋桨, 常用其直径和螺距来表示。例如:在 25级运动机上, 将直经 254mm , 桨距 127mm 的螺旋桨表示为 D254×H127。使用市售商品螺旋桨,可按发动机的说明书来选择;若自制螺旋桨,对于 D254×H127这样一组数据, 其直径可知为 254mm ; 而桨叶角侧可用“桨叶角与桨距直径比的关系曲线图”得到。 为弄清上述关系,就需先了解一下螺旋桨的相关结构。螺旋桨的旋转平面称为旋转面; 桨叶叶各刨面的旋线与桨的旋转面之间的夹叫交,称为桨叶角。为了产生(拉力,螺旋桨桨叶的各个剖面被做成型翼座; 各翼型(弦线与旋转面之间的夹角就是浆叶角。飞行中螺旋桨旋转时,其桨叶的各个剖面与飞机一同做前进运动,这是螺旋桨叶做前进和旋转的合成运动,使螺旋桨前进。 桨叶旋转一周, 各剖面前进方向所通过的距离相同; 但螺旋桨桨叶个剖面的旋转运动距离相同; 叶尖最大, 向叶根逐渐变小; 从而使螺旋桨降叶各剖面的合成运动的距离和方向也不相同。为更好发挥螺旋桨工作效率, 其桨叶各剖面弦线须与其合成运动方向一致, 这就使螺旋桨桨叶成扭曲壮使桨叶角随半径而变化。如图所示75%、 50、%、 25%桨叶处的桨叶数值。在螺旋桨的根步(25%以内 ,由于发动机和机身的影响,拉力损失很大;在叶尖部分,由于“翼尖涡流”而产生的诱导阻力,也造成较大的拉力损失。 根据飞模型飞机的经验, 把发动机装在机身后, 可提高螺旋桨的工作效率; 这是因为螺旋桨后面无障碍物,从而推力损失减小了。这种布局,可使模型飞机的速度提高 10%左右。螺旋桨产生推(拉力效率最佳处,位于桨叶的 75%处附近。所以,螺旋桨的桨距就选用 75%R 出的桨距来代表;称其为名义桨距。

涡轮增压和自然吸气优缺点详细对比

涡轮增压和自然吸气优缺点详细对比 如今,随着各种搭载全新动力系统的新车型的发布,给大家也带来了更多的选择。当然,很多消费者也注意到很多新车型的发动机排量也是越来越小了,从豪华中级车的排量下探至2.0T,到中级车下探至1.4T的排量,甚至有小型SUV 推出了1.0T三缸的动力系统。 如果消费者不太注意这些细节,特别是四五线城市的消费者,会对1.0T 发动机有着很大的偏见,映像里只有类似QQ,乐驰等AOO级小车才有可能搭载1.2L以下的发动机,对于这些AO级及AOO级别的车型而言,这些动力系统已经够了,本来AOO级的车更多是作为城市里的代步车,也就是大家所说的买菜车,拥挤、堵个没完没了的城市是他们最适合的地方。城市驾驶,特别是城市中心驾驶,车速超过40的机会都不多,甚至有在下班高峰期,开手挡的车友2个多小时,差不多都是半离合,类似那种刚起步就得停。对于这种路况,就算是LP740来了也得跟着大家步调一起走,大环境所限,除非是小型飞机,不然谁来了都得忍着忍着。

因此,再好的动力到此就根本就施展不出来,因此常有车友说,下班高峰期,你V10的车来了,我三缸的车照样虐你千百遍,论加塞(不建议此种不文明现象),论随意变换车道,都不如小型车。动力系统大家能用到的都差不多。你LP740用10%的动力,我QQ用50%的动力,最终也还是一样了。也只有在早高峰和晚高峰出行期间,小型车才有优越感。 涡轮车随着各种标准及政策的出台,毫无疑问,都比大排量的自吸车来得更加直接。有点显而易见,2.0T的发动机功率及扭矩甚至超过了自吸3.0及以上的发动机,但是燃油消耗却不及3.0,甚至只有其70%左右(综合路况)。 涡轮车从广大车友及各大汽车厂商的宣传点来说,大致有以下优点: 一、节油。这一点毋庸置疑。特别是针对综合路况,如果我单方面说城市路况,可比性不大,单独说高速路况,可能涡轮和自吸都是半斤八两。 二、相关政策优惠。因为排量的下降,车船使用费,购置税等,小排量的涡轮车比大排量的自吸都要相对便宜一些。当然,对于只追求驾驶感受的那些土豪朋友我们暂且不论。 三、符合全球追求环保这一大趋势。德国三驾马车(宝马、奔驰、奥迪)都在最近几年,相继为旗下的主力车型换上了涡轮,特别是宝马公司,极为经典的宝马直列六缸发动机相继被替换成四缸的N20 2.0T发动机。 涡轮增压发动机工作原理图:

涡轮增压发动机的构造、原理及使用全解

论文封面成绩: 科技大学2015-2016学年第1学期 《过程装备与控制专业概论》 班级:装控153 学号:1505020312 :明海 开课学院:机电工程学院任课教师:栾德玉、翟红岩

涡轮增压发动机的构造、原理及改进 摘要 涡轮增压简称Turbo,我们经常可以在汽车尾部看到Turbo或者T的标志,这些标志表明该车采用的发动机是涡轮增压发动机。本文介绍了涡轮增压器的构造和原理,对它的保养及使用进行了阐述,同时,通过分析常见故障,对改进措施以及发展方向有了一定的看法。 关键词:涡轮增压废气常见故障改进措施 【引言】 涡轮增压器,一个近十年出现的词语。人们只知道汽车排量后面带T的车辆就是带有涡轮增压器的发动机,汽车的加速就会快,性能也好。 涡轮增压器会产生更大的扭矩以满足驾驶乐趣。为了满足发动机不同转速下的需求,1989年出现了可变增压的涡轮增压器(VNT)。在发动机低速时,涡轮增压器减小喉口,提高增压;在发动机全速运转时,涡轮增压器喉口增大,保证增压不会超出需求。喉口可用真空管控制。优点是提高了发动机低速时的加速性能。目前,涡轮增压器已经占到了50%,在亚洲、美国也都在增长。现代涡轮增压器也改变了人们对柴油机的看法,涡轮增压器已经成为提高动力性能的主流方向。 一.涡轮增压器的作用和构造以及工作原理 (一)作用

涡轮增压器按增压方式分为废气涡轮增压器、复合式废气涡轮增压器和组合式涡轮增压器。他们的作用分别如下: 1.废气涡轮增压器是利用发动机排出的具有一定能量的废气进入涡轮并膨胀做功,废气涡轮的全部功率用于驱动与涡轮机同轴旋转的压气机工作叶轮,在

国外涡桨发动机的发展_周辉华

0 概述 涡轮螺旋桨(简称涡桨)发动机是一种主要依靠螺旋桨产生的拉力或推力驱动飞机的航空动力装置,非常适合中等飞行速度(400~800km/h )的飞机使用。与航空活塞式发动机相比,涡桨发动机具有功重比大、迎风面积小、振动小等优点,特别是随着飞行高度的增加,其性能更为优越;与涡轮喷气和涡扇发动机相比,它又具有耗油率低、起飞推力大等优点。涡桨发动机的这些特点对于往返于中小型机场甚至简易机场的短、中程运输飞机和通用飞机来说是非常适宜的。自20世纪50年代起,世界各国纷纷发展了以涡桨发动机和涡扇发动机为动力的中型运输机,其后因涡桨发动机高速性能不理想,市场逐渐被涡扇发动机挤占。近年来,由于燃油价格飙升,涡桨飞机的经济性优势更为凸显出来,同时随着螺旋桨设计、制造技术的进步,涡桨飞机在高亚声速 国外涡桨发动机的发展 摘 要:以航空发动机的技术性能为重点,通过对比、分析涡桨发动机的发展历程、发展现状,发展途径和发展计划,预测其未来的技术发展趋势并整理出成功的发展经验,为我国涡桨发动机的发展提供参考。 Abstract: Focusing on the technical performance characteristics of aero-engine,this article analyzes the development status, approach,trend,experience of turbo-propeller engines, and provides reference for the turbo-propeller engine research. 关键词:涡桨发动机;发展现状;发展途径;发展趋势;发展经验 Keywords: turbo-propeller engine ;development status ;development approach ;development trend ; development experience The Development Prospect of Turbo -Propeller Engines 周辉华/中航工业航空动力机械研究所 飞行时的推进效率大大提高,涡桨飞机重新受到军民用户的青睐,其市场开始逐渐复苏,涡桨发动机也被誉为“明天的绿色动力”、“支线飞机的脊梁”。 本文通过对比、分析国外涡桨发动机的发展历程、发展途径,整理出成功的发展经验和未来发展趋势,为我国涡桨发动机的发展及航空发动机产业的腾飞提供参考。 1 国外涡桨发动机发展历程和现状 1.1 国外涡桨发动机发展历程 1942年,英国研制出世界上第一台涡桨发动机“曼巴(Memba )”,配装在皇家海军“塘鹅”舰载反潜飞机上。1945年由Derwent 涡喷发动机发展成的涡桨发动机,装于皇家空军著名的“流星”战斗机上首飞成功,标志着涡桨发动机进入实用阶段。此后,英国、美国和前苏联也陆续研制 出多种涡桨发动机,如Dart 、T56、AI -20和AI -24等。强劲的动力造就了一大批声名显赫的运输机和轰炸机。例如,美国于1956年服役的涡桨发动机T56/501,配装于C -130运输机、P -3C 侦察机和E -2C 预警机等多型飞机,经过不断改进改型,功率从2580 kW 发展到4414 kW ,用途上从军用转化为民用,且成系列化发展,目前已生产了17000多台,出口到50多个国家和地区。据报道,目前T56发动机仍在不断发展中,可能还会再服役30年;前苏联的NK -12M 的起飞功率达11025kW,是世界上功率最大的涡桨发动机,用于图-95“熊”式轰炸机、安-22军用运输机和图-114民用运输机等。 加拿大普惠公司的PT6A 发动机在民用涡桨发动机领域,无论是生产数量还是产值,都当之无愧扮演了领头羊角色。短短40年间,该发动机已系列化发展出数十个型别,功率范围涵

相关主题
文本预览
相关文档 最新文档