当前位置:文档之家› 第六章 同步电机的基本结构和运行状态

第六章 同步电机的基本结构和运行状态

第六章 同步电机的基本结构和运行状态
第六章 同步电机的基本结构和运行状态

第六章同步电机的稳态分析

6.1 同步电机的基本结构和运行状态

一、同步电机的基本结构

按照结构型式,同步电机可以分为旋转电枢式和旋转磁极式两类。

旋转电枢式——电枢装设在转子上,主磁极装设在定子上。这种结构在小容量同步电机中得到一定的应用。

旋转磁极式——主磁极装设在转子上,电枢装设在定子上。对于高压、大容量的同步电机,通常采用旋转磁极式结构。由于励磁部分的容量和电压常较电枢小得多,电刷和集电环的负载就大为减轻,工作条件得以改善。目前,旋转磁极式结构已成为中、大型同步电机的基本结构型式。

在旋转磁极式电机中,按照主极的形状,又可分成隐极式和凸极式,如图6-l所示。

隐极式——转子做成圆柱形,气隙为均匀;

凸极式——转子有明显凸出的磁极,气隙为不均匀。

对于高速的同步电机(3000r/min),从转子机械强度和妥善地

固定励磁绕组考虑,采

用励磁绕组分布于转

子表面槽内的隐极式

结构较为可靠。对于低

速电机(1000r/min及

以下),转子的离心力

较小,故采用制造简单、励磁绕组集中安放的凸极式结构较为合理。大型同步发电机通常采用汽轮机或水轮机作为原动机来拖动,前者称为汽轮发电机,后者称为水轮发电机。由于汽轮机是一种高速原动机,所以汽轮发电机一般采用隐极式结构。水轮机则是一种低速原动机,所以水轮发电机一般都是凸极式结构。同步电动机、由内燃机拖动的同步发电机以及同步补偿机,大多做成凸极式,少数两极的高速同步电动机亦有做成隐极式的。

隐极同步电机

以汽轮发电机为例来说明隐极同步电机的结构。现代的汽轮发电机一般都是两极的,同步转速为3000r/min(对50Hz的电机)。由于转速高,所以汽轮发电机的直径较小,长度较长。汽轮发电机均为卧式结构,图6-2表示一台汽轮发电机的外形图。汽轮发电机的定子由定子铁心、定子绕组、机座、端盖等部件组成。定子铁心一般用厚0.5mm的DR360硅钢片叠成,每叠厚度为3-6cm,叠与叠之间留有宽0.8~lcm的通风槽,整个铁心用非磁性压板压紧,固定在机座上。

图6-2汽轮发电机的外形图图6-3 汽轮发电机的转子

大容量汽轮发电机的转子周速可达170-180m/s。由于周速高,转子受到极大的机械应力,因此转子一般都用整块具有良好导磁性的高强度合金钢锻成。沿转子表面约2/3部分铣有轴向凹槽,用于嵌放励磁绕组;不开槽的部分形成一个“大齿”,嵌线部分和大齿一起构成了主磁极(图6-la)。为把励磁绕组可靠地固定在转子上,转子槽楔采用非磁性的金属槽楔,端部套上用高强度非磁性钢锻成的护环。图6-3表示一台嵌完线的汽轮发电机的转子。

由于汽轮发电机的机身比较细长,转子和电机中部的通风比较困难,所以良好的通风、冷却系统对汽轮发电机非常重要。 凸极同步电机

凸极同步电机通常分为卧式(横式)和立式两种结构。绝大部分同步电动机、同步补偿机和用内燃机或冲击式水轮机拖动的同步发电机都采用卧式结构。低速、大容量的水轮发电机和大型水泵电动机则采用立式结构。

卧式同步电机的定子结构与感应电机基本相同,定子亦由机座、铁心和定子绕组等部件组成;转子则由主磁极、磁轭、励磁绕组、集电环和转轴等部件组成。图6-4表示一台已经装配好的

凸极同步电动机的转子。

大型水轮发电机通常都是立式结构。由于它的转速低、极数多,要求转动惯量大。故其特点是直径大、长度短。在立式水轮发电机中,整个机组转动部分的重量以及作用在水轮机转子上的水推力均由推力轴承支撑,并通过机架传递到地基上,如图6-5所示。图6-6表示一台大型水轮发电机的分瓣定子。

除励磁绕组外,同步电机的转子上还常装有阻尼绕组。阻尼绕组与笼型感应电机转子的笼形绕组结构相似,它由插入主极极靴槽中的铜条和两端的端环焊成一个闭合绕组。在同步发电机中,阻尼绕组起抑制转子转速振荡的作用;在同步电动机和补偿机中,主要作为起动绕组用。

图6-5 立式水轮发电机示意图图6-6大型水轮发电机的分瓣定子

二、同步电机的运行状态

当同步电机的定子(电枢)绕组中通过对称的三相电流时。定子将产生一个以同步转速推移的旋转磁场。稳态情况下,转子转速亦是同步转速,于是定子旋转磁场恒与直流励磁的转子主极磁场保持相对静止,它们之间相互作用并产生电磁转矩,进行能量转换。同步电机有三种运行状态:发电机、电动机和补偿机。发电机把机械能转换为电能,电动机把电能转换为机械能,补偿机中没有有功功率的转换,专门发出或吸收无功功率、调节电网的功率因数。

分析表明,同步电机运行于哪一种状态。主要取决于定子合成磁场与转子主磁场之间的夹角δ,δ称为功率角。

若转子主磁场超前于定子合成磁场,δ>0,此时转子上将受

到一个与其旋转方向相反的制动性质的电磁转矩,如图6-7a所

示。为使转子能以同步转速持续旋转,转子必须从原动机输入驱动转矩。此时转子输入机械功率,定子绕组向电网或负载输出电功率,电机作发电机运行。

若转子主磁场与定子合成磁场的轴线重合,δ=0,则电磁转矩为零,如图6-7b所示。此时电机内没有有功功率的转换,电机处于补偿机状态或空载状态。

若转子主磁场滞后于定子合成磁场,δ<0,则转子上将受到一个与其转向相同的驱动性质的电磁转矩,如图6-7c所示。此时定子从电网吸收电功率,转子可拖动负载而输出机械功率,电机作为电动机运行。

三、同步电机的励磁方式

供给同步电机励磁的装置,称为励磁系统。下面对它作一简介。

1、直流励磁机励磁

直流励磁机通常与同步发电机同轴,并采用并励或他励接

法。他励时,励

磁机的励磁由另

一台与主励磁机

同轴的副励磁机

供给,如图6-8所示。为使同步发电机的输出电压保持恒定,常在励磁电路中加进一个反映负载大小的自动调节系统,使发电机的负载电流增加时,励磁电流相应地增大。这样的系统称为复式励磁系统。2、整流器励磁

整流器励磁又分为静止式和旋转式两种。

图6-9表示静止整流器励磁系统的原理图。图中主励磁机是

一台与同步发电机同轴连接的三相100Hz发电机,其交流输出经静止三相桥式不可控整流器整流后,通过集电环接到主发电机的励磁绕组,供给其直流励磁;主励磁机的励磁由交流副励磁机发出的交流电经静止可控整流器整流后供给。副励磁机是一台中频三相同步发电机(有时采用永磁发电机),它也与主发电机同轴连接。副励磁机的励磁,开始时由外部直流电源供给,待电压建起后再转为自励。根据主发电机端电压的偏差和负载大小,通过电压调整器对主励磁机的励磁进行调节,即可实现对主发电机励磁的自动调节。

由于取消了直流励磁机,这种励磁系统维护方便,励磁容量得以提高,因而在大容量汽轮发电机中获得广泛的应用。

当励磁电流超过2000A时,为避免集电环的过热,可采用取消集电环的旋转整流器励磁系统。此系统的主励磁机是与主发电机同轴连接的旋转电枢式三相同步发电机,电枢的交流输出经

与主轴一起旋转的不可控整流器整流后,直接送到主发电机的转子励磁绕组,供给其励磁。因为主励磁机的电枢,整流装置与主发电机的励磁绕组三者为同轴旋转,不再需要集电环和电刷装置,所以这种系统又称为无刷励磁系统。

无刷励磁系统运行比较可靠,这种系统大多用于大、中容量的汽轮发电机、补偿机以及在防燃、防爆等特殊环境中工作的同步电动机。

在小型同步发电机中,还经常采用具有结构简单和具有自励恒压等特点的三次谐波励磁、电抗移相励磁等励磁方式。

四、额定值

同步电机的额定值有

(1)额定容量S N(或额定功率P N) 指额定运行时电机的输出功率。同步发电机的额定容量既可用视在功率表示,亦可用有功功率表示;同步电动机的额定功率是指轴上输出的机械功率;补偿机则用无功功率表示(Q N)。

(2)额定电压U N指额定运行时定子的线电压。

(3)额定电流I N指额定运行时定子的线电流。

(4)额定功率因数cosΦ指额定运行时电机的功率因数。

(5)额定频率f N指额定运行时电枢电压或电流的频率。我国标准工频规定为50Hz。

(6)额定转速n N指额定运行时电机的转速,对同步电机而言,即为同步转速(n s)。

除上述额定值以外,铭牌上还常常列出一些其他的运行数据,例如额定负载时的温升θN,额定励磁电流和电压I fN、U fN

等。

6.2 空载和负载时同步发电机的磁场

一、空载运行

用原动机拖动同步发电机到同步转速,励磁绕组通入直流励磁电流,电枢绕组开路(或电枢电流为零)的情况,称为同步发电机的空载运行。(特点:端电压U ≈1.1U N ,I=0)

空载运行时,同步电机内仅有励磁电流所建立的主极磁场。图6-l0表示一台四极电机空载时的磁通示意图。从图可见,主极磁通分成主磁通Φ0和漏磁通Φfσ两部分,前者通过气隙并与定子绕组相交链,后者不通过气隙,仅与励磁绕组相交链。主磁通所经过的主磁路包括空气隙、电枢齿、电枢轭、磁极极身和转子轭等五部分。

当转子以同步转速旋转时,主磁场将在气隙中形成一个旋转磁场,它“切割”对称的三相定子绕组后,就会在定子绕组内感应出一组频率为f 的对称三相电动势,称为激磁电动势(发电机的空载电势):

000A E E =∠? ,00120B E E =∠-? ,00

120C E E =∠? (6-1) 忽略高次谐波时,激磁电动势(相电动势)的有效值E 0=

4.44fN 1k w1Φ0,其中Φ0为每极的主磁通量。这样,改变直流励磁电流I f ,便可得到不同的主磁通Φ0和相应的激磁电动势E 0,从而得到空载特性E 0=f(I f ),如图6-11所示。空载特性是同步发电机的一条基本特性。

空载曲线的下部是一条直线,与下部相切的直线称为气隙线。随着Φ0的增大,铁心逐渐饱和,空载曲线就逐渐弯曲。实际上就是主极磁路铁心(考虑气隙影响)的磁化曲线。

二、对称负载时的电枢反应

同步发电机带上对称负载后,电枢绕组中将流过对称三相电流,此时电枢绕组就会产生电枢磁动势及相应的电枢磁场,其基波与转子同向、同速旋转。负载时,气隙内的磁场由电枢磁动势和主极磁动势共同作用产生,电枢磁动势的基波在气隙中所产生的磁场就称为电枢反应。电枢反应的性质(增磁、去磁或交磁)取决于电枢磁动势和主极磁场在空间的相对位置。分析表明,此相对位置取决于激磁电动势0E 和负载电流I 之间的相角差Ψ0(Ψ0称为内功率因数角,它是由负载阻抗及发电机的内阻抗共同确定的)。下面分成两种情况来分析。

1、I 与0E 同相时

图6-12a表示一台两极同步发电机的示意图。为简明计,图中电枢绕组每相用一个集中线圈来表示,0E 和I 的正方向规定为从绕组首端流出,从尾端流入。在6-12a所示瞬间,主极轴线与电枢A相绕组的轴线正交,A相链过的主磁通为零。因为电动势滞后于感生它的磁通90°,故A相激磁电动势A0E 的瞬时值达到正的最大值,其方向如图中所示(从X入,从A出);B、C两相的激磁电动势B0E ,和C0E 分别滞后于A0E 以120°和240°,如

图6-12b所示。设电枢电流I 与激磁电动势0E 同相位,即内功率因数角Ψ0=0°,则在图示瞬间,A相电流亦将达到正的最大值,B相和C相电流分别滞后于A相电流以120°和240°,如图6-12b中所示。从第四章中得知,在对称三相绕组中通以对称三相电流时,若某相电流达到最大值,则在同一瞬间,三相基波合成磁动势的幅值将与该相绕组的轴线重合。因此在图6-12a所示瞬间,基波电枢磁动势F a(三相合成后的磁势,并非A相的)的轴线应与A相绕组轴线和转子交轴(与主磁极相差90°电角度)重合。由于F a与转子均以同步转速旋转,所以在其它瞬间,F a的轴线恒与转子交轴重合。由此可见,Ψ0=0°时,F a是一个交轴磁动势。即

F a(Ψ0=0°)= F aq (6-2)

交轴电枢磁动势所产生的电枢反应称为交轴电枢反应。

由于交轴电枢反应,使气隙合成磁场B与主极磁场B0在空间形成一定的相角差,如图6-12d所示。对于同步发电机,当Ψ0=0°时,主极磁场将超前于气隙合成磁场,于是主极上将受到一个制动性质的电磁转矩。所以交轴电枢磁动势与产生电磁转矩及能量转换直接相关。

从图6-12a和b可见,用电角度表示时,主极磁场B0与电枢磁动势F a之间的空间相位关系,恰好与链过A相的主磁通中A0Φ

与A相电流A I 之间的时间相位关系相一致,且图a的空间矢量与图b的时间相量均为同步旋转。于是,若把图b中的时间参考轴与图a中A相绕组的轴线取为重合(例如均取为水平),就可以把

图a和图b合并,得到一个时-空统一矢量图,如图c所示。由于三相电动势和电流均为对称,所以在统一矢量图中,仅画出A 相一相的激磁电动势、电流和与之匝链的主磁通,并把下标A 省略,写成0E 、I 和0Φ 。在统一矢量图中,F f既代表主极基波磁动势的空间矢量,亦表示时间相量0Φ 的相位;I 既代表A相电流相量,又表示电枢磁动势F a的空间相位。

2、I 与0E 不同相时

下面进一步分析I 与0E 不同相时的情况。在图6-13a所示瞬间,A相绕组的激磁电动势0E 达到正的最大值。若电枢电流滞后于激磁电动势某一相角Ψ0(90°>Ψ0>0°),则A相电流在经过t =Ψ0/ω1这段时间后才达到其正的最大值;换言之,在t=Ψ0/ω1秒后,电枢磁动势的幅值才与A相绕组轴线重合。所以在图6-13a所示瞬间,电枢磁动势F a应在距离A相轴线Ψ0电角度处,即F a滞后于主极磁动势F f以90°+Ψ0电角度。由于F a与F f同向、同速旋转,所以它们之间的相对位置将始终保持不变。不难看出,此时F a可以分成两个分量,一为交轴电枢磁动势F aq 另一为直轴电枢磁动势F ad,即

F a=F ad+F aq (6-3)

其中

F ad=F a sinΨ0 F aq=F a cosΨ0 (6-4)

交轴电枢磁动势所产生的交轴电枢反应,其作用已在前面说明。直轴电枢磁动势所产生的直轴电枢反应,对主极而言,其作用可

为去磁,亦可为增磁,视Ψ0角的正、负而定。从图6-13b和c 不难看出,对于同步发电机,若电枢电流I 滞后于激磁电动势0E ,则直轴电枢反应是去磁性;若I 超前于0E ,直轴电枢反应将是增磁性。直轴电枢反应对同步电机的运行性能影响很大。若同步发电机单独供电给一组负载,则负载以后,去磁或增磁性的直轴电枢反应将使气隙内的合成磁通减少或增加,从而使发电机的端电压产生变动。如果发电机接在电网上,从6.8节可知,其无功功

率和功率因数是超前还是滞后与直轴电枢反应的性质密切相关。图6-14表示负载时隐极同步发电机内的磁场分布图。

6.3 隐极同步发电机的电压方程、相量图和等效电路 上面分析了负载时同步发电机内部的磁场。在此基础上,即可导出隐极同步发电机的电压方程,并画出相应的相量图和等效电路。

一、不考虑磁饱和时

同步发电机负载运行时,除了主极磁动势F f 之外,还有电枢磁动势F a 。如果不计磁饱和(即认为磁路为线性),则可应用叠加原理,把F f 和F a 的作用分别单独考虑,再把它们的效果叠加

起来。设F f 和F a 各自产生主磁通0Φ 和电枢磁通a Φ ,并在定子绕

组内感应出相应的激磁电动势0E

和电枢反应电动势a E ,把0E 和a E 相量相加,可得电枢一相绕组的合成电动势E

(亦称为气隙电动势)。上述关系可表示为:

再把气隙电动势E

减去电枢绕组的电阻压降I R a 和漏抗压降j I X σ (X σ为电枢绕组的漏电抗),便得电枢绕组的端电压U

。采用发电机惯例,以输出电流作为电枢电流的正方向时,电枢的电压方程为

U jX R I E E a a =+-+)(0σ (6-5) 因为电枢反应电动势E a 正比于电枢反应磁通Φa 不计磁饱和时,Φa 又正比于电枢磁动势F a 和电枢电流I ,即

I F E a a a ∝∝Φ∝

因此E a 正比于I ;在时间相位上,a E 滞后于a Φ 90°电角度,

若不计定子铁耗,a Φ 与I 同相位,则a E 将滞后于I 以90°电

角度。于是a E 亦可写成负电抗压降的形式,即

a a X I j E -= (6-6)

式中,X a 是与电枢反应磁通a Φ 相对应的电抗,称为电枢反应

电抗。将式(6-6)代入式(6-5),经过整理,可得

s a a a X I j R I U X I j X I j R I U E ++=+++=σ0 (6-7) 式中,X s 称为隐极同步电机的同步电抗,X s =X a +X σ,它是对称稳态运行时表征电枢反应磁通和电枢漏磁这两个效应的一个综合参数。不计饱和时,X s 是一个常值。

图6-15a 和b 表示与式(6-5)和式(6-7)相对应的相量图,图6-15c 表示与式(6-7)相应的等效电路。从图6-15c 可以看出,隐极同步发电机的等效电路由激磁电动势E 0和同步阻抗R a +jX s 串联组成,其中E 0表示主磁场的作用,X s 表示电枢反应和电枢漏磁场的作用。

二、考虑磁饱和时

考虑磁饱和时,由于磁路的非线性,叠加原理不再适用。此时,应先求出作用在主磁路上的合成磁动势F ,然后利用电机的

磁化曲线 (空载曲线) 求出负载时的气隙磁通Φ

及相应的气隙电

动势E

,即

再从气隙电动势E

减去电枢绕组的电阻和漏抗压降,得电枢的端电压U

,即 U jX R I E a =+-)(σ

)(σjX R I U E a ++= (6-8) 相应的矢量图、相量图和F ~E 间的关系如图6-16a 和b 所示。图6-16a 中既有电动势相量,又有磁动势矢量。故称为电动势-磁动势图。

这里有一点需要注意,通常的磁化曲线习惯上用励磁磁动势F f 的幅值 (对隐极电机,励磁磁动势为一梯形波,如图6-17所示) 或励磁电流值作为横坐标,而电枢磁动势F a 的幅值则是基波的幅值,因此在F f 和F a 矢量相加时,需要把基波电枢磁动势F a 乘上换算系数k a 以换算为等效梯形波的作用。k a 的意义为:产生同样大小的基波气隙磁场时,一安匝的电枢磁动势相当于多少安匝的梯形波主极磁动势。通常k a ≈0.93~1.03。

考虑饱和效应的另一种方法是,通过运行点将磁化曲线线性化,并找出相应的同步电抗饱和值X s(饱和)。把问题化作线性问题来处理。

6.4 凸极同步发电机的电压方程和相量图

凸极同步电机的气隙沿电枢圆周是不均匀的,因此在定量分析电枢反应的作用时,需要应用双反应理论。

一、双反应理论

凸极同步电机的气隙是不均匀的,极面下气隙较小,两极之间气隙较大,故直轴下单位面积的气隙磁导Λd 要比交轴下单位

面积的气隙磁导Λq 大很多,如图6-18a 所示。当正弦分布的电枢磁动势作用在直轴上时,由于Λd 较大,故在一定大小的磁动势下,直轴基波磁场的幅值B ad1相对较大。当同样大小的磁动势作用在交轴上时,由于Λq 较小,在极间区域,交轴电枢磁场出现明显下凹,相对来讲,基波幅值B aq1将显著减小,如图6-18c 中所示。一般情况下,若电枢磁动势既不在直轴、亦不在交轴而是在空间任意位置处,可把电枢磁动势分解成直轴和交轴两个分量(如图6-18b),再用对应的直轴磁导和交轴磁导分别算出直轴和交轴电枢反应,最后把它们的效果叠加起来。这种考虑到凸极电机气隙的不均匀性,把电枢反应分成直轴和交轴电枢反应分别来处理的方法,就称为双反应理论。实践证明,不计磁饱和时,这种方法的效果是令人满意的。在凸极电机中,直轴电枢磁动势F ad 和交轴电枢磁动势F aq ,换算到励磁磁动势时,分别应乘以直轴和交轴换算系数k ad 和k aq 。

二、凸极同步发电机的电压方程和相量图

不计磁饱和时,根据双反应理论,把电枢磁动势F a 分解成直轴和交轴磁动势F ad 、F aq ,分别求出其所产生的直轴、交轴电

枢磁通ad Φ 、aq Φ 和电枢绕组中相应的电动势ad E 、aq E

,再与主磁通0Φ

所产生的激磁电动势0E 相量相加,便得一相绕组的合成电动势E

(通常称为气隙电动势)。上述关系可表示如下:

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

1电动机的故障、异常运行状态及保护方式

电动机的故障、异常运行状态及保护方式 在电力生产和工矿企业中,大量地使用电动机。发电厂厂用机械大部分用的是异步电动机,但厂用低速磨煤机、大容量给水泵以及水泵房循环水泵等则采用同步电动机。以下介绍的内容主要以异步电动机为主。电动机的安全运行对确保发电厂以至整个工业生产的安全、经济运行都有很重要的意义,因此应根据电动机的类型、容量及其在生产中的作用,装设相应的保护装置。但是,由于实际使用的电动机数量很多,且大部分为中、小型,因而不可能在每一台电动机上都配置性能完善的保护装置,故在进行电动机保护配置时,除考虑继电保护的四个基本要求外,还应该从技术、经济上衡量,力求简单、可靠。 电动机的主要故障有定子绕组的相间短路、单相接地以及同一相绕组的匝间短路。 电动机发生相间短路故障时,不仅故障的电动机本身会遭受严重损伤,同时还将使供电电压显著下降,影响其他用电设备的正常工作,在发电厂中甚至可能造成停机、停炉的全厂停电事故。因此,对电动机定子绕组及其引出线的相间短路,必须装设相应的保护装置,以便及时地将故障电动机切除。通常,对于容量在75kW及以下的低压小容量电动机,可采用熔断器或低压断路器(自动空气开关)的短路脱扣器作为相间短路保护;容量较大的高压电动机,则装设由电磁型电流继电器或感应型电流继电器构成的电流速断作为相间短路保护;当电动机的容量在2000kW以上,或者很重要但电流速断灵敏度不能满足要求时,若具有六个引出线,可装设纵差保护。 单相接地对电动机的危害取决于供电网络中性点的运行方式。对于380/220V的低压电动机,其电源中性点一般直接接地,故发生单相接地时,将产生很大的短路电流,因而也应尽快切除,故应该装设快速动作于跳闸的单相接地保护。为了简化,一般由相间保护采用三相式接线即可;灵敏度不能满足要求的重要电动机,才考虑采用零序保护。而对于3—10kV 的高压电动机,由于所在供电网络属于小电流接地系统,电动机单相接地后,只有电网的电容电流流过故障点,其危害一般较小。《规程》规定,当接地电容电流大于5A时,应装设接地保护,当接地电容电流大于10A时,保护一般作用于跳闸。 同一相绕组的匝间短路将破坏电动机运行的对称性,并使故障相的电流增大,增大的程度与被短路的匝数有关,最严重情况为一相绕组全部被短接,此时电动机可能被损坏。但由于目前尚未找到既简单又性能完善的方法反应匝间短路,因此在电动机上一般不装设专用的匝间短路保护。 电动机的异常运行状态主要是各种形式的过负荷。引起电动机过负荷的原因有:所带机械负荷过大;电源电压或频率下降而引起的转速下降;一相断线造成两相运行;电动机启动和自启动时间过长等等。长时间的过负荷将使电动机绕组温升超过允许值,使绝缘老化速度加速,甚至发展成故障。因此,根据电动机的重要程度、过负荷的可能性以及异常运行状态等情况,应装设相应的过负荷保护作用于信号、自动减负荷或跳闸。具体配置情况如下:容量在100kW及以下的低压电动机,可利用磁力启动器中的热继电器或低压断路器中的热脱

同步电机练习题及标准答案

第六章 同步电机 一、填空 1. ★在同步电机中,只有存在 电枢反应才能实现机电能量转换。 答 交轴 2. 同步发电机并网的条件是:(1) ;(2) ;(3)。 答 发电机相序和电网相序要一致,发电机频率和电网频率要相同,发电机电压和电网电压大小要相等、相位要一致 3. ★同步发电机在过励时从电网吸收 ,产生 电枢反应;同步电动机在过励时向电网输出,产生 电枢反应。 答 超前无功功率,直轴去磁,滞后无功功率,直轴增磁 4. ★同步电机的功角δ有双重含义,一是和之间的夹角;二是 和 空间夹角。 答 主极轴线,气隙合成磁场轴线,励磁电动势,电压 5. 凸极同步电机转子励磁匝数增加使q X 和d X 将 。 答 增加 6. 凸极同步电机气隙增加使q X 和d X 将 。 答 减小 7. ★凸极同步发电机与电网并联,如将发电机励磁电流减为零,此时发电机电磁转矩为 。 答 δs i n 2)X 1 X 1( mU d q 2 - 二、选择 1. 同步发电机的额定功率指( )。 A 转轴上输入的机械功率; B 转轴上输出的机械功率; C 电枢端口输入的电功率; D 电枢端口输出的电功率。 答 D 2. ★同步发电机稳态运行时,若所带负载为感性8.0cos =?,则其电枢反应的性质为( )。 A 交轴电枢反应; B 直轴去磁电枢反应; C 直轴去磁与交轴电枢反应; D 直轴增磁与交轴电枢反应。 答 C 3. 同步发电机稳定短路电流不很大的原因是( )。 A 漏阻抗较大; B 短路电流产生去磁作用较强; C 电枢反应产生增磁作用; D 同步电抗较大。 答 B 4. ★对称负载运行时,凸极同步发电机阻抗大小顺序排列为( )。 A q aq d ad X X X X X >>>>σ; B σX X X X X q aq d ad >>>>;

交流永磁同步电机结构与工作原理

交流永磁同步电机结构与工作原理 2。1。1交流永磁同步电机得结构 永磁同步电机得种类繁多,按照定子绕组感应电动势得波形得不同,可以分为正 弦波永磁同步电机(PMSM)与梯形波永磁同步电机(BLDC)【261.正弦波永磁同步电机 定子由三相绕组以及铁芯构成,电枢绕组常以Y型连接,采用短距分布绕组;气隙场 设计为正弦波,以产生正弦波反电动势;转子采用永磁体代替电励磁,根据永磁体在 转子上得安装位置不同,正弦波永磁同步电机又分为三类:凸装式、嵌入式与内埋式。 本文中采用得电机为凸装式正弦波永磁同步电机,结构如图2一l所示,定子绕组一 般制成多相,转子由永久磁钢按一定对数组成,本系统得电机转子磁极对数为两对, 则电机转速为n=60f/p,f为电流频率,P为极对数。

图2一l凸装式正弦波永磁同步电机结构图 目前,三相同步电机现在主要有两种控制方式,一种就是她控式(又称为频率开环 控制);另一种就是自控式(又称为频率闭环控制)[27】。她控式方式主要就是通过独立控 N#l-部电源频率得方式来调节转子得转速不需要知道转子得位置信息,经常采用恒压 频比得开环控制方案。自控式永磁同步电机也就是通过改变外部电源得频率来调节转子 得转速,与她控式不同,外部电源频率得改变就是与转子得位置信息就是有关联得,转子

转速越高,定子通电频率就越高,转子得转速就是通过改变定子绕组外加电压(或电流) 频率得大小来调节得。由于自控式同步电机不存在她控式同步电机得失步与振荡问 题,并且永磁同步电机永磁体做转子也不存在电刷与换向器,降低了转子得体积与质 量,提高了系统得响应速度与调速范围,且具有直流电动机得性能,所以本文采用了 自控式交流永磁同步电机.当把三相对称电源加到三相对称绕组上后,自然会产生同 步速得旋转得定子磁场,同步电机转子得转速就是与外部电源频率保持严格得同步,且 与负载大小没关系. 2。1.2交流永磁同步电机得工作原理 本系统采用得就是自控式交直交电压型电机控制方式,由整流桥、三相逆变电路、 控制电路、三相交流永磁电机与位置传感器构成,其结构原理图如图2-2所示.在 图2-2中,50HZ得市电经整流后,由三相逆变器给电机得三相绕组供电,三相对称 电流合成得旋转磁场与转子永久磁钢所产生得磁场相互作用产生转矩,拖动转子同步

电动机运行状态监测系统

兰州理工大学技术工程学院 微机原理及应用 课 程 设 计 班级:焊接工艺与控制工程2班 姓名:史鹏举 学号:09050227 时间:二〇一一年十二月

目录 引言 (3) 1硬件设计 (3) 信号采集单元 (4) I/O单元 (5) 通讯单元 (8) CPU单元 (9) 2 软件设计 (11) 3抗干扰措施 (12) 4结论 (12)

引言 随着电子技术的发展,电动机运行状态监测系统正向基于现场总线的智能型方向发展。电机参数的监测(特别是动态参数的实时监测)可为判别电机运行质量提供不可缺少的数据.我所设计的这种电机运行状态监测系统,是由一台单片机及电机外围电路组成,构成主从方式工作.输入的模拟信号首先送到前置处理部分,再送到差分放大器.采用双端输入单端输出,再经低通滤波器送入A/D转换器,而后进入单片机.单片机的数字量,在LED显示器实时显示。这样就大大提高了参数的监测精度而且加强抗干扰能力。 采用单片机,使外围电路减少,可靠性增强,性价比提高,并具有一下特点:采用空芯电流互感器,电路和分量程放大电路进行电流采样,可提高电流的采样范围,保证大范围的采样,且采样线性度高;根据热容情况判断电动机的过载引起的发热(温度)状态,最大发挥电动机的过载能力;用微处理器可实现实时监测,可在设定时间范围内跳闸保护。 1 硬件设计 电动机运行状态监测系统,用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。

信号采集单元 电动机运行状态监测系统采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续循环实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。 信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。电动机运行状态监测系统中处理三相电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。 图1 信号采集放大电路 信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。 图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从输出大信号从输出。这样处理是因为:电动

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构 第一节精编资料 本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场... 原理,结构 同步电机的基本工作原理和结构 本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。本章共有10节课,内容和时间分配如下: 1.掌握同步电机的结构特点及工作原理。(2节) 2.掌握同步电机绕组有关的结构、额定参数(1节) 3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。(3节) 4.掌握同步电机功率、转矩和同步电机启动特性。(2节) 5.了解同步发电机的运行原理。(2节) 一、简介 交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。 (交流电能几乎全部是由同步发电机提供的。目前电力系统中运行的发电机都 是三相同步发电机。 同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。) 二、同步电机的工作原理 1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p 方向:从具有超前电流的相转向具有滞后电流的相。 形成原因:以电气方式形成。 (当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。它的旋转速度 60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。这个旋转磁通势是以电气方式形成的。同步电机不论作为发电机运行还是作为电动机运行,只要其定子三相绕 组中流通对称三相电流,都将在空气隙中产生上述旋转磁通势,建立旋转磁场。同步电机的定子绕组被称为电枢绕组,因此,上述磁势又常称为电枢磁势,而相应的磁场称为电枢磁场。转子旋转磁场—直流励磁的旋转磁场。 60f1n, 速度:同步速度,即1p 方向:与定子相同。 形成原因:机械方式形成。 (在同步电机的转子上装有由直流励磁产生的磁极,磁极与转子无相对运动。当转子旋转时, 以机械方式形成旋转磁通势,并在气隙中形成另一种旋转磁场。由于磁场随转子一同旋转,被称为直流励磁的旋转磁场。) 2 电动势—两个旋转磁场切割绕组产生。

永磁同步电动机结构原理3D

永磁同步电动机 这些年永磁同步电动机得到较快发展,其特点是功率因数高、效率高,在许多场合开始逐步取代最常用的交流异步电机,其中异步起动永磁同步电动机的性能优越,是一种很有前途的节能电机。 永磁同步电动机的定子结构与工作原理与交流异步电动机一样,多为4极形式,三相绕组按3相4极布置,通电产生4极旋转磁场。下图是有线圈绕组的定子.如下示意图1。 图1定子铁芯与绕组 如下图2是电机机座与定子。 图2机座与定子

永磁同步电动机与普通异步电动机的不同是转子结构,转子上安装有永磁体磁极,图3左就是一个安装有永磁体磁极的转子,永磁体磁极安装在转子铁芯圆周表面上,称为凸装式永磁转子。磁极的极性与磁通走向图3右,这是一个4极转子。 图3凸装式永磁转子 根据磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用磁引力拉动转子旋转,于是永磁转子就会跟随定子产生的旋转磁场同步旋转。 图4左是另一种安装有永磁体磁极的转子,永磁体磁极嵌装在转子铁芯表面,称为嵌入式永磁转子。磁极的极性与磁通走向见图右,这也是一个4极转子。 图4嵌入式永磁转子铁芯1

图5右是一种嵌入式永磁转子,永磁体嵌装在转子铁芯内部,为防止永磁体磁通短路,在转子铁芯开有空槽或在槽内填充隔磁材料。磁极的极性与磁通走向见下右图,这也是一个4极转子。 图5嵌入式永磁转子铁芯2 下图6为装上转轴的嵌入式永磁转子 图6嵌入式永磁转 转子铁芯两侧装上风扇然后与定子机座组装成整机,见下图7。

图7永磁同步电动机剖面图 这种永磁同步电动机不能直接通三相交流的起动,因转子惯量大,磁场旋转太快,静止的转子根本无法跟随磁场旋转。这种永磁同步电动机多用在变频调速场合,启动时变频器输出频率从0开始上升到工作频率,电机则跟随变频器输出频率同步旋转,是一种很好的变频调速电动机。 通过在永磁转子上加装笼型绕组,接通电源旋转磁场一建立,就会在笼型绕组感生电流,转子就会像交流异步电动机一样起动旋转。这就是异步起动永磁同步电动机,是近些年开始普及的节能电机。如下图8为永磁转子铁芯 图8笼型绕组永磁转子铁芯 笼型转子有焊接式与铸铝式:在转子每个槽内插入铜条,铜条与转子铁芯两侧的铜端环焊接形成笼型转子;与普通交流异步电动机一样采用铸铝式转子,将熔化的铝液直接注入转子槽内,并同时铸出端环与风扇叶片,是较廉价的做法,下图9是一个铸铝式笼型转子。

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

电动机四象限运行

电机四象限运行 1、什么是单象限和4象限? 以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。每一种状态的机械特性曲线分别在直角坐标系的四个象限。如果装置只能满足电动机的电动运转状态,那么它就是单象限的。如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。 左半部是众所周知的可逆变频器原理图,各位同行一看便知。而右半部分电机分别处于四象限运行的转矩方向和转速方向(也是旋转方向)图。现简单分析如下: 当电机通常是处于处于第一象限运行,我们称其为正转(顺时针反向)电动状态,电动机通过变频器以不同的转速从电网吸收电能,并将其转换为机械能。电动机的电动转矩和旋转反向一致,也是顺时针方向。负载机械转矩和电动机电动转矩相反,当电动转矩大于负载转矩时,电动机升速,当电动转矩等于负载转矩时,电机匀速运转。 当我们电机处于某一转速运行在第一象限运行时,当变频器的给定频率突然变小,不管变频器的减速参数如何设定,只要是频率下降减速度大于电动机带负载的惯性减速速率,那么电机由电动状态变为发

电状态,它将机械动能通过逆变模块的续流二极管并由制动单元控制向制动电阻放电,将机械能通过制动电阻发热耗掉,这时电机运转方向仍为正转(顺时针),而电机的电动转矩方向和第一象限相反,也就是和转动方向相反(逆时针),电动机对机械负载起制动作用,使得电机运转减速度加快。我们称其为发电能耗制动状态,如果具有回馈制动单元的话,它可以将机械能通过回馈制动单元向电网回馈。 第三象限和第一象限过程相同,只不过电动转矩和旋转方向分别相反。而第四象限和第二象限过程相同,也只不过是电动转矩和旋转方向分别相反。2、关于控制器的象限和电机的象限: 单象限:能量只能单向流动。 四象限:能量可以双向流动。 电机和变频器都有自己的象限,不要搞混了。 *电机的单象限运行,指电机电动运行。四象限指发电运行。*变频器的单象限运行,指能量从电网进入变频器。四象限指能量还

永磁同步电机的原理及结构

第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后 就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

相异步电动机在各种运行状态下的机械特性

三相异步电动机在各种运行状态下的机械特性 一、实验目的 了解三相线绕式异步电动机在各种运行状态下的机械特性。 二、预习要点 1、如何利用现有设备测定三相线绕式异步电动机的机械特性。 2、测定各种运行状态下的机械特性应注意哪些问题。 3、如何根据所测出的数据计算被试电机在各种运行状态下的机械特性。 三、实验项目 1、测定三相线绕式转子异步电动机在R S=0时,电动运行状态和再生发电制动状态下的机械特性。 2、测定三相线绕转子异步电动机在R S=36Ω时,测定电动状态与反接制动状态下的机械特性。 3、R S=36Ω,定子绕组加直流励磁电流I1=0.36A及I2=0.6A时,分别测定能耗制动状态下的机械特性。 四、实验方法 1 2、屏上挂件排列顺序 D34-2、D51

图6-2 三相线绕转子异步电动机机械特性的接线图 3、R S=0时的反转性状态下机械特性、电动状态机械特性及再生发电制动状态下机械特性。 (1)按图6-2接线,图中M用编号为DJ17的三相线绕式异步电动机,U N=220V,Y接法。MG用编号为DJ23的校正直流测功机。S1、S2、、S3选用D51挂箱上的对应开关,并将S1合向左边1端,S2合在左边短接端(即线绕式电机转子短路),S3合在2'位置。R1选用R2的180Ω阻值加上R3、R5上四只900Ω串联再加R 上两只1300Ω并联共4430Ω阻值,R2选用R1上1800Ω阻值,R S选用MET01电源控制屏R7上36Ω的电阻,R3暂不接。直流电表A2、A4的量程为5A,A3量程为200mA,V2的量程为500V,交流电表V1的量程为500V,A1量程为3A。 (2)确定S1合在左边1端,S2合在左边短接端,S3合在2'位置,M的定子绕组接成星形的情况下。把R1、R2阻值置最大位置,将控制屏左侧三相调压器旋钮向逆时针方向旋到底,即把输出电压调到零。 (3) 检查控制屏下方“直流电机电源”的“励磁电源”开关及“电枢电源”开关都须在断开位置。接通三相调压“电源总开关”,按下“启动”按钮,旋转调压器旋钮使三相交流电压慢慢升高,观察电机转向是否符合要求。若符合要求则升高到U=110V,并在以后实验中保持不变。接通“励磁电源” ,调节R2阻值,使校正直流测功机的励磁电流为校正值100mA并保持不变。 (4)接通控制屏右下方的“电枢电源”开关,在开关S3的2'端测量校正直流测功机的输出电压的极性,先使其极性与S3开关1'端的电枢电源相反。在R1阻值为最大的条件下将S3合向1'位置。 (5)调节“电枢电源”输出电压或R1阻值,使电动机M的转速下降,直至n为零,再把R1的R3、R5上四个900Ω串联电阻调至零后用导线短接,继续减小R1阻值或调高电枢电压使电机反向运转,直至n=-1300r/min为止。然后增大电阻R1或者减小校正直流测功机的电枢电压使电机从反转运行状态进入堵转然后进入电动运行状态,在该范围内测取电机MG的U a、I a、n及电动机M的交流电流表A1的I1值,将

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

电机学答案第6章《同步电机》

第六章 同步电机 6.1 同步电机和异步电机在结构上有哪些区别? 同步电机:转子直流励磁,产生主磁场,包括隐极和凸极 异步电机:转子隐极,是对称绕组,短路,绕组是闭合的,定子两者都一样。 6.2 什么叫同步电机?怎样由其极数决定它的转速?试问75r/min 、50Hz 的电机是几极的? 同步电机:频率与电机转速之比为恒定的交流电机601f p n = ,1 606050 7540f n P ?= ==(极) 6.3 为什么现代的大容量同步电机都做成旋转磁极式? ∵励磁绕组电流相对较小,电压低,放在转子上引出较为方便,而电枢绕组电压高 ,电流大,放在转子上使结构复杂,引出不方便,故大容量电机将电枢绕组作为定子,磁极作为转子,称为旋转磁极式。 6.4汽轮发电机和水轮发电机的主要结构特点是什么?为什么有这样的特点? 气轮发电机:转速高,一般为一对极,min 3000r n =,考虑到转子受离心力的作用,为很好的固定励磁绕组,转子作成细而长的圆柱形,且为隐极式结构。转子铁心一般由高机械强度和磁导率较高的合金钢锻成器与转轴做成一个整体,铁心上开槽,放同心式励磁绕组。 水轮发电机:n 低,2P 较多,直径大,扁平形,且为立式结构,为使转子结构和加工工艺简单,转子为凸极式,励磁绕组是集中绕组,套在磁极上,磁极的极靴行装有阻尼绕组。 6.6 为什么水轮发电机要用阻尼绕组,而汽轮发电机却可以不用? 水轮发电机一般为凸极结构,为使转子产生异步转矩,即能异步起动,加阻尼绕组。 汽轮发电机一般为隐极结构,它起动时的原理与异步机相同,∴不必加起动绕组。 6.7 一台转枢式三相同步发电机,电枢以转速n 逆时针方向旋转,对称负载运行时,电枢反应磁动势对电枢的转速和转向如何?对定子的转速又是多少? 对电枢的转速为n ,为定子的转速为0,方向为顺时针。原因是:要想产生平均转矩,励磁磁势与电枢反应磁势必然相对静止,而现在励磁磁势不变。∴电枢反应磁势对定子也是相对静止的,而转子逆时针转,∴它必须顺时针转,方能在空间静止。 6.11 试述交轴和直轴同步电抗的意义。为什么同步电抗的数值一般较大,不可能做得很小?请分析下面几种情况对同步电抗有何影响? (1)电枢绕组匝数增加; (2)铁心饱和程度提高; (3)气隙加大; (4)励磁绕组匝数增加。 d X ,q X 表征了当对称三相直轴或交轴电流每相为1A 时,三相联合产生的总磁场(包 括在气隙中的旋转电枢反应磁场和漏磁场)在电枢绕组中每相感应的电动势气隙大,同步电抗大,短路比大,运行稳定性高,但气隙大或同步电抗小,转子铜量大,成本增加,∴同步电抗不能太小。d ad X X X σ=+ q aq X X X σ=+ (1)电枢绕组匝数增加,产生的直轴交轴电枢反应磁通增大,∴d X ,q X 增加,(∵ E N ∝∴,ad aq E E ↑电流不变,ad aq X X ↑)

第六章 同步电机

第六章 同步电机习题课 一、填空 1. ★在同步电机中,只有存在 电枢反应才能实现机电能量转换。 答 交轴 2. 同步发电机并网的条件是:(1) ;(2) ;(3) 。 答 发电机相序和电网相序要一致,发电机频率和电网频率要相同,发电机电压和电网电压大小要相等、相位要一致 3. ★同步发电机在过励时从电网吸收 ,产生 电枢反应;同步电动机在过励时向电网输出 ,产生 电枢反应。 答 超前无功功率,直轴去磁,滞后无功功率,直轴增磁 4. ★同步电机的功角δ有双重含义,一是 和 之间的夹角;二是 和 空间夹角。 答 励磁电动势,电压,主极轴线,气隙合成磁场轴线 5. 凸极同步电机转子励磁匝数增加使q X 和d X 将 。 答 不变 6. 凸极同步电机气隙增加使q X 和d X 将 。 7. 答 减小 8. ★凸极同步发电机与电网并联,如将发电机励磁电流减为零,此时发电机电磁转矩为 。 答 2 1 q d m U 11( )s i n 2 2X X δ- Ω 二、选择 1. 同步发电机的额定功率指( )。 A 转轴上输入的机械功率; B 转轴上输出的机械功率; C 电枢端口输入的电功率; D 电枢端口输出的电功率。 答 D 2. ★同步发电机稳态运行时,若所带负载为感性8.0cos =?,则其电枢反应的性质为 ( )。 A 交轴电枢反应; B 直轴去磁电枢反应; C 直轴去磁与交轴电枢反应; D 直轴增磁与交轴电枢反应。 答 C 3. 同步发电机稳定短路电流不很大的原因是( )。 A 漏阻抗较大; B 短路电流产生去磁作用较强; C 电枢反应产生增磁作用; D 同步电抗较大。 答 B 4. ★对称负载运行时,凸极同步发电机阻抗大小顺序排列为( )。

永磁同步电机的原理和结构

第一章永磁同步电机的原理及结构 永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、由转子磁路不对称而引起的磁阻转矩和单轴转矩等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,只有异步转矩是驱动性质的转矩,电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机基础知识

(一) P M S M 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。由此得到了直线电机的定子和动子,图1为其转变过程。

电机与拖动第六章自测题答案

(一)填空题: 1. 同步发电机的短路特性为一直线,这是因为在短路时电机的磁路处于不饱和状态。 2. 同步发电机正常情况下并车采用准同期法,事故状态下并车采用自同期法。 3. 同步调相机又称为同步补偿机。实际上就是一台空载运行的同步电动机,通常工作于过励状态。 4. 同步发电机带负载时,如0o<Ψ<90o,则电枢反应磁动势F a可分解为 F ad=F a sinΨ,F aq=F a cosΨ。其中F ad电枢反应的性质为去磁性质,F aq电枢反应的性质为交磁性质。 5. 同步发电机与无穷大电网并联运行,过励时向电网输出感性无功功率,欠励时向电网输出容性无功功率。 6. 一台汽轮发电机并联于无穷大电网运行,欲增加有功功率输出,应增大进汽量,欲增加感性无功功率输出,应增加励磁电流。(填如何调节) 7. 汽轮发电机气隙增大时,则同步电抗X t减小,电压调整率?U减小,电机制造成本增加,增加静态稳定性能增加。 8. 当同步电机作发电机运行时,在相位上,超前于;作电动机运行时,滞后于。 (二)判断题: 1. 凸极同步发电机由于其电磁功率中包括磁阻功率,即使该电机失去励磁,仍可能稳定运行。(√) 2. 采用同步电动机拖动机械负载,可以改善电网的功率因数,为吸收容性无功功率,同步电动机通常工作于过励状态。 (√) 3. 同步发电机过励运行较欠励运行稳定,满载运行较轻载运行稳定。(×) 4. 同步发电机采用准同期法并车,当其他条件已满足,只有频率不同时,调节发电机的转速,使其频率与电网频率相等时,合上并联开关,即可并车成功。(×) 5. 汽轮同步发电机与无穷大电网并联运行,只调节气门开度,既可改变有功功率又可改变无功功率输出。(√)

第六章 同步电机

第六章同步电机 6.1 同步电机的气隙磁场,在空载时是如何激励的?在负载时是如何激励的?[答案见后] 6.2 为什么大容量同步电机采用磁极旋转式而不采用电枢旋转式? [答案见后] 6.3 在凸极同步电机中,为什么要采用双反应理论来分析电枢反应? [答案见后] 6.4 凸极同步电机中,为什么直轴电枢反应电抗X ad大于交轴电枢反应电抗 X aq? [答案见后] 6.5 测定同步发电机的空载特性和短路特性时,如果转速降为原来0.95n N,对试验结果有什么影响? [答案见后] 6.6 一般同步发电机三相稳定短路,当I k=I N时的励磁电流I fk和额定负载时的励磁电流I fN都已达到空载特性的饱和段,为什么前者X d取不饱和值而后者取饱和值?为什么X q一般总是采用不饱和值? [答案见后] 6.7 为什么同步发电机突然短路,电流比稳态短路电流大得多?为什么突然短路电流大小与合闸瞬间有关? [答案见后] 6.8 在直流电机中,E>U还是U>E是判断电机作为发电机还是作为电动机运行的依据之一,在同步电机中,这个结论还正确吗?为什么?

[答案见后] 6.9 当同步发电机与大容量电网并联运行以及单独运行时,其cosφ是分别由什么决定的?为什么? [答案见后] 6.10 试利用功角特性和电动势平衡方程式求出隐极同步发电机的V形曲线。[答案见后] 6.11 两台容量相近的同步发电机并联运行,有功功率和无功功率怎样分配和调节? [答案见后] 6.12 同步电动机与感应电动机相比有何优缺点? [答案见后] 6.13 凸极式同步发电机在三相对称额定负载下运行时,设其负载阻抗为R+jX,试根据不考虑饱和的电动势相量图证明下列关系式 [答案见后] 6.14 试述直流同步电抗X d、直轴瞬变电抗X′d、直轴超瞬变电抗X"d的物理意义和表达式,阻尼绕组对这些参数的影响? [答案见后] 6.15 有一台三相汽轮发电机,P N=25000kW,U N=10.5kV,Y接法,cosφN=0.8(滞后),作单机运行。由试验测得它的同步电抗标么值为X*t=2.13。电枢电

同步电机转子结构

高强度永磁同步电机的转子结构 —北京明正维元电机技术有限公司专利 本实用新型涉及一种高强度永磁同步电机的转子结构,它由中心轴,铁芯和附着在其外圆表面上的至少1对圆弧面形的磁钢构成圆辊状结构,各相邻两磁钢侧面之间留有气隙,各磁钢通过相应的锁紧件与铁芯构成锁紧联结结构,它解决了现有技术强度差、磁钢易被甩出,易出现事故的问题,用于制作各型永磁同步电机。 交流永磁同步调速电梯电机之特性 石正铎路子明 我国电梯性能随着计算机控制技术和变频技术的发展有很大的提高,但是异步变频电动机存在低频低压低速时的转矩不够平稳进而影响低速段运行不理想的缺点。用永磁同步调速电机替代交流异步电机,用同步变频替代异步变频可以解决低速段的缺点和启动及运行中的抖动问题,使电梯运行更平稳、更舒适,同时减小电机的体积,降低噪音。采用有齿轮电梯曳引机,当电梯制动器失灵、轿厢产生自由落体时,可利用永磁同步电机的电流制动功能保证轿厢低速溜车,为电梯安全增加了一道安全屏障。 一、永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁。因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 二、交流永磁同步调速电梯电机的主要优点 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备: (1)、功率因数高近于1。 (2)、反电势正弦波降低了高次谐波的幅值,有效的解决了对电源的干扰。 (3)、减小了电机的铜损和铁损。 同步电机发温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。 3、高效率超节能,因为功率因数高(可近似为1),又省去电励磁,减少了定子电流和定子转子电阻的损耗,效率高(94~96%),满载起动电流比异步减少一半,所以节能效果明显,用于电梯时,同步电机可节能40%以上(用户实际使用后测试结果),轻载电流小,只相当于异步电机的10%,如11KW异步电机轻载时异步电机电流10A,而同步电机轻载电流只有0.7A。 4、调速范围宽,可达1:1000甚至于更高(异步电机只有1:100),调速精度极高,可大大提高电梯的品质。

相关主题
文本预览
相关文档 最新文档