当前位置:文档之家› 环节3 模块2 动态绘图软件与代数教学巩固 课后练习

环节3 模块2 动态绘图软件与代数教学巩固 课后练习

环节3 : 模块2 动态绘图软件与代数教学 >> 巩固 >>课后练习

内容

? 1.本讲座介绍的利用几何画板现场绘制函数图象诸多优点中,下面未提到的是()

o A.方便、快捷

o B.准确性高

o C.学生易接受

o D.学生无需使用纸笔绘图

答案正确!

? 2.在讲座中,演示利用动态绘图软件研究周期性时,认为几何画板的优势在于()

o A.内置了周期性绘图

o B.内置了三角函数,绘图方便

o C.可以快速切换函数、更改周期

o D.教师无需讲解,全部由学生自学完成

答案正确!

? 3.本讲座认为利用动态绘图软件(如几何画板)可以绘制出函数y=log2X的图象。()

o A.×

o B.√

答案正确!

? 4.本讲座介绍了为习题讲评配置动态图形,从而学生可以不经过运算就得出结果。()

o A.×

o B.√

答案正确!

5.本讲座介绍了利用动态绘图软件可以深入探究每一个参数对函数图象变

换的影响。()

o A.×

o B.√

答案正确!

您的总得分:5 分

线性代数知识点总结第二章

线性代数知识点总结 第二章 矩阵及其运算 第一节 矩阵 定义 由m n ?个数()1,2, ,;1,2, ,ij a i m j n ==排成的m 行n 列的数表 11121212221 2 n n m m mn a a a a a a a a a 称为m 行n 列矩阵。简称m n ?矩阵,记作111212122 211 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? ,简记为() ()m n ij ij m n A A a a ??===,,m n A ?这个数称为的元素简称为元。 说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。 扩展 几种特殊的矩阵: 方阵 :行数与列数都等于n 的矩阵A 。 记作:A n 。 行(列)矩阵:只有一行(列)的矩阵。也称行(列)向量。 同型矩阵:两矩阵的行数相等,列数也相等。 相等矩阵:AB 同型,且对应元素相等。记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。 单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可 表示为E )(课本P29—P31) 注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。 第二节 矩阵的运算 矩阵的加法 设有两个m n ?矩阵()() ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +, 规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++?? ? +++ ? += ? ? +++?? 说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。(课本P33) 矩阵加法的运算规律 ()1A B B A +=+; ()()()2A B C A B C ++=++

近世代数ch2(1-6节)习题参考答案

第二章前6节习题解答 P35 §1 1.全体整数集合对于普通减法来说是不是一个群? 解 ∵减法不满足结合律,∴全体整数对于减法不构成群。 2.举出一个有两个元的群例子。 解 }11{-,对于普通乘法构成一个群。 ]}1[]0{[,对于运算][][][j i j i +=+构成群。 ]}2[]1{[,对于运算][]][[ij j i =构成群。 它们都是两个元的群。 3. 设G 是一个非空集合,”“ο是一个运算。若①”“ο运算封闭;②结合律成立;③G 中存在 右单位元R e :G a ∈?,有a ae R =;④G a ∈?,G a R ∈?-1,有R R e aa =-1。则G 是一个群。 证(仿照群第二定义的证明) 先证R R R e a a aa ==--1 1。 ∵G a R ∈-1,∴G a ∈?',使R R e a a =-'1, ∴R R R R R R R R R R R e a a a e a a aa a a a a a e a a a a ======--------''')()')(()(11111111,R R e a a =?-1。 ∴R R R e a a aa ==--11。 再证a ae a e R R ==,即R e 是单位元。 G a ∈?,已证R R R e a a aa ==--11,∴a a e a ae a a a a aa a e R R R R R =?====--)()(1 1。 ∴a ae a e R R ==。即R e 就是单位元e 。再由e a a aa R R ==--11得到1 -R a 就是1-a 。 这说明:G 中有单位元, G a ∈?都有逆元1-a 。 ∴G 是一个群。 P38 §2 1. 若群G 的每一个元都适合方程e x =2,那么G 是可交换的。 证∵ 12,-=?=∈?x x e x G x 。 ∴。b b a a G b a 11,,--==?∈? ∴ba ba b a ab ===---111)(。 ∴ba ab =,即G 是可换群。 2.在一个有限群中阶大于2的元的个数一定是偶数。 证 令a 是有限群G 中一个阶2>的元,∵互逆元是同阶的,∴1-a 的阶也大于2,且a a ≠-1 (若矛盾的阶与2,21>=?=-a e a a a )。 设G 中还有阶2>的元b ,且1,-≠≠a b a b ,∴1-b 的阶也大于2,且b b ≠-1。

3.2求代数式地值地方法

教师陆阳红学生年级一年级上课日期2019.5.25 学科数学课题名称求代数式值的方法上课时间13:00-15:00 教学目标 1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法. 2.会利用代数式求值推断代数式反映的规律. 3.能解释代数式求值的实际应用. 教学重难点 重点:列代数式,会求代数式的值 难点:感受代数式求值可以理解为一个转换过程或某种算法 课程教案 一、创设情境 如图就是小明设计的一个程序.当输入x的值为3时,你能求出输出的值吗? 二、 知识点一、代数式的值 1、概念像这样,用具体数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代 数式的值(value of algebraic expression). 通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化. 2、字母的取值 ①代数式中的字母取值必须使这个代数式有意义.如在代数式 1 x-3 中,x不能取3,因为当x=3时,分母x-3=0,代数式 1 x-3 无意义. ②实际问题中,字母的取值要符合题意.如当x表示人数时,x不能取负数和分数. [例题1] :下列代数式中,a不能取0的是( ). A. 1 3 a B. 3 a C. 2 a-5 D.2a-b 解析:代数式中字母的取值必须使这个代数式有意义,由分母不能为0可知,B选项中的a不能取0.故选B. 答案:B 练一练 1、要使代数式 1 x 1 - 有意义,则x需要满足什么条件? 2、要让代数式 9 3 8 - x 有意义,则x需要满足什么条件?

知识点二、代数式求值的步骤 1、步骤 第一步:代入,用具体数值代替代数式里的字母 第二步:计算,按照代数式中指明的运算,计算出结果 2、注意事项 ①一个代数式中的同一个字母,只能用同一个数值去代替。 ②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号。 ③代入时,不能改变原式中的运算符号及数字。 ④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的。 [例题2]当a=2,b=-1,c=-3,求下列代数式的值 (1)b 2-4ac (2)(a+b+c)2 解析:(1)当a=2,b=-1,c=-3(注意:一定要这步!!!) b 2-4ac=(-1)2-4×2×(-3) =1+24 =25 (2) 练一练 1. 已知x=1,y=2,则代数式x-y 的值为( ) A.1 B.-1 C.2 D.-3 2.(2016)当填x=1时,代数式4-3x 的值为( ) A.1 B.2 C.3 D.4 3. 某商店购进一批茶杯,每个1.5元,则买n 个茶杯需付款 元.如果茶杯的零售价为每个2元,则售完茶杯得付款 元.当n=300时,该商店的利润为 元,n=3561时你能确定利润吗? 知识点三、求代数式的值的方法 (1)直接求值法 [例题3] 当a =12,b =3时,求代数式2a 2 +6b -3ab 的值. 解析:直接将a =12 ,b =3代入2a 2 +6b -3ab 中即可求得. 解:原式=2×(12)2+6×3-3×12×3=12+18-9 2 =14. 方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、 平方运算,要用括号括起来. 试一试 根据下列各组x 、y 的值,分别求出代数式 x 2 +2xy+y 2 与x 2-2xy+y 2的值: (1)x=2,y=3; (2)x=-2,y=-4。 练一练

《抽象代数基础》习题解答

《抽象代数基础》习 题 答 解 于延栋编 盐城师范学院数学科学学院二零零九年五月

第一章 群 论 §1 代数运算 1.设},,,{c b a e A =,A 上的乘法”“?的乘法表如下: 证明: ”“?适合结合律. 证明 设z y x ,,为A 中任意三个元素.为了证明”“?适合结合律,只需证明 )()(z y x z y x ??=??. 下面分两种情形来阐明上式成立. I.z y x ,,中至少有一个等于e . 当e x =时,)()(z y x z y z y x ??=?=??; 当e y =时,)()(z y x z x z y x ??=?=??; 当e z =时,)()(z y x y x z y x ??=?=??. II .z y x ,,都不等于e . (I)z y x ==.这时,)()(z y x e x x z z e z y x ??=?===?=??. (II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ??=?==?=??. (III)z y x ,,中有且仅有两个相等. 当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =?=??)(,z u x z y x =?=??)(,从而,)()(z y x z y x ??=??.同理可知,当z y =或x z =时,都有)()(z y x z y x ??=??. 2.设”“?是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=n i i a 1为: 111a a i i =∏=,111 1+=+=????? ??=∏∏r r i i r i i a a a . 证明: ∏∏∏+==+==???? ??????? ??m n k k m j j n n i i a a a 1 11.

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

求代数式的值的方法

一. 教学内容: 寒假专题——求代数式值的方法 学习要求: 1. 掌握代数式值的概念 2. 掌握求代数式的值的方法,并会准确地求出代数式的值 知识内容: 1. 代数式的值的概念 用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果就叫做代数式的值。 2. 求代数式的值的方法 求代数式的值的方法是本节的重点,它的一般步骤是:先代入,再计算。 3. 注意事项:(1)代数式里字母的取值要求: ①必须确保代数式有意义 例如,中的x就不能取3,因为当时,分母,也就是除数为0,这是没有意义的。 ②确保字母本身所表示的量有意义 例如,若用n表示旅客人数,则n只能取整数。 (2)一个代数式的值是由这个代数式中的字母的取值与指明的运算共同确定的。因此,在很多情况下,同一个代数式可能有很多个不同的值。 (3)求代数式的值时,应特别注意代数式所指明的运算,代入时,省略的乘号应复原,遇到字母取值为分数或负数时,应根据情况适当添加括号。 4. 整体代入法 在未明确给定或不能求出单个字母的取值的情况下,某些代数式的求值要借助于“整体代入法” 例如,已知,求代数式的值,我们无法知道a、b两字母的具体数值,如果把变形为,然后把看成一个整体,用数值5来 代入。即有: 【典型例题】 例1. 求当,b=3时,代数式的值。 解:当,b=3时 原式 说明 1. 将代数式中的a用数字代替,b用数字3代替,这个过程叫做代入。 2. 计算时,按先乘方,再乘除,后加减的顺序 3. 注意“对号入座”不要错位,也就是说,代数式中的字母a只能用代替,b只能用3代替。

4. 要恢复省略了的乘号。 5. 是分数,如果代入后是对它进行立方、平方运算,必须把它用括号括起来。 例2. 根据如图所示的程序计算函数值。若输入的x 值为,则输出的结果为( ) A. B. C. D. 解析:将x 的值代入代数式之前,先要判断应该代入哪个代数式中,而这一点必须根据方框中对x 的取值的限制来确定,由于,属于 的范围中,故应将 代入代数式 中,当 时,代数式 ,即此时 ,也就 是输出的y 值为。 解:选C 归纳:题目中指输出的y 值,实际上就是符合范围的对应的代数式的值,代数式的值与以后学习的函数值是有联系的。 例3. 已知 , ,求 的值 分析:先将原式合并同类项,化为含有,xy 的代数式,再将,xy 之值 代入求得 解:原式 , 原式 说明:本题采用“整体代入法”,整体思想是数学中常用的思想方法。用这种方法常常使某些较复杂的问题简单化。 整体代入就是根据不同的需要将问题中的某个部分看成一个整体,即相当于一个大字母,而我们要面对的较复杂的代数式就变成关于这个大字母的简单的代数式了,如本题可看作求 的值。 例4. 当时,求代数式 的值 解:

3.2求代数式的值的方法

教师姓名 陆阳红 学生姓名 年 级 一年级 上课日期 2019.5.25 学 科 数学 课题名称 求代数式值的方法 上课时间 13:00-15:00 教学目标 1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法. 2.会利用代数式求值推断代数式反映的规律. 3.能解释代数式求值的实际应用. 教学重难点 重点:列代数式,会求代数式的值 难点:感受代数式求值可以理解为一个转换过程或某种算法 课程教案 一、创设情境 如图就是小明设计的一个程序.当输入x 的值为3时,你能求出输出的值吗? 二、 知识点一、代数式的值 1、概念 像这样,用具体数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression ). 通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化. 2、字母的取值 ①代数式中的字母取值必须使这个代数式有意义.如在代数式1 x -3 中,x 不能取3,因为当x =3时,分母x -3 =0,代数式1 x -3 无意义. ②实际问题中,字母的取值要符合题意.如当x 表示人数时,x 不能取负数和分数. [例题1] :下列代数式中,a 不能取0的是( ). A.1 3 a B.3a C.2a -5 D .2a -b 解析:代数式中字母的取值必须使这个代数式有意义,由分母不能为0可知,B 选项中的a 不能取0.故选B. 答案:B 练一练 1、要使代数式 1x 1 -有意义,则x 需要满足什么条件? 2、要让代数式9 38 -x 有意义,则x 需要满足什么条件?

近世代数参考答案

安徽大学2008-2009学年第一学期《近世代数》 考试试卷(B 卷)参考答案 一、名词解释题(本题共5小题,每小题3分,共15分) 1、对,显然模n 的同余关系满足以下条件: 1)对Z 中的任意元素a 都有(mod )a a n ≡;(反身性) 2)如果(mod )a b n ≡,必有(mod )b a n ≡;(对称性) 3)如果(mod )a b n ≡,(mod )b c n ≡,必有(mod )a c n ≡(传递性) 则这个关系是的一个等价关系. 2、错,因为2Z ∈,在Z 中没有逆元. 3、错,因为由于[]Z x x Z <>?,而整数环Z 不是一个域. 4、错,在同态满映下,正规子群的象是正规子群. 5、对,[]F x 是一个有单位元的整环,且 1)存在?:()()f x f x →的次数, 是非零多项式到非负整数集的一个映射; 2)在[]F x 中任取()f x 及()0g x ≠,存在[]F x 上的多项式()q x ,()r x 满足 ()()()(f x g x q x r x =+,其中()0r x =或()r x 的次数<()g x 的次数. 因此[]F x 作成一个欧式环. 二、计算分析题(本题共3小题,每小题5分,共15分) 1、στ=(2453),2τσ=(2346),1τστ-=(256413). 2、12Z 的所有的可逆元为1,5,7,11;n Z 的子环共有()T n 个,故12Z 共有6个子环,它们分别是{}10S =,{}20,6S =,{}30,4,8S =,{}40,3,6,9S =,{} 50,2,4,6,8,10S =和12Z 本身. 3、在8Z 中:32([4][3][2])([5][3])x x x x +--+ 5432 [4][4][3][5][3][6]x x x x x =-+-+-. 三、举例题(本题共3小题,1,2题各3分,第3题4分,共10分) 1、在整数环上的一元多项式[]Z x 中,由于[]Z x x Z <>?,整数环Z 是一个

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??221321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=321332123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=321161109412316z z z

所以有?????+--=+-=++-=3 21332123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374??? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

代数式求值的十种常用方法

代数式求值的十种常用方法 一、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 例1、若和互为相反数,则 =_______。 解:由题意知,,则且,解得 ,。因为,所以,故填37。 二、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 例2、先化简,再求值:,其中 ,。 解:原式。 当,时, 原式。 三、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。

通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 例3、已知,则=_______。 解:由,即。 所以原式 。 故填1。 四、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法。这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围。 例4、请将式子化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x的值代入求值。 解:原式 。 依题意,只要就行,当时,原式或当时,原式。 五、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 例5、若的值为,则的值为

A. 1 B. –1 C. D. 解:由,取倒数得, ,即。 所以 , 则可得,故选A。 六、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 例6、如果,则的值是 A. B. 1 C. D. 解:由得,。 所以原式 。

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

如何求代数式的值

1 如何求代数式的值 1.直接求值法 先把整式化简,然后代入求值. 例1 先化简,再求值:3-2xy+2yx 2+6xy-4x 2y ,其中x=-1,y=-2. 2.隐含条件求值法 先通过隐含条件将字母取值求出,然后化简求值. 例2 若单项式-3a 2-m b 与b n+1a 2是同类项,求代数式m 2-(-3mn+3n 2)+2n 2的值. 例3 已知2-a +(b+1)2=0,求5ab 2-[2a 2b-(4ab 2-2a 2 b)]的值. 3.整体代入法 不求字母的值,将所求代数式变形为与已知条件有关的式子,如倍差关系、 和差关系等. 例4 已知x 2+4x-1=0,求2x 4+8x 3-4x 2-8x+1的值. 例5 已知x 2-x-1=0,求x 2+21 x 的值. 4.换元法 出现分式或某些整式的幂的形式时,常常需要换元. 例6 已知b a b a +-2=6,求代数式b a b a +-)2(2+)2() (3b a b a -+的值. 5.特值代入求值 在选择题与填空题中,由于不用计算过程,也可以用特殊值法来计算,即选取符合条件的字母的值,直接代入代数式得出答案. 例7 已知-1<b <0, 0<a <1,那么在代数式a -b 、a+b 、a+b 2、a 2+b 中,对任意的a 、 b ,对应的代数式的值最大的是 (A) a+b (B) a -b (C) a+b 2 (D) a 2+b 解:取21-=b ,2 1=a ,分别代入四个选择支计算得:(A)的值为0;(B)的值1;(C) 的值为43;(D)的值为4 3,所以选(B) 例8 设,)1()1(322dx cx bx a x x +++=-+则=+++d c b a 析解:d c b a +++恰好是32dx cx bx a +++当1=x 时的值。故取1=x 分别代入等 式,)1()1(322dx cx bx a x x +++=-+左边是0,右边是d c b a +++,所以

近世代数习题解答张禾瑞三章

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

中考求代数式的值(方法归类)

如何求代数式的值 求代数式的值是数学中的一个重要的内容,它是中考和数学竞赛中的必考内容.求代数式的值的一般步骤是先代入,再计算求值.但在实际解题时,常常需要综合运用知识求值,现介绍一些求代数式的值的一些常用的方法,以供同学们参考. 一、单值代入求值 用单一的字母数值代替代数式中的字母,按代数式指明的运算,计算出结果; 例1当x=2时,求x3+x2-x+3的值. 析解:当x=2时,原式=23+22-2+3=13. 二、多值代入求值 用多个的字母数值代替代数式中的相应字母,按代数式指明的运算,计算出结果 例2当a=3,a-b=1时,代数式a2-ab的值 . 析解:将a=3代入a-b=1得b=2,则原式=32-3×2=3.三、整体代入求值 根据条件,不是直接把字母的值代入代数式,而是根据代数式的特点,将整体代入以求得代数式的值. 例3如果代数式238 b a -+ -++的值为18,那么代数式962 a b 的值等于() A.28B.28 -C.32D.32 -分析:根据所给的条件,不可能求出具体字母 a b的值,

可考虑采用整体代入的方法,所要求的代数式962b a -+可变形为3(-2a+3b+8)-22,,从而直接代入238a b -++的值 求出答案. 解:原式=3(-2a+3b+8)-22=3×18-22=32. 例4如果012=-+x x ,那么代数式2622-+x x 的值为 ( ) A 、64 B 、5 C 、—4 D 、—5 分析:本题中没有给出的值,所以不能直接代入求 值.所以我们应设法把原代数式化成用含12-+x x 的式子来表示的形式,然后再把12-+x x 看作一整体,把它的值整体代入求值. 解:原式=4024)1(22-?=--+x x =-4,所以选C. 例5当x=1时,代数式px 3+qx+1的值为2004,则x=-1时,代数式px 3+qx+1的值为[( ) A.-2002 B.-2003 C.-2001 D.2005 解, 当x=1时 px 3+qx+1=p+q+1=2004,p+q=2003. 当x=-1时,px 3+qx+1=-p-q+1=-2003+1= -2002 故选A. 四、特值代入求值 在选择题与填空题中,由于不用计算过程,也可以用特殊值法来计算,即选取符合条件的字母的值,直接代入代数式得

线性代数第二章矩阵(答案)

线性代数第二章矩阵 (答案) 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1,0,0,21(=C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题: 1.??? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,???? ? ??----=101012121234B ,则=+B A 32????? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=?????? ? ??---???? ??-20413121013143110412???? ??---6520876 三、计算题: 设???? ? ??--=111111 111A ,4

???? ? ??--=150421321B ,求A AB 23-及B A T ;229420172 2213222222 22220926508503111111111215042 1321111111111323????? ??----=???? ? ? ?---????? ??-=????? ??---????? ? ?--????? ??--=-A AB .092650850150421321111111111???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设*A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1-*=A A A (B )1-*=n A A (C )**=A A n λλ)( (D )0)(=**A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A )A A λλ= (B )A A λλ= (C )A A n λλ= (D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

相关主题
文本预览
相关文档 最新文档