当前位置:文档之家› 音叉液位开关高阶频率触发条件的试验

音叉液位开关高阶频率触发条件的试验

音叉液位开关高阶频率触发条件的试验

音叉液位开关高阶频率触发条件的试验

所谓频率指的是物体的一阶固有频率。一般来讲,物体振动有多少阶频率跟物体的内部自由度有关,有多少个内部自由度就有多少个固有频率。

根据惯性定律,相比质量小的物体,物体质量越大,其越容易保持原来的状态,越不容易受到干扰,也就越难触发高阶频率。

另外,根据粘性阻尼振动和非线性弹性系统振动的振动理论,如果对称的物体双边受到的激励不对称,会使得高阶频率更易激发。通常情况下,双边不对称的物体要比对称的物体在同等条件下更易激发高阶频率。

下面通过实验,来验证下音叉液位开关高阶频率的触发条件。

试验目的试验样机试验介质试验工具验证触发高阶频率的条件紧凑型音叉液位开关,样机空气中的频率f=1102Hz。蓖麻油双腔容器、单腔容器、升降台、示波器。试验步骤一将样机按高料位放置,样机处于空气中。双腔容器中一边装有蓖麻油介质,一边为空,随后通过升降台慢慢调整试验介质的高度,从开始接触介质后,频率先是慢慢下降,在下降到约990Hz时,频率开始突然跳变。试验步骤二双腔容器中两边装有蓖麻油介质,随后通过升降台慢慢调整试验介质的高度,从开始接触介质后,频率先是慢慢下降,在下降到约975Hz时,频率开始突然跳变。试验步骤三单腔容器中装有蓖麻油介质,随后通过升降台慢慢调整试验介质的高度,从开始接触介质后,频率先是慢慢下降,在下降到约950Hz时,频率开始突然跳变。结论从以上实验可看出:

当音叉液位开关双边受到的激励不对称时,高阶频率容易被触发。

标准击实试验

标准击实试验 T0131-93 一.的和适用范围 本试验分轻型击实和重型击实。小试筒适用于粒径不大于25mm的土,大试筒适用于粒径不大于38mm 的土。 二.仪器设备 1.标准击实仪:轻、重型试验方法和设备的主要参数见表 1-4 击实试验方法种类表1-4 3.天平:感量0.01g。 4.台秤:称量10kg,感量5g。 5.圆孔筛:孔径38mm、25mm、19mm和5mm各1个。 6.拌和工具:浅盘、土铲。 7.其它:喷水设备、橡皮榔头、盛土盘、量筒、推土器、铝盒、修土刀、平直尺等。 三.试样 本试验可分别采用不同的方法准备试样, 试料用量表 1.干土法(土样重复使用)将具有代表性的风干土或在500C下烘干的土样放在橡皮板上用圆木棍碾散,然后过不同孔径的筛。对于小试筒,按四分法取筛土样约3kg;对于大试筒,同样按四分法取样约6.5kg。 估计土样风干或天然含水量,如风干含水量低于开始含水量太多时,可将土样铺在不吸水的盘上,用喷水设备均匀喷洒适当用量的水,并充分拌合,闷料一夜备用。 2.干土法(土样不重复使用)按四分法至少准备5个试样,分别加入不同水分(按2%~3%含水量递增),拌匀后闷料一夜备用。 四.试验步骤 1.将击实筒放在坚硬的地面上,按五层法时,每次需400~500g(其量应使击实后的土样等于或略高于筒高1/5)。对于大试筒,先将垫块放入筒内底板上,按五层法时,每层

需试样900g (细粒土)~1100g (粗粒土) 。整平表面,并稍加压紧,然后按规定的击数进行第一层土的击实,击实时击锤应自由垂直落下,锤迹必须均匀分布于土样面,第一层击实完后,将试样表面“拉毛”,然后装入套筒,重复上述方法进行其余各土层的击实。小试筒击实后,试样不应高出筒顶面5mm ;大试筒击实后,试样不应高出筒顶面6mm 。 3.用修土刀沿套筒内壁削刮,使试样与套筒脱离后,扭动并取下套筒,齐筒顶细心削平试样,擦净筒外壁,称量(准确至1g )。 4.用推土器推出筒内试样,从试样中心处取样测其含水量,计算至0.1%。 5.对于干土法(土样重复使用),将试样搓散,然后按上述方法进行洒水,拌合(但不需要闷料),每次约增加2~3%的含水量,其中两个大于和两个小于最佳含水量。 6.按上述方法进行其它含水量试样的击实试验。 五.结果整理: 1.按下式计算击实后的干密度: w d 01.01+= ρ ρ 式中:ρd —干密度,g/cm 3 ; ρ—湿密度,g/cm 3 ; w —含水量,%。 2.以干密度为纵坐标,含水量为横坐标,绘制干密度与含水量的关系曲线 ,曲线上峰值点的纵、横坐标分别为最大干密度和最佳含水量。如果曲线不能明显绘出峰值点,应进行补点或重做。 六.注意事项 1.击实锤应提升到规定高度,垂直自由落下。 2.注意每层装土高度的控制。 3.土样拌和应均匀 标准击实试验记录 表1-6

音叉液位开关的安装及应用

音叉液位开关的安装及应用(附安装图) 音叉液位开关虽然用途广泛,种类繁多,但安装方式差别并不大。那么,音叉液位开关有哪些特点?主要应用在哪里?安装的方式方法和注意事项都有哪些呢?下面,就以计为计为音叉液位开关为例,针对上述问题为大家分别介绍如下: 一、音叉液位开关的特点与应用 计为音叉液位开关现有计为Ring-11音叉液位开关和计为Ring-21紧凑型音叉液位开关两个系列的产品。具有不同的特点和用途,分别如下: 二、音叉液位开关的安装 1、计为Ring-11音叉液位开关安装图和安装注意事项: 安装方向:安装Ring-11音叉液位开关时,应使叉体面和液体升降或流动保持方向一致,可以避免由于介质对叉体的阻力而产生的测量误差,如图1所示。 图1 介质流动方向

①螺纹连接的标志点②介质流动方向 避免入料口:如图2,在选择Ring-11音叉液位开关安装位置时,应避免由于安装在入料口位置而造成的测量误差,甚至损坏仪表。 图2 避免入料口的安装示意图 2、计为Ring-21紧凑型音叉液位开关安装图和安装注意事项: 在安装之前,请再次确认仪表型号是否满足现场的环境要求,如:过程压力、过程温度、介质的化学性能等,确保仪表在安装后能够正常使用。一般地,Ring-21紧凑型音叉液位开关可以根据需要安装在任何位置,可以水平安装、也可以垂直安装或倾斜安装。当被测介质具有粘稠性时,为了减少或避免出现挂料现象,请将仪表垂直安装。 安装方向:安装Ring-21紧凑型音叉液位开关时,应使叉体面和液体升降或流动保持方向一致,可以避免由于介质对叉体的阻力而产生的测量误差,如图3所示。 ① ② 图3 介质流动方向 ①螺纹连接的标志点②介质流动方向 避开入料口:在选择Ring-21紧凑型音叉液位开关的安装位置时,应避免由于安装在入料口位置而造成的测量误差,甚至损坏仪表,如图4所示。

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图 实验装置3-1图框图三、实验原理对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。 另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明:1、简谐力激振简谐力作用下的强迫振动,其运动方程为:XX?方程式的解由这两部分组成:21CC、常数由初始条件决定:式中21其中 ??22????q2?q F ee?A?A0???q?? , 212222222222????????4??4?? ,m eeee

XX代表阻尼强迫振动项。代表阻尼自由振动基,21?2?T自由振动周期:D?D. ?2?T强迫振动项周期:e?e由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分:通过变换可写成2?/q22?AA?A? 式中21222???42ee?(1?)42?????e Dw??,代入公式设频率比?2?/q?A则振幅 2222??D?1?4)(?D2?g?arct滞后相位角:2??1FFK2?00xstq/???/:成幅A可写的静位移,所以振起干为弹簧受扰力峰因为值作用引Kmm1?xx?.A? stst2222??D4)??(11???其中称为动力放大系数:222??D?)(1?42动力放大系数β是强迫振动时的动力系数即动幅值与静幅值之比。这个数值对拾振器和单自由度体系的振动的研究都是很重要的。 ??1,即强迫振动频率和系统固有频率相等时,动力系数迅速增加,引起系统共振,由式:当?)?A?sin(wtX e可知,共振时振幅和相位都有明显变化,通过对这两个参数进行测量,我们可以判别系统是否达到共振动点,从而确定出系统的各阶振动频率。 (一)幅值判别法 在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。 (二)相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振是的频率就是系统的无阻尼固有频率,可以排除阻尼因素的影响。 ?tFF?sin激振信号为: ??)Y sin(?ty?位移信号为:? ) ωt-=ωYcos(y速度信号为:2? ) ωt-=-ωsin(y加速度信号为:(三)位移判别法 将激振动信号输入到采集仪的第一通道(即x轴),位移传感器输出信号或通过ZJT-601A型振动教学仪积分档输出量为位移的信号输入第二通道(即y轴),此时两通道的信号分别为: F=Fsinωt 激振信号为:?) t-y=Y sin(ω位移信号为:?=π/2,πω=ω/2,根据利萨如图原理可知,y轴 信号的相位差为x,共振时,轴信号和nωω时,图象都将由正椭圆变为斜椭圆,其变化过屏幕上的图象将是一个正椭圆。当或略小于ω略大于nn程如下图所示。因此图象由斜椭圆变为正椭圆的频率就是振动体的固有频率。 ω<ωω=ωω>ωn n n 图3-2 用位移判别法共振的利萨如图形 (四)速度判别共振

音叉液位开关工作原理

音叉液位开关工作原理 音叉液位开关的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉液位开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉液位开关的这些变化由智能电路来进行检测, 处理并将之转换为一个开关信号。 雷达液位计的测量原理 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 超声波物位计测量原理 超声波物位计的工作原理是由换能器(探头)发出高频超声波脉冲遇到被测介质表面被反射回来,部分反射回波被同一换能器接收,转换成电信号。超声波脉冲以声波速度传播,从发射到接收到超声波脉冲所需时间间隔与换能器到被测介质表面的距离成正比。此距离值S与声速C和传输时间T之间的关系可以用公式表示:S=CxT/2。 由于发射的超声波脉冲有一定的宽度,使得距离换能器较近的小段区域内的反射波与发射波重迭,无法识别,不能测量其距离值。这个区域称为测量盲区。盲区的大小与超声波物位计的型号有关。 双转子流量计工作原理 双转子流量计的计量室由内壳体和一对螺旋转子及上下盖板等组成,它们之间形成若干个已知体积的空腔作为流量计的计量单元。流量计的转子靠其进、出口处的微小压差推动旋转,并不断地将进口的液体经空腔计量后送到出口,转子将转动次数经密封联轴器及传动系统传递给计数机构,直接指示出流经流量计的 液体总量。 LTD-通用电子流量计 非常适用于水、污水、热水、高压水的计量,结构简单、适应性强,产品广泛应用于油田掺水、注水及石化、热电、市政、矿山、食品等行业。原理:当被测介质流过流量计时,冲击叶轮旋转,在一定的流量范围内,叶轮转速与流量成正比,而当叶轮转动时,叶轮由导磁的不锈钢的叶片,依次接近处于壳体的传感器,周期性地改变传感器磁电回路的磁阻,使通过传感器的磁通量发生变化而产生与流量成比例的脉冲电信号,此信号经过数据处理后分别显示出累计流量值和瞬时

标准击实实验

标准击实实验(轻击)中的击实功是怎样确定的?我真的具体的值,现要具体的计算公式。谢谢。 是不是75mgh/v ? 式中m 位击锤质量,h 为落高, g 为重力加速度,v 为筒体积。 第六章 土的击实试验 一、试验目的 在标准击实方法下测定土的最大干密度和最优含水率,为控制路堤、土坝或填土地基等的密实度及质量评价,提供重要依据。 二、基本原理 击实仪法是用锤击,使土密度增大,目的是在室内利用击实仪,测定土样在一定击实功能作用下达到最大密度时的含水率(最优含水率)和此时的干密度(最大干密度),借以了解土的压实特性。 目前国内常用的击实方法有两种: (1)轻型击实:适用于粒径小于5mm 的细粒土,锤底直径为51mm ,击锤质量为2.5kg ,落距为305mm ,单位体积击实功为591.6kJ /m 3;分3层夯实,每层25击。 (2)重型击实:适用于粒径不大于40mm 的土。击实筒内径为152mm ,筒高116mm ,击锤质量为4.5kg ,落距为457mm ,单位体积击实功为2682.7kJ /3 m (其他与轻型击实相同);分5层击实,每层56击。 三、仪器设备 (1)击实仪(图6-1):主要由击实筒和击锤组成。 (2)天平:称量为200g ,感量为0.01g ;称量为2kg ,感量为1g ; (3)台秤:称量为l0kg ,感量为5g ; (4)推土器; (5)筛:孔径为5mm ; (6)其它:喷水设备、碾土设备、修土刀、小量筒、盛土盘、测含 水率设备及保温设备等。 四、操作步骤 1、取一定量的代表性风干土样,对于轻型击实试验为20kg ,对于重 型击实试验为50kg 。 2、将风干土样碾碎后过5mm 的筛(轻型击实试验)或过20mm 的筛(重型击实试验),将筛下的土样搅匀,并测定土样的风干含水率。 3、根据土的塑限预估最优含水率,加水湿润制备不少于5个含水率的试样,含水率一次相差为2%,且其中有两个含水率大于塑限,两个含水率小于塑限,一个含水率接近塑限。 按式(6-1)计算制备试样所需的加水量: )()1(000w w w m m w -?+= (6-1) 图6-1 击实仪 1-击实筒;2-护筒;3-导筒; 4-击锤;5-底板

标准击实实验

标准击实实验(轻击)中的击实功是怎样确定的?我真的具体的值,现要具体的计算公 式。谢谢。 是不是75mgh/v ? 式中m 位击锤质量,h 为落高, g 为重力加速度,v 为筒体积。 第六章 土的击实试验 一、试验目的 在标准击实方法下测定土的最大干密度和最优含水率,为控制路堤、土坝或填土地基等的密实度及质量评价,提供重要依据。 二、基本原理 击实仪法是用锤击,使土密度增大,目的是在室内利用击实仪,测定土样在一定击实功能作用下达到最大密度时的含水率(最优含水率)和此时的干密度(最大干密度),借以了解土的压实特性。 目前国内常用的击实方法有两种: (1)轻型击实:适用于粒径小于5mm 的细粒土,锤底直径为51mm ,击锤质量为2.5kg ,落距为305mm ,单位体积击实功为591.6kJ/m 3;分3层夯实,每层25击。 (2)重型击实:适用于粒径不大于40mm 的土。击实筒内径为152mm ,筒高116mm ,击锤质量为4.5kg ,落距为457mm ,单位体积击实功为2682.7kJ/3m (其他与轻型击实相同);分5层击实,每层56击。 三、仪器设备 (1)击实仪(图6-1):主要由击实筒和击锤组成。 (2)天平:称量为200g ,感量为0.01g ;称量为2kg ,感量为1g ; (3)台秤:称量为l0kg ,感量为5g ; (4)推土器; (5)筛:孔径为5mm ; (6)其它:喷水设备、碾土设备、修土刀、小量筒、盛土盘、测含 水率设备及保温设备等。 四、操作步骤 1、取一定量的代表性风干土样,对于轻型击实试验为20kg ,对于重型 击实试验为50kg 。 2、将风干土样碾碎后过5mm 的筛(轻型击实试验)或过20mm 的筛(重型击实试验),将筛下的土样搅匀,并测定土样的风干含水率。 3、根据土的塑限预估最优含水率,加水湿润制备不少于5个含水率的试样,含水率一次相差为2%,且其中有两个含水率大于塑限,两个含水率小于塑限,一个含水率接近塑限。 按式(6-1)计算制备试样所需的加水量: 图6-1 击实仪 1-击实筒;2-护筒;3-导筒; 4-击锤;5-底板

液位开关_液位开关原理_液位开关接线图

液位开关种类及原理 1浮球液位开关 浮球液位开关结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,产生开关信号。 2音叉液位开关 音叉液位开关的工作原理是通过安装在基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉液位开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉液位开关的这些变化由智能电路来进行检测,处理并将之转换为一个开关信号,达到液位报警或控制的目的。为了让音叉伸到罐内,通常使用法兰或者带螺纹的工艺接头将音叉开关安装到罐体的侧面或者顶部。 3电容式液位开关 电容式液位开关的测量原理是:固体物料的物位高低变化导致探头被覆盖区域大小发生变化,从而导致电容值发生变化。探头与罐壁(导电材料制成)构成一个电容。探头处于空气中时,测量到的是一个小数值的初始电容值。当罐体中有物料注入时,电容值将随探头被物料所覆盖区域面积的增加而相应地增大,开关状态发生变化。 4外测液位开关 外测液位开关是一种利用“变频超声波技术”实现的非接触式液位开关,广泛使用于各种液体的液体检测。其测量探头安装在容器外壁上,属于一种从罐外检测液位的完全非接触检测仪表。仪表测量探头发射超声波,并检测其在容器壁中的余振信号,当液体漫过探头时,此余振信号的幅值会变小,这个改变被仪表检测到后输出一个开关信号,达到液位报警的目的。 万联芯城-电子元器件采购网https://www.doczj.com/doc/d38149242.html,一直秉承着以良心做好良芯的服务理念,为广大客户提供一站式的电子元器件配单服务,客户行业涉及电子电工,智能工控,自动化,医疗安防等多个相关研发生产领域,所售电子元器件均为原厂渠道进货的原装现货库存。只需提交BOM表,即可为您报价。万联芯城同时为长电,顺络,先科ST等知名原厂的指定授权代理商,采购代理品牌电子元器件价格更有优势,欢迎广大客户咨询,点击进入万联芯城。

固有频率测定方式

实验三振动系统固有频率的测量 、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法) 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率, 最常用的方法就是用简谐力激振, 引起系统共 振,从而找到系统的各阶固有频率。 另一种方法是锤击法,用冲击力激振, 通过输入的力信 号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: mx Cx Kx = F o sin e t 方程式的解由X ! X 2这两部分组成: X^^t (C 1 cosw D t C 2 si nw D t) 式中C 1、C 2常数由初始条件决定: 的定常强动,即强迫振动部分: x 2 cos e t 7^ s in 'e t 2 4 2 r ;2』 通过变换可写成 其中 X 2 A cosw e t A sinw e t A = E _讯$十4名2coj 【2 2q e ; F 0 q - m X 1 代表阻尼自由振动基, x 2代表阻尼强迫振动项。 自由振动周期: T D 强迫振动项周期: T e ■D 2 二 ■e 由于阻尼的存在, 自由振动基随时间不断得衰减消失。最后, 只剩下后两项, 也就是通常讲 2q e

X = Asin (w e t - :) q/ ‘2 2 ,22 (1 -笃II CO o 2? ~2 2 皎—叽丿 滞后相位角: 二a r ct j D ; 1— y 2 F K F 因为q/ 「计齐若xst 为弹簧受干扰力峰值作用引起的静位移,所以振幅 其中[称为动力放大系数: 「 ------------ 1 — (1」2)2+442D 2 动力放大系数3是强迫振动时的动力系数即动幅值与静幅值之比。 这个数值对拾振器和 单自由度体系的振动的研究都是很重要的。 当- 1 ,即强迫振动频率和系统固有频率相等时, 动力系数迅速增加,引起系统共振, 由式: X = Asi n (W e t -】) 可知,共振时振幅和相位都有明显变化, 通过对这两个参数进行测量, 我们可以判别系统是 否达到共振动点,从而确定出系统的各阶振动频率。 (一) 幅值判别法 在激振功率输出不变的情况下, 由低到高调节激振器的激振频率, 通过示波器,我们可 以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振 动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出 的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样, 这样对于一种类型 的传感器在某阶频率时不够敏感。 (二) 相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振 判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法, 而且共振是 式中 设频率比 则振幅 」=—,;=Dw 代入公式 o q/co 2 (1 _ J .2)2 - 4」 2 D 2 写成: _______ 1 _______ (1 _」2 )2 4」 2D 2 X st ?X st

标准击实试验要点论述

标准击实试验要点论述 【摘要】公路工程的土工室内标准击实试验结果的准确性至关重要,是公路路基强度检测的常用一种方法,通过对实际工程从检测方法、样品制备、土样重复利用、余土高度、含水率及击实功影响以及密度测定等方面论述土的击实试验。 【关键词】土工;击实;干密度 影响路基工程的成本与质量的主要因素是室内土的标准击实试验所得到的土的最大干密度的真实性和准确性,如果施工前标准试验得到的最大干密度的值小于真实值势必会降低路基工程的质量,如果标准试验得到的最大干密度的数值高于真实值则会明显较大地增加工程成本,造成极大的浪费。对于如何得到准确的最大干密度值,进行深入的试验研究,很有必要分析影响土体压实的主要因素。应保证现行试验检测的标准方法及时更新,与国家标准或行业标准同步,不然,极易造成所测数据与实际施工发生严重脱节的现象。 1.常见问题分析 1.1检测方法 标准击实试验的制样方法有干土法和湿土法,干土法是将代表性试样风干或在低温下烘干,之后碾散过筛;湿土法则是对高含水率土,可省略过筛步骤,用手拣出粗石子。高含水率土采用干土法求得的最大干密度较湿土法求得的最大干密度大,而最佳含水率则较小。原因在于含水率高时要将大部分土团原结构破坏重新排列几乎不可能,而实际施工中的粉碎程度也很难达到风干或低温烘干过筛的程度,因此将导致最大干密度大,最佳含水率小;而对于非高含水率的土体而言,因其相对易粉碎,因此两种检测方法结果差别并不明显。因此对于高含水量的土则适于湿土法,若采用干土法则无形中会提高对土基压实标准的要求,而在实际施工中则往往很难达到,最终必然导致检测不合格的假象,并会增加施工成本。 1.2土样制备方法 由于在制备过程中试样事先烘干导致其散失基本的含水率而导致土体颗粒间封闭气泡随水分散失而消失,虽在击实试样制作时添加水份,但在短时间形成的封闭气泡毕竟有限,而土体颗粒为承担击实功的主体,并导致土体发生永久性体积变化,最终得到较高的干密度;同时,烘干过程中的粉碎过筛处理将得到足够的细颗粒来填充粗颗粒间的孔隙而获得较高密实度。而湿土法虽试样含有一定的水分,且在试验前经过适当的暴晒或风干处理,但其最终试样内保留了一定的含水率,因此土体内封闭气泡绝大部分得以保存,导致试验过程中很大一部分击实功由孔隙气泡承担并转化为孔隙压力,而击实时气泡体积减小也是短暂的,且在土体击实后的回弹量较大导致永久性变形较小,同时湿法制料过程中不易进行粉碎过筛处理,导致土体颗粒相对较大而不能填充大颗粒间孔隙,因此,应尽

音叉液位开关安装图和安装注意事项

音叉液位开关安装图和安装注意事项 市场上的音叉液位开关虽然种类繁多,但是安装方式却大同小异。本文以计为音叉液位开关为例,结合音叉液位开关的安装图,就音叉液位开关的安装方法和注意事项为大家做一介绍和分析,希望对大家正确安装和使用音叉液位开关有所帮助。 1、计为Ring-11音叉液位开关安装图和安装注意事项: Ring-11音叉液位开关是一种高可靠性紧凑型的专用于液位测量的控制开关。音叉长度仅有40mm,不仅适用于容器、储罐、槽罐中的液位测量,而且适用于导管的液位测量。同时,基于检测叉体浸泡于介质时振动频率变化的设计原理,产品可测量介质密度低至0.5g/cm3,不仅适用于盐酸、硫酸、 硝酸、碱液、工业废水、糖浆、药液等液位测量,而且特别适用于有泡沫、气泡、粘稠液体以及振动干扰的复杂测量场合。其安装方法和注意事项如下: 安装方向: 安装Ring-11音叉液位开关时,应使叉体面和液体升降或流动保持方向一致,可以避免由于介质对叉体的阻力而产生的测量误差,如下图1所示: 图1 介质流动方向 ①螺纹连接的标志点②介质流动方向 避开入料口: 在选择Ring-11音叉液位开关安装位置时,应避免由于安装在入料口位置而造成的测量误差,甚至损坏仪表。如下图2所示: 图2 避免入料口的安装示意图

2、计为Ring-21紧凑型音叉液位开关安装图和安装注意事项: Ring-21紧凑型音叉液位开关是专用于液位测量的经济型限位控制开关。整体结构小巧轻便,产品总长度160.5mm,最大直径31.5mm,其中音叉长度仅有38mm。该产品不仅适用于容器、储罐、槽罐中有泡沫、气泡、粘稠液体和有振动干扰的液位测量,更适用于小型容器和罐体周围空间狭小场合的液位测量。同样基于检测叉体浸泡于介质时振动频率变化的设计原理,产品可测量介质密度低至0.7g/cm3。 安装方法和注意事项: 在安装之前,应再次确认仪表型号是否满足现场的环境要求(如:过程压力、过程温度、介质的化学性能等),确保仪表在安装后能够正常使用。一般地,Ring-21紧凑型音叉液位开关可以根据需要安装在任何位置,通过或水平或垂直或倾斜的方式进行安装。但当被测介质较为粘稠时,为减少或避免挂料现象的出现,应将仪表垂直安装。 安装方向: 在安装Ring-21紧凑型音叉液位开关时,应使叉体面和液体升降或流动保持方向一致,这样即可避免由于介质对叉体的阻力而产生的测量误差,如下图3所示。 ① ② 图3 介质流动方向 ①螺纹连接的标志点②介质流动方向 避免入料口: 在选择Ring-21紧凑型音叉液位开关的安装位置时,应避免由于安装在入料口位置而造成的测量误差,甚至损坏仪表,如下图4所示。

固有频率测定方式

固有频率测定方式

————————————————————————————————作者: ————————————————————————————————日期: ?

实验三 振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图 激振信 动态分 计算机系 打印机或 简 振动 激振 力传

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ( ) () 2 2 2 22 2 214e e e q A ω εω ω ωω+--= , () 22 222 242e e e q A ω εω ω ε ω+-= , m F q 0= 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: ( ) () () t q t q x e e e e e e e e ωω εω ω ε ωωω εω ω ωωsin 42cos 422 222 22 2 22 2 2+-+ +--= 通过变换可写成

汽车悬挂系统的固有频率和阻尼比测量

汽车悬挂系统的固有频率和阻尼比测量汽车悬挂系统的固有频率和阻尼比测量一、测量仪器 DH5902坚固型动态数据采集系统,DH105E加速度传感器,DHDAS基本控制分析软件,阻尼比计算软件。 二、测量方法 、试验在汽车满载时进行。根据需要可补充空载时的试验。试验前称量汽1 车总质量及前、后轴的质量。 2、DH105E加速度传感器装在前、后轴和其上方车身或车架相应的位置上。 3、可用以下三种方法使汽车悬挂系统产生自由衰减振动。

3.1 滚下法:将汽车测试端的车轮,沿斜坡驶上凸块(凸块断面如图所示,其高度根据汽车类型与悬挂结构可选取60、90、120mm,横向宽度要保证 1 车轮全部置于凸块上),在停车挂空档发动机熄火后,再将汽车车轮从凸块上推下、滚下时应尽量保证左、右轮同时落地。 3.2 抛下法:用跌落机构将汽车测试端车轴中部由平衡位置支起60或90mm,然后跌落机构释放,汽车测试端突然抛下。 3.3 拉下法:用绳索和滑轮装置将汽车测试端车轴附近的车身或车架中部由平衡位置拉下60或90mm,然后用松脱器使绳索突然松脱。 注:用上述三种方法试验时,拉下位移量、支起高度或凸块高度的选择要保证悬架在压缩行程时不碰撞限位块,又要保证振动幅值足够大与实际使用情况比较接近。对于特殊的汽车类型与悬架结构可以选取60、90、120mm以外的值。 4、数据处理 4.1 用DH5902采集仪记录车身和车轴上自由衰减振动的加速度信号; 4.2 在DHDAS软件中对车身与车轴上的加速度信号进行自谱分析,截止频率使用20Hz低通滤波,采样频率选择50Hz,频率分辨率选择0.05Hz; 4.3 加速度自谱的峰值频率即为固有频率;

土工标准击实试验实施细则

土工标准击实试验实施细则 3.21.1 试样制备 3.21.1.1 干土法(土重复使用)将具有代表性的风干或在50℃温度下烘干的土样放在橡皮板上,用圆木棍碾散,然后过不同孔径的筛(视粒径大小而定)。对于小试筒,按四分法取筛下的土约3kg;对于大试筒,同样按四分法取样约6.5kg。 估计土样风干或天然含水量,如风干含水量低于开始含水量太多时,可将土样铺于一不吸水的盘上,用喷水设备均匀地喷洒适当用量的水,并充分伴和,闷料一夜备用。 3.21.1.2干土法(土不重复使用)按四分法至少准备5个试样,分别加入不同水分(按2~3%含水量递增),拌匀后闷料一夜备用。 3.21.1.3 湿土法(土不重复使用)对于高含水量土,可省略过筛步骤,用手拣出大于38mm的粗石子即可。保持天然含水量的第一个土样,可立即用于击实试验。其余几个试样,将土分成小土块,分别风干,使含水量按2%~3%递减。 3.21.2 试验程序 根据工程要求选择轻型或重型试验方法。根据土的性质(含易击碎风化石数量多少,含水量高低)选用干.

土法(土重复或不重复使用)或湿土法。 将击实筒放在坚硬的地面上,取制备好的土样分3~5 次倒入筒内。小筒按三层法时,每次约800~900g(其量应 使击实后的试样等于或略高于筒高的1/3);按五层法时,每次约400~500g(其量应使击实后的试样等于或略高于筒高 的1/5)。对于大试筒,先将垫块放入筒内底板上,按五层法时,每层需试样约900g(细粒土)~1100g(粗粒土);按三层法时,每层需试样1700g左右。整平表面,并稍加压紧,然后按规定的击数进行第一层土的击实,击实时击锤应自由垂直落下,锤迹必须均匀分布于土样面,第一层击实完后,将试样层面“拉毛”,然后再装入套筒,重复上述方法进行 其余各层土的击实,试样不应高出筒顶面6mm。 用修土刀沿套筒内壁削刮,使试样与套筒脱离后,扭动并取下套筒,齐筒顶细心削平试样,拆除底板,擦净筒外壁,称量,准确至1g。 用推土器推出筒内试样,从试样中心处取样测其含水量,计算至0.1%。测定含水量用试样的数量按下表规定取样(取出有代表性的土样)。 测定水含量用试样的数量

多种液位开关的基本讲解

液位开关,顾名思义,就是用来控制液位的开关。从形式上主要分为接触式和非接触式。非接触式的如电容式液位开关,接触式的例如:浮球式液位开关、电极式液位开关、电子式液位开关。电容式液位开关也可以采用接触式方法实现。 1、浮球液位开关 浮球液位开关结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,产生开关信号。 2、音叉液位开关

音叉液位开关的工作原理是通过安装在基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉液位开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉液位开关的这些变化由智能电路来进行检测,处理并将之转换为一个开关信号,达到液位报警或控制的目的。为了让音叉伸到罐内,通常使用法兰或者带螺纹的工艺接头将音叉开关安装到罐体的侧面或者顶部。3、电容式液位开关 电容式液位开关的测量原理是:固体物料的物位高低变化导致探头被覆盖区域大小发生变化,从而导致电容值发生变化。探头与罐壁(导电材料制成)构成一个电容。探头处于空气中时,测量到的是一个小数值的初始电容值。当罐体中有物料注入时,电容值将随探头被物料所覆盖区域面积的增加而相应地增大,开关状

态发生变化。 4、外测液位开关 外测液位开关是一种利用“变频超声波技术”实现的非接触式液位开关,广泛使用于各种液体的液体检测。其测量探头安装在容器外壁上,属于一种从罐外检测液位的完全非接触检测仪表。仪表测量探头发射超声波,并检测其在容器壁中的余振信号,当液体漫过探头时,此余振信号的幅值会变小,这个改变被仪表检测到后输出一个开关信号,达到液位报警的目的。 5、射频导纳液位开关 射频导纳物位控制技术是一种从电容式物位控制技术发展起来的,防挂料、更可靠、更准确、适用性更广的物位控制技术,“射频导纳”中“导纳”的含义为电学中阻抗的倒数,它由阻性

工地试验室标准击实试验

工地试验室标准击实试验 1.1.1取样规则与试验频率 (1)施工准备阶段 路基施工前,承包人试验室应对路基沿线拟用取土场逐 个取样进行击实试验,现场取样应在监理处见证下进行,土 样应具有充分的代表性。监理试验人员对承包人试验室的击 实试验进行全过程旁站,同时监理试验室必须进行平行试 验,当对试验结果有疑问时,承包人和监理试验室应重新取 样进行复核试验。承包人在路基开工前应提交沿线各取土场 的击实试验结果汇总表,报中心试验室审批、备案。 (2)路基填筑阶段 路基填筑前,承包人试验室应对填筑路段的填料取样进 行击实试验,试验结果报监理处批复后方可进行填筑施工。 填筑过程中,对同一料源按每5000m3检测一次,如土质发生变化时应重新取样进行击实试验。上述填料的取样均要求监 理处试验室和承包人试验室在取土现场共同进行,分样后在各自试验室开展平行试验,击实试验结果以监理处批复为准。当对平行试验结果有争议时,中心试验室试验室再取样 进行仲裁试验。 (3)路基验收阶段 当发生以下情况,监理处试验室或中心试验室应从压实

层内取样进行验证复核试验,以判断击实结果的真实性。

①实测压实度超过100%或压实度值过低等异常情况; ②压实层土样与取土场土样在颜色、颗粒形状、含水率等外 观存在明显差异; ③性质不同的填料或不同料源的填料混杂在同一填筑层次。 1.1.2试验方法与步骤 (1)仪器设备 ①自动击实仪:击实试验方法和相应设备的主要参数应符合 表15的规定。 ②自动脱模器、烘箱及干燥器。 ③台秤和天平:天平感量0.01g;台秤称量20kg,感量1g。 ④圆孔筛:孔径40mm、20mm和5mm各一个。 ⑤拌和工具:400mm×600mm、深70mm的金属盘,土铲。 ⑥其他:喷水设备、碾土器、盛土盘、量筒、铝盒、修土刀、 平直尺等。 (2)试验步骤 ①击实方法采用重型击实试验方法。根据土的性质(含易击 碎风化石数量多少、含水率高低)选用干土法或湿土法,准 备试料数量,按四分法至少准备5-6个试样,每个试样质量

ASTM击实试验标准试验方法D 698-00a

Designation: D 698 - OOa ε1 击实试验标准试验方法 1. 范围 1.1 这些试验方法适用于实验室击实方法,以确定土的含水率和干重度之间的关系(击实曲线),在直径为4或6in.(101.6或15 2.4-mm )模子里,重为 5.5-lbf(24.4-N)的重锤从12in.(305mm )的高度掉落,产生12,4003/ft lbf ft -(6003/m m kN -)的击实作用力。 注释1- 注释2- 1.2 这些试验方法仅应用于含30%或更少质量的保留在43-in.(19.0-mm)筛上的土(材料)。 注释3- 1.3 提供三种供选择的方法。使用的方法应按规范说明的,规范为试验材料的说明。如果没有指定方法,方法的选择应基于材料等级。

1.3.1 方法A: 1.3.1.1 模子-直径4in.(101.6-mm)。 1.3.1.2 材料-通过No.4(4.75-mm)号筛。 1.3.1.3 分层-三层。 1.3.1.4 每层击数-25。 1.3.1.5 用料-如果保留在No.4(4.75-mm)号筛的质量含量为20%或是更少的材料可使用。 1.3.1.6 其它用料-如果方法没有明确指定,符合等级要求的材料都可能被方法B或C使用。 1.3.2 方法B: 1.3. 2.1 模子-直径4in.(101.6-mm)。 1.3. 2.2 材料-通过 3-in.(9.5-mm)筛。 8 1.3. 2.3 分层-三层。 1.3. 2.4 每层击数-25击。 1.3. 2.5 用料-如果保留在No.4(4.75-mm)号筛的质量含量超过20%的材料和保留在 3-in.(9.5-mm)筛的质量含量为20%或更少的材料可使用。 8 1.3. 2.6 其它用料-如果该方法中没有明确指定,符合等级要求的材料可能被试验方法C使用。 1.3.3 方法C: 1.3.3.1 模子-直径6-in.(15 2.4-mm)。 1.3.3.2 材料-通过 3-inch(19.0-mm)筛。 4 1.3.3.3 层数-三层。 1.3.3.4 每层击数-56击。 1.3.3.5 用料-如果保留在 3-in.(9.5-mm)筛的质量含量超过20%的材料和保留 8 在 3-inch(19.0-mm)筛的质量含量超过30%的材料可使用。 4 1.3.4 直径6-in.(15 2.4-mm)的模子不能用在试验方法A或是B。 注释4-

液位开关安装使用说明书

UK系列 液位开关 安装使用说明书 开封仪表厂液位仪表分厂

UK一102球形液位开关 使 用 说 明 书 l、用途和使用范围 UK一1 0 2球形液位开关(以下简称开关)主要是对液位定点发讯,实现生产过程中的报警,控制,调节等作用,在酸、碱溶液或供水、排水、化工污水处理等生产过程中,是不可缺少的工具,开关的主要零件均采用1Cr18Ni9Ti不锈钢制造,具有较好的耐腐蚀性能。其特点是:经济实用、工作可靠、用途广泛。 2、规格及技术参数 2.1 关电缆长度: 4、 5、 6m(或由用户提出一个长度) 2.2 介质密度: 2.3 介质温度: ≤100℃ 2.4 工作压力: 0.2MPa一个常开 2.5 接点容量: 220V AC 5A 2.6 发二个讯号 (一个常开,一个常闭) 3、结构原理及安装使用 3.1 开关结构简单、结构如图(一) 开关外壳为不锈钢球体,表面光滑,不易附着污物,可在混有杂物污水、泥浆、酸、 碱溶液中使用,球体内装有大容量的水银开关,水银开关接于软质电缆上,加长或缩短 电缆长度,可得到希望水位。 3.2 开关悬空吊在固定杆上,如图(二)a所示,当液位上升液面接触到开关时,开关球体在浮力的作用下发生倾斜,如图(二)b所示,由此使开关球体内水银开关断开或闭合,从而发出信号。 4、订货须知 订货时请注明 4.1 开关型号及名称 4.2 被测介质名称、介质密度、温度、工作压力腐蚀性等。

UK一201球形液位开关 使 用 说 明 书 UK一201型圆柱形液位开关(以下简称液位开关),主要是对液位定点发讯,实现生产过程中的报警、控制、调节等作用,在供水、排水、化工污水处理等过程中,是不可缺少的工具。 1、主要规格和技术参数 1.1 电源:电压220V/50Hz 允许电流5A 1.2 环境温度:60℃以下 1.3 介质比重: 0.75以上 1.4 规格(电缆长度L:) 3M、5M、6M或其它任一长度。 1.5 种类: UK一201K 悬吊状态时触点断开 浮起状态时触点闭合 常开型 UK一201B 悬吊状态时触点闭合 浮起状态时触点断开 常闭型 2、结构及工作原理 液位开关是浮动开关,它是把特殊构造的水银开关与通用橡套软电缆连在—一起,用环氧树脂(加有填料)浇铸成芯子、安装(插装)在硬质发泡塑料浮上。 液位开关外形尺寸如图一所示

土工标准击实试验

土工标准击实试验 击实试验是用扰动样做的试验,在工程上运用于控制填土地基及夯实效果,提供粘性土的最大干密度和最优含水量。根据设计要求确定轻型击实和重型击实两种,轻型击实适用于粒径<5mm的粘性土,重型击实适用于粒径<20mm粘性土采用三层击实时,最大粒径<40mm。要准备:1)天平:称重200g、0.01g;2)台秤:称重10kg、5g;3)标准筛:孔径20mm、40mm和5mm;4)试样推土器:宜用螺旋式千斤顶或液压式千斤顶如无此类装置,亦可用刮刀和修土刀从击实筒中取出试样。备土量>20kg(2200g×6(>50kg重型5300g×6),风干过筛5mm(重型过20mm或40mm)将筛下土拌均匀(四分法)取代表性试样测定风干土含水量、塑性指数(Ip)。根据塑限(Wp)预估最优含水量,并制备5个不同含水量的一组试样,例:假定Wp=20%,备16%、18%、20%、22%、24%,但Ip>20%,则应按15%、18%、20%、22%、25%;根据试验所需要的土量与含水量,制备试样所需的加水量按下式计算: mω=(m0/(1+0.01ω))×0.01(ω1-ω0) 式中mω——制备样所需要的含水量(g); m0——湿土(或风干土)质量(g); ω0——湿土(或风干土)质量(%); ω1——制样要求的含水量(%), 例:Wp=20%,风干含水量=4.2%,要制ω=16%,轻型击实,击实筒容积947.4立方厘米。求预加含水量?mω=(2200/(1+0.01×4.2))×0.01(16-4.2)=249.1(g),五个点一组这是其中一个点的加水量。 备好样用手捏一下,中间点是否捏的最紧,有时塑限不一定准,能有一点捏的最紧,试验结束就有最有点出现,否则要调整加水量,静止一昼夜,备样是击实试验结果好坏的重要一环,备不好样直接影响试验结果峰值不明显。 击实筒内壁要均匀涂一薄层润滑油,轻型分三层击实每层25击(重型分五层击实,每层56击;若分三层每层94击),每层交界处要刮毛,最后一层要加护筒考虑高出>6mm,击实结束,卸护筒修平,称重(准1g),注意去皮,取含水量(双试验)(误差<1%),计算湿密度ρ0(准0.01g/cm3),含水量(105-110度烘烤升温后不少于8小时)出来计算干密度ρd=ρ0/(1+0.01ωi), ωi——某点试样含水量(%), 绘制ρd—ω关系曲线附记录,计算饱和含水量一同绘入图中, ωset=(ρw/ρd-1/Gs)*100, ρw——温度4度时水的密度; Gs——土颗粒密度,注意这里气体体积为零; 轻型击实试验中,当试样中粒径大于5mm的土质量小于或等于试样总质量的30%时,应对最大干密度和最优含水量进行校正。 1)最大干密度校正:ρ,dmax=1/(((1-P5)/ρdmax)+(P5/(ρw×Gs2)), P5——粒径大于5mm土的质量百分比(%); Gs2——粒径大于5mm土粒的饱和面干比重,注:饱和面干比重指当土粒呈饱和面 干状态是的土粒总质量与相当于土粒总体积的纯水4度是质量的比值。2)最优含水率的校正ω,opt=ωopt(1-P5)+(P5×ωab)

相关主题
文本预览
相关文档 最新文档