当前位置:文档之家› 高等数学习题详解第7章多元函数微分学

高等数学习题详解第7章多元函数微分学

习题7-1

1. 指出下列各点所在的坐标轴、坐标面或卦限:

A (2,1,-6),

B (0,2,0),

C (-3,0,5),

D (1,-1,-7).

解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。

2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则

(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3).

(2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).

(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).

同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).

3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点.

解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即

(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.

解之得z =11,故所求的点为M (0,0,149

). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==

所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.

5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1235

y x z ++=-。 6. 求通过x 轴和点(4,-3,-1)的平面方程.

解:因所求平面经过x 轴,故可设其方程为

Ay +Bz =0.

又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0.

7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程.

解:因所求平面平行于y 轴,故可设其方程为

Ax +Cz +D =0.

又点M 1和M 2都在平面上,于是

可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0.

显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0.

8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面?

解:表示以点(1,-2,0

9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形?

(1) x -2y =1; (2) x 2+y 2=1;

(3) 2x 2+3y 2=1; (4) y =x 2.

解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。

(4)表示抛物线、抛物柱面。

习题7-2

1. 下列各函数表达式:

(1) 已知f (x ,y )=x 2+y 2,求(f x y -;

(2)

已知22(,f x y x y -=+求f (x ,y ).

解:(1

)2222(()f x y x y x xy y -=-+=-+

(2

)2222(()2

f x y x y x y -=+=-+ 所以22(,)2f x y x y =-

2. 求下列函数的定义域,并指出其在平面直角坐标系中的图形: (1) 221sin 1

z x y =+-;

(2) z =

(3) (,))f x y x y =-;

(4) 22(,)f x y = 解:(1)由2210x y +-≠可得221x y +≠

故所求定义域为D ={(x ,y )| 221x y +≠}表示xOy 平面上不包含圆周的区域。

(2)由

可得

1111

x y y -≤≤??≥≤-?或 故所求的定义域为D ={(x ,y )| 1111x y y -≤≤≥≤-且或},表示两条带形闭域。 (3)由

可得

故所求的定义域为D ={(x ,y )| 1x y x ≥<且},表示xOy 平面上直线y=x 以下且横坐

标1x ≥的部分。

(4)由

可得

故所求的定义域为D ={(x ,y )| 22224x y y x ≤+≤≤且}。

3. 说明下列极限不存在:

(1) 00lim x y x y x y →→-+; (2) 36200

lim x y x y x y →→+. 解:(1)当点P (x ,y )沿直线y =kx 趋于点(0,0)时,有 (,)(0,0)0 (1)1lim lim (1)1x y x y kx

x y k x k x y k x k →→=---==+++。 显然,此时的极限值随k 的变化而变化。 因此,函数f (x ,y )在(0,0)处的极限不存在。

(2)当点P (x ,y )沿曲线3

y kx =趋于点(0,0)时,有 33662262(,)(0,0)0 lim lim (1)1x y x y kx x y kx k x y k x k →→===+++。 显然,此时的极限值随k 的变化而变化。 因此,函数f (x ,y )在(0,0)处的极限不存在。

4. 计算下列极限: (1) 01

lim x x y e y x y →→++; (2)(,)(0,3)sin()lim x y x y x

→; (3) 33(,)(0,0)sin()lim x y x y x y →++;

(4) (,)(0, 0)lim x y →. 解:(1)因初等函数(,)x e y f x y x y

+=+在(0,1)处连续,故有 (2)(,)(0,3)(,)(0,3)sin()sin()lim lim 3x y x y xy xy y x xy

→→==

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

第七章 多元函数的微分学

第七章多元函数的微分学 一、多元函数微分学网络图 二、内容与要求 1.理解多元函数的概念,理解二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。

4.掌握多元复合函数一阶、二阶偏导数的求法。 5.会求多元隐函数的偏导数。 6.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 重点多元函数偏导数和全微分的概念,多元复合函数一阶、二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 难点多元复合函数二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 三、概念、定理的理解与典型错误分析 1.求多元函数极限的方法 (1)利用初等多元函数的连续性,即若是初等函数,在的定义域中,则 注:所谓的初等多元函数就是用一个数学表达式给出的解析式. (2)利用多元函数极限的四则运算。 (3)转化为一元函数的极限,利用一元函数的极限来计算. (4)对于证明或求时,感觉极限可能时零, 而直接又不容易证明或计算,这时可用夹逼定理,即而 由夹逼定理知从而 2.判断多元函数极限不存在的方法 (1)选取两条特殊的路径,而函数值的极限存在,但不相等,则不存在。

注意: 与的区别,前面两个本质是两次求一元函数的极限, 我们称为求累次极限,而最后一个是求二元函数的极限,我们称为求二重极限。 例1 而知不存在. 例2 在原点的两个累次极限都不存在,但是 由于,因此. 由例1知两个累次极限存在,但二重极限不存在,由例2知两个累次极限不存在, 但二重极限存在,但我们有下面的结论。 定理7。1 若累次极限和二重极限都存在,则三者相等。 (2)推论。若存在且不相等,则不存在。 3.求多元函数的偏导数

第十七章多元函数微分学习题课

第十七章 多元函数微分学习题课 一 疑难问题与注意事项 1.(,)z f x y =在),(000y x P 可微的等价定义: 1)0000(,)(,)()z f x x y y f x y A x B y o ρ?=+?+?-=?+?+,0 () lim 0o ρρρ →=; 2)00000 [(,)(,)] lim 0x y z f x y x f x y y ρρ →?-?+?=; 3), y x y B x A z ?+?+?+?=?βα()() ()() ,0,0,0,0lim lim 0x y x y αβ??→??→= =. 2.求(,)f x y 在00(,)x y 处的偏导数方法小结: 答 1)利用定义求(主要适用于分段函数的分段点处的偏导数): 0000000 (,)(,) (,)lim x x f x x y f x y f x y x ?→+?-=?, 0000000 (,)(,) (,)lim y y f x y y f x y f x y y ?→+?-=?. 2)转化为一元函数的导数: ()0 000,(,)x x x df x y f x y dx ==,() 000,(,)y y y df x y f x y dy == . 例如,2(,)(f x y x y =+-(1,1)x f . 解 () ()211 ,1(1,1)2x x x d x df x f dx dx ==== =. 3)先求偏导函数,在代值,即 ()0 00(,)(,),x x x y f x y f x y =,0 00(,) (,)(,)y y x y f x y f x y =. 3.求(,)z f x y =(初等函数不含分段点)的偏导函数方法小结: 答 1)求 z x ??,把y 当常数,对x 求导,求z y ??,把x 当常数,对y 求导. 2)运用轮换性,若在(,)z f x y =中,把x 换成y , y 换成x ,(,)z f x y =不变,则称(,)z f x y =关于x 和y 具有轮换性.若已经求出 z x ??,只要在z x ??把x 换成y , y 换成x ,

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

数学分析教案_(华东师大版)第十七章__多元函数微分学

第十七章多元函数微分学 教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及 偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2.全微分: 例1 考查函数在点处的可微性 . P107例1 二.偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17—1.

3.求偏导数: 例2 , 3 , 4 . P109—110例2 , 3 , 4 . 例5. 求偏导数. 例6. 求偏导数. 例7. 求偏导数, 并求. 例8. 求和. 解=, =. 例9 证明函数在点连续 , 并求和. 证 . 在点连续 . ,

不存在 . 三.可微条件: 1.必要条件: Th 1 设为函数定义域的内点.在点可微 , 和存在 , 且 . ( 证 ) 由于, 微分记为 . 定理1给出了计算可微函数全微分的方法. 两个偏导数存在是可微的必要条件 , 但不充分. 例10考查函数 在原点的可微性 . [1]P110 例5 . 2.充分条件:

Th 2 若函数的偏导数在的某邻域内存在 , 且和在点处连续 . 则函数在点可微 . ( 证 ) P111 Th 3 若在点处连续, 点存在 , 则函数在点可微 . 证 . 即在点可微 . 要求至少有一个偏导数连续并不是可微的必要条件 . 例11 验证函数在点可微 , 但和在点处不连续 . (简证,留为作业) 证

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

第七章多元函数微分高等数学

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[ ]ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

多元函数微分学复习题及标准答案

多元函数微分学复习题及答案

————————————————————————————————作者:————————————————————————————————日期:

第八章 多元函数微分法及其应用 复习题及解答 一、选择题 1. 极限lim x y x y x y →→+00 242= (提示:令22 y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于 12 (D) 存在且不等于0或1 2 2、设函数f x y x y y x xy xy (,)sin sin =+≠=? ????1100 ,则极限lim (,)x y f x y →→0 = ( C ) (提示:有界函数与无穷小的乘积仍为无穷小) (A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数f x y xy x y x y x y (,)=++≠+=??? ? ?22 2222000 ,则(,)f x y ( A ) (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =, 2222 2 lim lim 0(0,0)1x x y kx kx f x k x k →→→===++ ,故在220x y +=,函数亦连续.所以, (,)f x y 在整个定义域内处处连续.) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件 (B)充分而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22 + (B) - +y x y 22 (C) y x y 22 + (D) -+x x y 22 6、设f x y y x (,)arcsin =,则f x '(,)21= ( A ) (A )- 14 (B )14 (C )-12 (D )1 2

多元函数微分学复习题及答案

多元函数微分学复习题 及答案 标准化管理部编码-[99968T-6889628-J68568-1689N]

第八章 多元函数微分法及其应用复习题及解答 一、选择题 1.极限lim x y x y x y →→+00 242 = ( B ) (A)等于0; (B)不存在; (C)等于 12; (D)存在且不等于0或12 (提示:令22y k x =) 2、设函数f x y x y y x xy xy (,)sin sin =+≠=?????110 00,则极限lim (,)x y f x y →→0 = ( C ) (A)不存在; (B)等于1; (C)等于0; (D)等于2 (提示:有界函数与无穷小的乘积仍为无穷小) 3、设函数f x y xy x y x y x y (,)=++≠+=???? ?22 2222000,则(,)f x y ( A ) (A) 处处连续; (B) 处处有极限,但不连续; (C) 仅在(0,0)点连续; (D) 除(0,0)点外处处连续 (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = , 2000(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续。所以, (,)f x y 在整个定义域内处处连续。) 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件; (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22+; (B) -+y x y 22; (C) y x y 22+ ; (D) -+x x y 22

(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

第十七章多元函数微分学 教学目的: 1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系; 2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18 学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2 .全微分: 例 1 考查函数在点处的可微性. P107 例 1 二. 偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17 —1.

3.求偏导数: 例 2 , 3 , 4 . P109 —110 例 2 , 3 , 4 . 例 5 . 求偏导数. 例 6 . 求偏导数. 例7 . 求偏导数, 并求. 例8 . 求和. =. 例9 证明函数在点连续, 并求和. . 在点连续.

三. 可微条件 : 1. 必要条件 : Th 1 设 为函数 定义域的内点 . 在点 可微 和 存在 , 且 . ( 证 ) 由于 , 微分记为 定理 1 给出了计算可微函数全微分的方法 例 10 考查函数 2. 充分条件 : 不存在 两个偏导数存在是可微的必要条件 , 但不充分 . 在原点的可微性 [1]P110 例 5 .

Th 2 若函数的偏导数在的某邻域内存在, 且和在 点处连续. 则函数在点可微. (证) P111 Th 3 若在点处连续, 点存在 则函数在点可微. . 即在点可微. 要求至少有一个偏导数连续并不是可微的必要条件. 验证函数在点可微, 但和在点处不连续. (简证, 留为作业) 证

《数学分析》第十七章 多元函数微分学

第十七章 多元函数微分学 ( 1 6 时 ) §1 可微性 ( 4 时 ) 一. 可微性与全微分: 1. 可微性:由一元函数引入. ))()((22y x ?+?ο亦可写为y x ?+?βα, →??) , (y x ) 0 , 0 (时→) , (βα) 0 , 0 (. 2. 全微分: 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性. [1]P 105 E1 二. 偏导数: 1. 偏导数的定义、记法: 2. 偏导数的几何意义: [1]P 109 图案17—1. 3. 求偏导数: 例2 , 3 , 4 . [1]P 142—143 E2 , 3 , 4 . 例5 设 . 0 , 0, 0 ,),(222222 2 3? ????=+≠+++=y x y x y x y x y x f 证明函数),(y x f 在点) 0 , 0 (连续 , 并求) 0 , 0 (x f 和) 0 , 0 (y f . 证 ρ θθρρρθ ρθρ) sin cos (lim ),(lim 2320sin ,cos ) 0,0(),(+===========→==→y x y x y x f =)0,0(0)sin cos (lim 2 30 f ==+→θθρρρ. ),(y x f 在点) 0 , 0 (连续 . ) 0 , 0 (x f =0||lim )0,0()0,(lim 300==-→→x x x x f x f x x , ) 0 , 0 (y f ||lim )0,0(),0(lim 2 00y y y y f y f y y →→=-= 不存在 . Ex [1]P 116—117 1⑴—⑼,2 — 4 . 三. 可微条件:

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

高等数学期末复习--多元函数微分学

高等数学期末复习 第九章 多元函数微分学 一、内容要求 1、会求简单二元函数定义域 2、会求多二元函数表达式和值 3、会求简单二元函数的极限 4、掌握二元函数偏导数定义,性质,能确识别二元函数偏导数定义形式,得出偏导数正确表达 5、会求二元函数偏导数值:求偏导函数,代入点求值 6、会求二元函数微分值:求偏导函数,代入点求微分表达式 7、会按一元函数求导法则求直接函数的偏导数 8、会由轮换对称性确定多元函数对称元导数 9、会用链式规则求抽象形式多元函数的偏导数 10、会求多元函数全微分 11、会求多元隐函数的偏导数 12、会求二元函数驻点,判定二元函数极值的存在性 13、能观察出简单多元函数极值情况 14、能应用多元函数求极值方法解决简单应用问题 15、会求空间曲面的切平面、法线方程 16、会求空间曲线的切线、法平面方程 17、会求多元函数的方向导数 18、会求多元函数的梯度 二、例题习题 1、二元函数x y z arcsin =的定义域是( ) A.|}||||),{(x y y x ≤ B. }0|||||),{(≠≤x x y y x C. }0|||||),{(≠>x x y y x D. }0|||||),{(≠≥x x y y x 解:使函数x y z arcsin =有意义,只要||1,0y x x ≤≠,即||||,0y x x ≤≠,所以,选B. (内容要求1) 2、函数22 1 (,)ln()=++ +f x y x y x y 的定义域为 ; 解:使函数22 1(,)ln()=++ +f x y x y x y 有意义,只要22 0,0x y x y +>+≠,所以填22{(,)|0,0}x y x y x y +>+≠(内容要求1)

第十七章多元函数微分学

第十七章 多元函数微分学 §1 可微性 1.求下列函数的偏导数 (1)y x z 2= (2)x y z cos = (3)2 21y x z += (4))ln(22y x z += (5)xy e z = (6)x y z arctan = (7))sin(xy xyz z = (8)z x y z x y u -+= (9)z xy u )(= (10)z y x u = 解(1)xy z x 2=, 2x z y =; (2)x y z x sin -=,x z y cos =; (3)2/322)(y x x z x +-= ,2 /322)(y x y z y +-=; (4)222y x x z x += ,2 22y x y z y +=; (5)xy x ye z =,xy y xe z =; (6)2222) (11y x y x y x y z x +-=-?+= ,22y x x z y +=; (7))]cos(1[)cos()sin()sin(2)sin(xy xy ye xy e xy ye z xy xy xy x +=+=,)sin()]cos(1[xy y xe xy xy z +=; (8)z x y u x 1 2 -- =,21y z x u y -=,21z x y u z +=; (9)1)(-=z x xy zy u ,1)(-=z y xy zx u ,)ln()(xy xy u z z =; (10)1 -=z y z x x y u ,x x zy u z y z y ln 1-=,y x y x u z y z z ln ln =; 2.设y x y x y x f arcsin )1(),(-+=;求)1,(x f x 解 x x x x f =?+=arcsin 0)1,(,1)()1,(='=x x f x

多元函数微分学知识点梳理

第九章多元函数微分学 内容复习 —、基本概念 1、 知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏 导数;全微分. 2、 重要定理 (1) 二元函数中,可导、连续、可微三者的关系 偏导数连续 可微? * 亠 函数连续 (2) (二元函数)极值的必要、充分条件 二、基本计算 (一)偏导数的计算 1、偏导数值的计算(计算 f x (x 0,y 0)) pl ("先代后求法 f x (x o ,y o )=——f(x,y °) x x dx (2) 先求后代法(f x&o ’y 。)= f x (x,y)xx o ) y y o (3)定义法(f x (x 0, y 0) = lim 竺__― f (xo,yo))(分段函数在分段点处的 X 0 x 偏导数) 2、偏导函数的计算(计算 f x (x, y)) (1) 简单的多元初等函数一一将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数一一多元 复合函数求导的链式法则 (画树形图,写求导公式) (3) 隐函数求导 求方程F(x, y, z) 0确定的隐函数z f (x, y)的一阶导数 —,— x y (x, y, z 地位平等) F z x(或y)求导(x, y, z 地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、叠加原理 公式法:—旦,二 x F z y 直接法:方程两边同时对

z f(x, y) , dz — dx —dy --------------------- d x,dy勿丢 x y 2、一阶全微分形式不变性 dz — dx —Z dy 对x, y是自变量或是中间变量均成立。 x y 三、偏导数的应用 优化方面--- 多元函数的极值和最值 1、无条件极值一一利用必要条件求驻点,利用充分条件判断是否为极值点 2、条件极值---- Lagrange乘数法 min(ma;) z f (x, y) 求 s.t. (x,y) 0 L(x, y, ) f (x, y) (x, y)(有几个约束条件,引进相应个数Lagrange乘子) 3、最值一一比较区域内部驻点处函数值与区域边界上最值的大小,从而确定最值

第十七章--多元函数微分学.

第十七章多元函数微分学 § 1 可微性 一.可微性与全微分: 可微性:由一元函数引入. 亦可写为, 1. . 在点处的可微性 . P107例1 例1 考查函数 二.偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17—1. 3.求偏导数: 例2 , 3 , 4 . P109—110例2 , 3 , 4 . 例5 . 求偏导数. 例6 . 求偏导数.

例7 . 求偏导数, 并求. . 求和. 例8 解= , . = 例9 在点连续 , 并求和. 证明函数 证 . 在点 连续 . , 不存在 . 三.可微条件: 1.必要条件: Th 1 设为函数定义域的内点.在点可微 , 和存在 , 且

. ( 证 ) 由于 , 微分记为 . 定理1给出了计算可微函数全微分的方法. 两个偏导数存在是可微的必要条件 , 但不充分. 例10考查函数 在原点的可微性 . [1]P110 例5 . 2.充分条件: Th 2 若函数 的偏导数在的某邻域内存在 , 且 和 在点 处连续 . 则函数 在点 可微 . ( 证 ) P111 Th 3 若 在点 处连续, 点 存在 , 则函数在点 可微 . 例11 证 因此 , 即 ,

在点 可微 , . 但时, 有 , 不存在, 沿方向极限 沿方向 时, 不存在 ; 又 处不连 ,因此, 不存在 , 在点 续. 由 四.中值定理: 在点的某邻域内存在偏导数 . 若属于 Th 4 设函数 该邻域 , 则存在 . ( 证 ) 设在区域D内. 证明在D内. 例12 五.连续、偏导数存在及可微之间的关系: 六.可微性的几何意义与应用: 1.可微性的几何意义:切平面的定义. P113. Th 5 曲面 在点存在不平行于轴的 切平面的充要条件是函数 在点可微 . ( 证略 )

相关主题
文本预览
相关文档 最新文档