当前位置:文档之家› 药物设计学基于结构的药物设计一

药物设计学基于结构的药物设计一

虚拟药物筛选与药物分子设计教程与实战

药物分子设计前沿 摘要:近些年来,各种各样的新型疾病依次出现。因此,寻找可以治愈这些疾病的药物对人们来说至关重要。随着计算机技术的高速发展,运用计算机进行新药的模拟实验已经成为一种新的方法。本文就对这些方法做一个总的综述来介绍这些方法在新药设计过程中的应用过程。计算机辅助药物设计方法(CADD)是药物分子设计的基础。从2O世纪6O年代构效关系方法(QSAR)提出以后.经过40多年的努力和探索,CADD方法已经发展成为一门完善和新兴的研究领域。计算机辅助药物设计是应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等作用的药效模型,从而达到药物设计之目的。计算机辅助药物设计方法(CADD)大体可以分为三类:基于小分子的药物分子设计方法、基于受体结构的药物分子设计方法、计算组合方法。计算机辅助药物设计是研究与开发新药的一种崭新技术,它大大加快了新药设计的速度,节省了创创新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。 关键词:药物分子设计计算机模拟分子模拟活性位点分析法 ABSTRACT:In those past years, a variety of new diseases were appeared. So, it’s vary essential for us to find the drugs that can cure these diseases. And with the fast development of computer technology, the applying of computer in the simulations of these new drugs has become a new method. In this paper, I will draw a general overview of those methods to introduce the applications in the design process of the new drugs. The method of Computer Aided Drug Design(℃ADD)was the basis 0f drugs molecule design which was proposed in 1960.During the last 40 years,the CADD method has been widely applied as a burgeoning and potential research area.The aim of CADD is to design drug according to the pharmacodynamic model between the drugs and the enzyme or receptor which is applied the quantum mechanics.molecular dynamics,and quantitative structure—activity relationship.The CADD includes three methods:method basing on the ligand,method basing on the receptor,and combinatorial chemistry method.The CADD is a new technology to research drug which can accelerate the speed of drug design,economize the manpower and material resources. KEY WORDS:Drug molecular design;computer simulation; molecular simulation;active site analysis 引言 传统药物设计从总体上来讲,缺乏成熟完善的发现途径,具有很大的盲目性,一般平均要筛选10000种以上的化合物才能得到一种新药,因此开发效率很低。随着计算机技术及计算化学、分子生物学和药物化学的发展,药物设计进入了理性阶段,其中药物分子设计是目前新药发现的主要方向。它是依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,设计出合理的药物分子。运用计算机模拟来进行新药的分子结构设计主要有三种方法:分子对接设计、遗传算法以及计算机辅助

药物设计学完整版

药物设计学完整版 张大永 骨架跃迁分子设计:从已知的活性分子结构出发,通过传统的类似物设计方法或计算化学方法,对先导化合物进行骨架设计,以发现全新的拓扑结构骨架和活性分子。 多靶点药物治疗:简而言之,可以同时作用于疾病网络中的多个靶点,对各靶点的作用可以产生协同效应,使总效应大于单个效应之和。多靶点药物治疗可以克服许多单靶点药物的局限性,同时调节疾病网络系统中的多个环节,不易产生抗药性,达到最佳的治疗效果。 核苷类逆转录酶抑制剂(NRTI):NRTIs通过阻断病毒RNA的逆转录,即阻止病毒双链DNA形成,使病毒失去复制的模板而起作用。它们首先进入被感染细胞,然后磷酸化,形成具有活性的三磷酸化合物。这些三磷酸化合物是HIV逆转录酶的竞争抑制剂,当插入生长的DNA链时,可导致病毒DNA合成受阻,从而抑制病毒复制。这类抑制剂的不良反应严重,容易使病毒产生抗药性,因此与蛋白酶抑制剂联用,常会大大延长其病毒耐药性的产生,有协同效应。 基于核酸代谢机理的药物设计:在核酸的代谢合成与代谢分解过程中,有许多酶参与其中,这些酶尤其是某些特异性的酶就成为药物设计的理想靶点;同时模拟核酸代谢过程中的底物结构,也是药物设计的一条重要途径。核苷或核苷酸是病毒复制过程中所必需摄取的物质,通过对核苷结构的改造,可以实现对病毒复制过程的干扰。 简述具有高效耐药性NNRTIs的结构特征,并举例说明。 1. 抑制剂构象的柔性和在靶点中的可适应性 理论上,在抑制剂的柔性不影响抑制剂-靶点相互作用的前提下,其构象的柔性和靶点中位置的可适应性可弥补耐药突变的不良影响,避免结合的立体位阻。柔韧性的分子能通过化学键的自由旋转及位置的灵活移动来保持与变异靶点的紧密结合。 例:二芳基嘧啶(DAPY)类NNRTIs晶体结构表明,柔性的DAPY类分子可通过柔性扭转(摆动)和复位(微动)与不同的耐药突变的NNIBPs结合。 2.抑制剂分子与氨基酸主链形成氢键作用 例:卡普韦林与p66亚基的101、103和236位残基主链间存在“网状”氢键作用。P236主链相互作用是目前为止NNRTls的特异性作用位点。这种多重氢键作用不受氨基酸侧链突变的影响,有助于抑制剂的自由结合,从而有效地对抗RT耐药性的产生。因此,靶向于氨基酸残基主链的设计思想可能为对抗耐药性提供一个可靠的策略。 3.特异性靶向HIV –1 RT的高度保守性区域 为了提高NNRTI的抗耐药性,应设计能与NNIBP中保守氨基酸产生特异性相互作用的抑制剂,从而降低耐药性的产生。在NNIBP中存在一个保守性区域,主要由p225、F227、W229、L234和Y318等组成,这些氨基酸在其他慢病毒属RT中也是高度保守的。 与易突变氨基酸Y181和Y188的疏水性相互作用是第一代NNRTI的主导作用力,此外,在其它位点的突变也能通过减弱抑制剂与上述两种氨基酸相互作用而间接产生耐药性。因此,适当降低抑制剂与Y181和Y188的相互作用有望提高化合物的抗耐药性。 例:UC-781对其它NNRTIs产生耐药性的突变株具有良好的抑制活性。戊烯基特异性地靶向W229,由5个碳原子组成的戊烯基醚能增大UC-781与W229间的亲和力。 4.具有全新作用机制或独特结合模式的NNRTI 例:苯并噻唑类衍生物CP-94707能对多个临床上常见的变异株均保持敏感性,晶体复合物研究发现,它与RT结合时呈现非常独特的结合模式。

生物信息学现状与展望

研究生课程考试卷 学号、姓名: j20112001 苗天锦 年级、专业:2011生物化学与分子生物学 培养层次:硕士 课程名称:生物信息学 授课学时学分: 32学时 2学分 考试成绩: 授课或主讲教师签字:

生物信息学现状与展望 摘要:生物信息学是一门新兴学科,起步于20世纪90年代,至今已进入"后基因组时代",本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。 关键词:生物信息学;生物信息学背景;发展前景 一、生物信息学概述 1.生物信息学发展历史 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”【1】。 研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在。1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等。与此同时,Wilkins与Franklin用X射线衍射技术测定了DNA纤维的结构。1953年James Watson 和FrancisCrick在Nature杂志上推测出DNA 的三维结构(双螺旋)。Kornberg于1956年从大肠杆菌(E.coli)中分离出DNA 聚合酶I(DNA polymerase I),能使4种dNTP连接成DNA。Meselson与Stahl (1958)用实验方法证明了DNA复制是一种半保留复制。Crick于1954年提出了遗传信息传递的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起到了极其重要的指导作用。经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码得到了破译。限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程的技术基础【2】。自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。 2.生物信息学研究方向 2.1 序列比对

-合理药物设计

合理药物设计 合理药物设计(rational drug design)是依据与药物作用的靶点即广义上的受体,如酶、受体、离子通道、抗原、病毒、核酸、多糖等,寻找和设计合理的药物分子。主要通过对药物和受体的结构在分子水平甚至电子水平上全面准确地了解,进行基于结构的药物设计和通过对靶点的结构功能与药物作用方式及产生生理活性的机理的认识进行基于机理的药物设计。合理药物设计是化学、生物学、数学、物理学以及计算机科学交叉的产物,是在社会对医药需求的强大推动下逐步发展起来的,主要应用各种理论计算方法和分子图形模拟技术来进行合理药物设计。合理药物设计方法包括3类:①基于配体的药物设计②基于受体结构的药物设计③基于药物作用机理的药物设计。 1.基于配体的药物设计方法 合理药物分子设计必须在已知受体结构模型的条件下才能进行但到目前为止许多已知药物作用的受体结构是未知的在未知受体结构时应用合理药物设计的原理和概念开始药物设计也有了不少的尝试,这方面的研究大致可分为两类;探索系列小分子药物三维结构与活性的关系---主要有3D-QSAR;根据已知药物结构反推受体结构模型,再行合理药物设计,如药效团模型(Pharmacophore Modeling)方法。 1.1定量构效关系(3D-QSAR) 从对药物与受体相互作用的研究可以知道药物的作用是依赖自身空间形状的,其与受体的作用一般为非共价性质虽然在未知受体结

构时无法进行常规意义上的合理药物设计,但可以在对已知药物研究的基础上进行受体形状推测(receptor-mapping),将与药物本身形状有关的参数引入到定量构效关系中,称之为3D-QSAR。该方法是基于被研究的分子结合在同一个靶标生物大分子的相同部位的基本假定,将药物的结构信息、理化参数与生物活性进行拟合计算,建立合理的定量关系的数学模型,再以此关系设计新的化合物。不同方法采用不同的结构性质来确定构效关系。 利用小分子三维结构作为参数的三维定量构效关系方法在预测小分子与生物大分子的相互作用时非常有用,各种在化合物三维结构基础上进行三维定量构效关系研究的方法(3D-QSAR),在药物研究中己经越来越广泛地应用。主要方法为距离几何(Distance Geometry, DG)、分子形状分析(Molecular Shape Analysis, MSA)、比较分子场分析(Comparative Molecular Field Analysis, CoMFA)以及虚拟受体(Pseudo Receptor)方法。 在3D-QSAR中,CoMFA是目前应用最为广泛的方法,它采用化合物周围的静电场、范德华力场等的空间分布作为化合物结构描述变量,通过最小二乘法建立化合物的生物活性与化台物周围各种力场空间分布之间关系的模型。CoMFA是在不了解受体结构的情况下,通过将分子势场图示到网格点上来表示分子的周围环境,比较它们与药物分子的生物活性定量关系,用以推测受体的某些性质,并可依次建立起作用模型来设计新的化合物,定量地预测其活性强度。 1.2药效基团模型方法

生物信息学课程设计

生物信息学课程设计报告 题目:用blast、clustalx2和mega来分析鼠伤寒沙门氏菌的四环素抗性基因 专业:生物技术 班级:11-2 学号:11114040235 姓名:邹炜球 指导教师:马超 广东石油化工学院生物工程系 2013年 12 月 21 日

摘要 生物信息学(Bioinformatics)是研究生物信息的采集,处理,存储,传播,分析和解释等各方面的一门学科,它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。本课程设计主要通过分析鼠伤寒沙门氏菌的四环素抗性基因来介绍生物信息学里面常用的数据库NCBI和一些常用的软件(如blast、clustalx2、Primer Premier 5和mega),由于生物信息学这一门课在生物研究领域所起到的作用非常大,所以熟练一些常用的生物信息学软件和数据库是非常有必要的。 关键词:NCBI、blast、clustalx2、Primer Premier 、mega、生物信息学、序列比对、系统发育树

目录 1绪论 (4) 1.1生物信息学的发展概况 (4) 1.2生物信息学的发展展望 (4) 2 课题设计内容 (5) 2.1以某一基因或蛋白为研究对象搜索一条序列(DNA长度为300-1500bp,蛋白质序列 为100-500)及相关信息,并分别表示出他的GENBANK和FASTA格式 (6) 2.2以设计内容1为目标序列进行BLAST分析 (7) 2.3通过BLAST或相关软件下载8条基因或蛋白质序列 (9) 2.4以8条基因序列进行多序列比对 (10) 2.5依照设计内容4构建系统发育树 (10) 2.6以其中一条基因序列设计一条长度为200-500bp的一对引物 (12) 参考文献 (16)

生物信息学在药物设计中的应用

生物信息学在药物设计中的应用 SJ 摘要:生物信息学是在数学、计算机和生命科学的基础上形成的一门新型交叉学科,是指为理解各种数据的生物学意义,运用数学、计算机科学与生物学手段进行生物信息的收集、加工、储存、传播、分析与解析的科学。随着生物信息学的发展,其在药物开发中起着越来越重要的作用。本文简要的综述了生物信息学在药物设计中的应用。 关键词:生物信息学;药物设计;靶标 1 生物信息学 1.1生物信息学概述 自1990年人类基因组计划正式启动以来,其迅猛发展造成了生物学数据的迅速膨胀,大量多样化生物学数据蕴含着大量生物学规律,这些规律是解决许多生命之谜的关键所在。因此人们对生物学数据搜集、管理、处理、分析、释读能力的要求迅速提升,计算机技术也越来越多地应用于处理人类基因组研究产生的海量数据及相关生物信息。一门由生物学、计算机科学及应用数学等学科交叉形成的新兴学科——生物信息学应运而生。生物信息学利用计算机科学技术,结合生物学、数学、物理学、化学、信息学和系统科学等理论和方法,通过高容量的数据库、繁多的搜索系统、快速的网络通讯和分析工具对生物信息资源进行收集、存储、分析、利用、共享、服务、研究与开发。 其研究重点主要体现在基因组学和蛋白组学两方面。具体说,是从核酸和蛋白质序列出发,分析序列中表达的结构与功能的生物信息。目前基因组学的研究出现了几个重心的转移:一是将已知基因的序列与功能联系在一起的功能基因组学研究;二是从作图为基础的基因分离转向以序列为基础的基因分离;三是从研究疾病的起因转向探索发病机理;四是从疾病诊断转向疾病易感性研究。生物芯片(Biochip)的应用将为上述研究提供最基本和必要的信息及依据,将成为基因组信息学研究的主要技术支撑。生物信息学的发展为生命科学的进一步突破及药物研制过程革命性的变革提供了契机。就人类基因组来说,得到序列仅仅是第一步,后一步的工作是所谓后基因组时代的任务,即收集、整理、检索和分析序列中表达的蛋白质结构与功能的信息,找出规律。 1.2生物信息学的阶段 前基因组时代(20世纪90年代前):这一阶段主要是各种序列比较算法的建立、生物数据库的建立、检索工具的开发以及DNA和蛋白质序列分析等。

(完整版)药物设计学考试题库及答案

一选择题 1.以下哪个不是生物信息的特征 D A级联反应B网络结构C多样性D不可逆性 2.体内信号转导的主体是 A A 蛋白质 B 小分子物质 C 多糖 D 脂质 3.凡是由细胞分泌的,能够调节特定靶细胞生理活动的化学物质都称为细胞间物质,称为第一信使,它属于 D A 物理信号B机械力 C生物体外信号D化学信号 3.下列哪个不是细胞间化学信号分子的特点 B A特异性B持续性 C时间效应各异 D 复杂性 4.第三信使是下列哪种物质 C A 花生四烯酸 B 二十碳酸类 C DNA结合蛋白D磷脂酰肌醇 5.基于调节第二信使的药物设计不是 A A 维生素D受体配体的药物设计 B 调节cAMP和cGMP信号通路的药物设计 C 调节激酶系统的药物设计 D调节钙的药物设计 6.下列哪个是基于调节第三信使的药物设计 A

A 过氧化物酶体增殖因子活化受体配体的药物设计 B 磷酸二酯酶抑制剂活化受体配体的药物设计 C 磷酸二酯酶V的抑制剂活化受体配体的药物设计 D 糖原合成激酶-3抑制剂活化受体配体的药物设计 7.不是对信号转导系统的药物干预的选项是 A 影响信号分子的药物 B 影响信号接受系统的药物 C 影响信号传输系统的药物 D 影响细胞内信号转导系统的药物 1.生物体内嘌呤核苷酸的合成除了补救合成外,还有() A.从头合成 B.中间合成 C.最后合成 D.中间体合成 2.()是嘧啶生物合成的重要中间体 A.天冬氨酸 B.氨甲酰磷酸 C.乳清苷酸 D.谷氨酰胺 3.既是核酸生物合成的代谢产物,也是红细胞发育生长的重要因子的是() A.核苷 B.磷酸 C.戊糖D叶酸 4.氨基嘌呤和甲氨嘌呤是最早用于肿瘤临床治疗的()还原酶抑制剂 A.血清铁蛋白 B.黏蛋白 C.二氢叶酸 D.甲胎蛋白 5.()可以影响IMP、AMP或GMP的形成,从而抑制DNA和RNA 的合成 A.次黄嘌呤 B.鸟嘌呤 C.腺甘酸 D.巯嘌呤核苷酸

生物信息学在医学领域的应用研究现状

生物信息学在医学领域的应用研究现状 摘要生物信息学是研究生物信息处理(采集、管理和分析应用),并从中提取生物学新知识的一门科学,它连接生物数据和医学科学研究。生物信息数据库几乎覆盖了生命科学的各个领域,截止至2010年,总数已达1230个。生物信息学已不断渗透到医学领域的研究中。生物信息学在医学领域中主要应用于医学基础研究、临床医学、药物研发和建立与医学有关的生物信息学数据库。 关键词生物信息学,医学,应用 前言据统计,生物学信息正以每14个月翻一倍的速度增长。随着基因组及蛋白质序列数据库的快速增长,以及从这些序列中获取最大信息的需求,生物信息学(bioinformatics)作为一门独立学科应运而生。简言之,生物信息学就是利用计算和分析工具去收集、解释生物学数据的学科。生物信息学是一门综合学科,是计算机科学、数学、物理、生物学的结合。它对于管理现代生物学和医学数据具有重大意义,其研究成果将对人类社会和经济产生巨大推动作用。生物信息学的基础是各种数据库的建立和分析工具的发展。 数据库 迄今为止,生物学数据库总数已达500个以上。归纳起来可分为4大类:即基因组数据库、核酸和蛋白质一级结构数据库、生物大分子三维空间结构数据库,以及以上述3类数据库和文献资料为基础构建的二级数据库。 生物信息学在临床医学上的应用 1.疾病相关基因的发现:很多疾病的发生与基因突变或基因多态性有关。发 现新基因是当前国际上基因组研究的热点,使用生物信息学的方法是发现新基因的重要手段。目前发现新基因的主要方法有多种:(1)基因的电脑克隆:所谓基因的“电脑克隆”, 就是以计算机和互联网为手段,发展新算法,对公用、商用或自有数据库中存储的表达序列标签(express sequence tags,EST)进行修正、聚类、拼接和组装, 获得完整的基因序列, 以期发现新基因。(2)通过多序列比对从基因组DNA 序列中预测新基因[1]:从基因组序列预测新基因,本质上是把基因组中编码蛋白质的区域和非编码蛋白质的区域区分开来。(3)发现单核苷酸多态性[2]:现在普遍认为SNPs研究是人类基因组计划走向应用的重要步骤。这主要是因为SNPs将提供一个强有力的工具,用于高危群体的发

《药物设计学》深刻复知识题

滨州医学院继续教育学院课程考试 《药物设计学》复习题 一、名词解释 1. ADMET 2. 受体 3. 酶 4. Mee-too Drug 5. 生物电子等排体 6. 过渡态类似物抑制剂 7. QSAR 8. 高内涵筛选技术 9. 多底物类似物 10. 占领学说 11. 第三信使 12. 诱导契合学说 13. 组合化学 14. 同源蛋白 15. 模板定位法 16. 表观分布容积 二、简答题 1. 简述活性片段的检测技术中,磁共振技术的检测原理和分类。

2. 简述酶的激活方式。 3. 简述以核酸为靶点的药物设计类别。 4. 简述反向化学基因组学的定义及其研究方法。 5. 根据化合物库的来源不同,发现先导化合物的方法有哪些? 6. 简述前药设计的目的。 7. 基于片段的药物设计中,片段库的建立需要注意哪些问题? 8. 简述药物研发失败率较高的原因。 9. 可以从哪些方面考虑进行专利边缘的创新药物设计? 10. 引起药物毒性的因素有哪些? 11. 试述蛋白质在信号转导功能中的变化。 12. 在前药设计时一般应考虑哪些因素? 13. 试述钙离子成为胞内信使的基础。 14. 试述基于类药性的药物设计策略。 三、论述题 1、有的知识,论述先导化合物发现的预测方法。 2、论述下列化合物的设计原理和特点 (1) O H O COCH 2 CH 2 COONa (2)

N NH 2 N NH N N H 3、根据已有的知识,论述从片段到先导化合物的设计方法并解释各类方法的原理。

滨州医学院继续教育学院课程考试 《药物设计学》复习题答案 一、名词解释 1. ADMET 药物的吸收、分布、代谢、排谢、毒性 2. 受体 是细胞在进化过程中形成的生物大分子成分,能识别周围环境中极微量的某些化学物质,并与之结合,引发生理反应或药理效应。 3. 酶 是由活体细胞分泌,对其特异底物具有高效催化作用的蛋白质。 4. Mee-too Drug

浅谈生物信息学在生物医药方面的应用

浅谈生物信息学在生物医药方面的应用 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。是结合了计算机科学、数学和生物学的一门多学科交叉的学科。它依赖计算机科学、工程和应用数学的基础,依赖实验和衍生数据的大量储存。他将各种各样的生物信息如基因的DNA序列、染色体定位、基因产物的结构和功能及各种生物种间的进化关系等进行搜集、分类和分析,并实现全生命科学界的信息资源共享。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧

《药物设计学》教案

《药物设计学》教案 2009年5月修订 第0章 药物设计学前言与导论 教学课时 2学时 教学主要内容 药物设计学的学科基础;药物发现的历史;药物发现过程;新药R&D中的社会科学;靶点与配基合理药物设计 讲授提纲及学时分配 《药物设计学》教学大纲和教学进度 (5') 前言 一. 学科形成的基础 (10') 二. 国内外有关专著和教材(5') 导论 0.1 药物发现历史 (5') 0.2 药物发现过程 0.2.1 药物发现的定义(5') 0.2.2 药物发现的阶段(20') 0.2.3 新药R&D中的社会科学(10') 0.3 药物设计 0.3.1 靶点和配基(10') 0.3.2 合理药物设计(20') 课堂实例 1、以组合化学为基础的高通量筛选和高内涵筛选在药物设计中的应用; 2、合理药物设计:基于机理(MBDD)、基于性质(PBDD)和基于结构(SBDD)的药物设计 本章内容的重点 1、药物发现的定义 2、药物发现的途径 3、靶点与配基(药物设计的基本原理) 4、合理药物设计的内容 本章内容的难点 1、新药R&D中的社会科学 2、靶点与配基:受体学说与分子识别 3、合理药物设计在药物设计与发现中的重要性

思考题 1、药物发现与药物设计的区别在哪里? 2、为什么说社会科学在药物研究开发中发挥了关键作用? 3、合理药物设计包含哪些方法?这些方法分别在药物设计中扮演了什么样的角色? 教学参考书和文献 1、Patrick G., 医药化学, 科学出版社, 2003 2、叶德泳. 计算机辅助药物设计导论, 化学工业出版社,2004 3、迟玉明主译. 创新药物化学,世界图书出版公司2005. 4、RB Silverman ed. The organic chemistry of drug design and drug action, 2nd Ed., 科学出版社, 2007 5、D Triggle and J Taylor ed. Comprehensive Medicinal ChemistryⅡ, V ol 1,2,3,4,5,8, 2006~2007 6、HJ Smith ed. Smith and Williams' Introduction to the Principles of Drug Design and Action,4th Ed, 2004. 7、ME Wolff ed. Burger’s Medicinal Chemistry and Drug Discovery, 6th Ed, 2003, V olⅠ: Drug Discovery, and V olⅡ: Drug Discovery and Drug Development.

药物设计

生物靶点:与药物特异性结合的生物大分子统称为药物作用的生物靶点。 特殊转运:如离子泵、特定物质的载体以及胞摄、胞吐等转运过程均需依赖酶促反应,并需消耗一定的能量,但可不随浓度梯度而定向转运,因此称特殊转运。 信息:指将体内固有的遗传因素和环境变化因素传递到功能调整系统的消息或指令。 信号:指传递信息的载体,有许多小分子和大分子化学物质,也有物理因素(生物电、温度等)。信号转导:指经过不同的信号分子转换,将信息传递到下游或效应部位。 类肽:一类能够模拟天然肽分子,具有配基或底物样识别功能,可以与受体或酶相互作用,从而激活或阻断某种内源性活性肽的生物学作用的肽类似物或非肽。 假肽:当多肽的一个或几个酰胺键被电子等排体取代得到的肽类似物称假肽。 前药原理:在体内,尤其是在作用部位经酶或非酶作用,前药的修饰性基因被除去,恢复成原药而发挥药效。这一药物设计方法称为前药原理。 孪药:两个相同的或不同的药物经共价键连接,缀合成新的分子,称为孪药。 靶向药物:是利用对某些组织细胞具有特殊亲和力的分子作载体,与药物耦联后将其定向输送到作用的靶器官部位的一种药物设计方法,是前体药物的一种特殊形式,它是以受体或酶与配基特异性结合为基础的。 类药性:是药代动力学性质和安全性总和,包括药物的理化性质、拓扑结构特征、药代动力学性质以及毒性特征。 组合化学:是将一些基本小分子构建模块通过化学或者生物合成的手段,将它们系统的装配成不同的组合,由此得到大量具有结构多样性特征的分子,从而建立化学分子库的方法。 高通量筛选技术(HTS):是指以分子水平和细胞水平的试验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机对实验数据进行分析处理,同一时间对数以千万样品检测,并以相应的数据库支持整体运转的体系。 化学信息学:是一门应用信息学方法来解决化学问题的学科,研究范围是化合物以及化合物的性质和转化。 生物信息学:应用数学、信息学、统计学和计算科学的方法研究生物学的问题。 化学基因组学:化学基因组学技术整合了组合化学,高通量筛选,生物信息学,化学信息学和药物化学等领域的相关技术,采用具有生物活性的小分子配体作为探针,研究与人类疾病密切相关的基因和蛋白质的结构和生物功能,同时为新药开发提供靶蛋白以及具有高亲和性的药物先导化合物。 药效团元素:活性化合物所共有的、对化合物的活性有重要影响的一组原子或集基团。 药效团:又称药效基团,指在生物活性分子中对活性起重要作用的“药效特征元素”的空间排列形式。 生物靶点的分类? 1以受体为靶点。2以酶为靶点。3以离子通道为靶点。4以核酸为靶点。 生物大分子的结构与功能的共性和特征? 生物大分子结构方面的特征与共性:1具有多种单体的共聚物⑴蛋白质多肽链的一级结构⑵DNA,RNA 多聚核苷酸链的一级结构⑶多糖。2具有多层次结构⑴蛋白质的三维空间结构⑵DNA,RNA的三维空间结构。3生物高分子结构的可变性⑴一级结构的改变⑵高级结构的改变⑶结构可变性的幅度。生物大分子功能方面的特征与共性:1作用的专一性2作用的配合与协调 生物膜的基本结构? 1脂质双层2蛋白质团块(内嵌蛋白质、表面蛋白质)3糖链4金属离子 构型限制性氨基酸的设计? 1.氨基酸的α-甲基化2α,α-二烷基甘氨酸3.α-氨基环烷羧酸4.苯丙氨酸类似物5.脯氨酸类似物6.Nα-甲基化7.引入D-氨基酸8.其他氨基酸类似物 肽链骨架的修饰? 1亚甲基胺[—CH2NH—]2.亚甲基硫醚[—CH2S—]和亚甲基亚砜[—CH2S(O)—]3.亚甲基醚[—CH2O—]4.硫代酰胺[—C(S)NH—]5.亚甲基酮[—COCH2—]和氟代亚甲基酮[—COCHF—或—COCF2—]6.(E)乙烯型[—CH=CH—]和(E)氟代乙烯型[—CH=CF—]7.亚乙基[—CH2CH2—]8.酰胺键的逆转 化学信号的分类? 按照化学本质:1类固醇衍生物。2氨基酸衍生物。3多肽及蛋白质。4酯类衍生物。5气体分子按照

生物信息学的内容及发展

生物信息学的内容及发展 学生:XXX (X学院XXX班,学号:XXXXXXXXXXXXX) 摘要:生物信息学(Bioinformatics)是80年代末随着人类基因组计划的启动而兴起的一门新的交叉学科,最初常被称为基因组信息学。广义地说,生物信息学是用数理和信息科学的理论、技术和方法去研究生命现象、组织和分析呈现指数增长的生物数据的一门学科。伴随着人类基因组计划的胜利完成,生物信息学的作用愈显重要。 关键字:生物信息学;科学技术;内容;发展 生物信息学以计算机为其主要工具,发展各种软件,对逐日增长的浩如烟海的DNA和蛋白质的序列和结构进行收集、整理、储存、发布、提取、加工、分析和研究,目的在于通过这样的分析逐步认识生命的起源、进化、遗传和发育的本质,破译隐藏在DNA序列中的遗传语言,揭示生物体生理和病理过程的分子基础,为探索生命的奥秘提供最合理和有效的方法或途径。生物信息学已经成为生物医学、农学、遗传学、细胞生物学等学科发展的强大推动力量,也是药物设计、环境监测的重要组成部分。 一、生物信息学的定义与定位 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 生物信息学是在大分子方面的概念型的生物学,并且使用了信息学的技术,这包括了从应用数学、计算机科学以及统计学等学科衍生而来各种方法,并以此在大尺度上来理解和组织与生物大分子相关的信息。(Luscombe,2001) 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:⑴新算法和统计学方法研究;⑵各类数据的分析和解释;⑶研制有效利用和管理数据新工具。 生物信息学是一门利用计算机技术研究生物系统之规律的学科。 目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。 二、生物信息学的研究内容和方向 生物信息学的主要研究内容:基因组学 - 蛋白质组学- 系统生物

生物信息学主要内容和发展前景

生物信息学主要内容和发展前景 学生:xxx (x学院xxxx班,学号xxxxxxxxxxx) 摘要:21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 关键字:生物信息学;产生;研究内容;展现状;前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展,被誉为“解读生命天书的慧眼”。 一、生物信息学的产生 21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,与此同时,诸如大肠杆菌、结核杆菌、啤酒酵母、线虫、果蝇、小鼠、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。在计算机科学领域,按照摩尔定律飞速前进的计算机硬件,以及逐步受到各国政府重视的信息高速公路计划的实施,为生物信息资源的研究和应用带来了福音。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 二、生物信息学研究内容 (一)序列比对 比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BALST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。有时两个序列总体并不很相似,但某些局部片断相似性很高。Smith-Waterman算法是解决局部比对的好算法,缺点是速度较慢。两个以上序

《药物设计学》习题集 答案

《药物设计学》习题集答案 是非题 1-5 FTFFF 6-10 TFFTF 11-15 TTFTF 16-20 TTFFF 21-25TTFTF 26-30 TFTFF 31-35 TTTFF 36-37 TF 选择填空题(单选题) 1.B 2.B 3.B 4.ABC 5.D 6. A 7.B 8.C 选择填空题(多选题) 1.BC 2. ABC 问答题 1. ①面对禽流感爆发的紧迫疫情,最近期的方法应为筛选,针对病原体病毒,从目前现有的抗病毒药物中筛选出有抗N5H7病毒作用的药物,直接用于对因治疗。②从具有抗病毒、抗炎、增强免疫力的天然产物中分离提取有效成分,寻找对禽流感具有治疗作用的先导物和药物。③用分子生物学手段获得抗禽流感免疫血清作为生化药物。④其他中长期的方法有很多,考生可发挥。例如从售出流感病毒生命周期和入侵人体细胞的生理生化过程入手,研究其关键生物大分子的结构和功能,并以这些生物大分子为靶标,设计和寻找抗禽流感病毒的先导物和有效药物。 2. (1)此模型为揭示β2 –受体拮抗剂的药物-受体作用机理提供了证据。 (2)G-蛋白偶联受体是众多药物作用的靶点,但其结构不明对发现新的药物带来障碍。β2 –受体拮抗剂受体模型的揭示,是继视紫红质结构测定以来第一次发现的G-蛋白偶联受体模型,其结构为同源模建其他G-蛋白偶联受体的三维结构模型,为进行基于靶点结构的药物设计奠定了基础。 3. (1)前药修饰、引入极性基团; (2)成盐、助水溶物和助溶剂、水溶胶、脂质体、包合体、微球、纳米粒、固体分散体等 4. 从作用模型分析,可发现抑制剂分子上的羧基与酶Arg 371有离子相互作用。同时可看到酶结构上有亲正电的作用位点Glu 119。据此对抑制剂Neu5Ac2en结构进行改造。在4位引入碱性的氨基或胍基,可与酶蛋白的Glu 119羧基侧链产生离子相互作用,增大药物作用强度。 5-9 (略)

《药物设计学》复习题

滨州医学院继续教育学院课程 考试 药物设计学》复习题 一、名词解释 1. ADMET 2. 受体 3. 酶 4. Mee-too Drug 5. 生物电子等排体 6. 过渡态类似物抑制剂 7. QSAR 8. 高内涵筛选技术 9. 多底物类似物 10. 占领学说 11. 第三信使 12. 诱导契合学说 13. 组合化学 14. 同源蛋白 15. 模板定位法 16. 表观分布容积 、简答题 简述活性片段的检测技术中,磁共振技术的检测原理和分类。 简述酶的激活方式。 简述以核酸为靶点的药物设计类别。 简述反向化学基因组学的定义及其研究方法。 根据化合物库的来源不同,发现先导化合物的方法有哪些? 简述前药设计的目的。 基于片段的药物设计中,片段库的建立需要注意哪些问题? 简述药物研发失败率较高的原因。 可以从哪些方面考虑进行专利边缘的创新药物设计? 10. 引起药物毒性的因素有哪些? 11. 试述蛋白质在信号转导功能中的变化。 12. 在前药设计时一般应考虑哪些因素? 13. 试述钙离子成为胞内信使的基础。 14. 试述基于类药性的药物设计策略。 三、论述题 1、有的知识,论述先导化合物发现的预测方法。 2、论述下列化合物的设计原理和特点 (1) 1. 2. 3. 4. 5. 6. 7. 8. 9.

(2) 2 CH 2 COONa NH N 先导化合物 3、根据已有的知识,论述从片段到先导化合物的设计方法并解释各类方法的原理。

滨州医学院继续教育学院课程考试 药物设计学》复习题答案 一、名词解释 1.ADMET 药物的吸收、分布、代谢、排谢、毒性 2.受体 是细胞在进化过程中形成的生物大分子成分,能识别周围环境中极微量的某些化学物质,并与之结合,引发生理反应或药理效应。 3. 酶是由活体细胞分泌,对其特异底物具有高效催化作用的蛋白质。 4.Mee-too Drug 将已知药物的化学结构作局部改变,具有相似的药理作用,药物结构不受专利的保护,使该类模仿药快速投放市场。 5. 生物电子等排体 指具有相同价电子数,并且具有相近理化性质,能产生相似或相反生物活性的分子或基团。 6. 过渡态类似物抑制剂 酶与过渡态之间的亲和力高于酶同底物或产物的亲和力,酶可以降低这种能量壁垒,使反应速率提高。过渡态类似物抑制剂是一类特异的竞争性抑制剂,其结构类似于反应中不稳定过渡态的底物部分。 7. QSAR 一种借助分子的理化性质参数或结构参数,以数学和统计学手段定量研究有机小分子与生物大分子相互作用、有机小分子在生物体内吸收、分布、代谢、排泄、毒性等生理相关性质的方法。 8.高内涵筛选技术 在保持细胞结构和功能完整性的前提下,尽可能同时检测被筛选样品对细胞生长、分化、迁移、凋亡、代谢途径及信号转导等多个环节的影响,从单一实验中获取大量相关信息,确定其生物活性和潜在毒性。 9.多底物类似物 模拟同时结合在酶的活性位点的两个或多个底物的结构,通过共价键把两个或多个底物或底物类似物结合在一起。与靶酶结合力大大增强,并且特异性更高。 10.占领学说 认为药理效应与受体被药物结合的数量成正比,而且这种结合是可逆的,其剂量和效应的关系符合质量作用定律。 11.第三信使 又称为DNA 结合蛋白,负责细胞核内外信息传递的物质。 12.诱导契合学说 当药物与受体接触时,由于分子间的各种键力,诱导受体作用部位的构象可逆性改变,以与药物更相适应地契合,进而使整个受体分子构象呈可逆性改变,于是影响相邻部位酶的活性改变或生化反应,从而产生相应的药理效应。

相关主题
文本预览
相关文档 最新文档