当前位置:文档之家› 水果形状的傅里叶描述子研究

水果形状的傅里叶描述子研究

水果形状的傅里叶描述子研究
水果形状的傅里叶描述子研究

常用函数傅里叶变换

附录A拉普拉斯变换及反变换 419

2 420

3.用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设F(S)是S的有理真分式 Ff ) _ B(S) b m S m?b m」S m-…?bιS ?b o A(S) a n s n+a n∕S n'+ …+a1s + a0 式中系数a o,a i,...,a n」,a n,b°,b1,…b m」,b m都是实常数;m,n是正整数。按代数定理可 将F(S)展开为部分分式。分以下两种情况讨论。 ①A(S)=G无重根 这时,F(S)可展开为n个简单的部分分式之和的形式。 C l C2 S-S S-S n n C C i 4 S -' S i (F-1) 式中,S1,S2,…,S n是特征方程A(S) = G的根。C i为待定常数,称为按下式计算:F(S)在S i处的留数,可 式中, 式中, C i= Iim (s _ S i)F(S) S T i C _ B(S) C i A(S) A(S)为A(S)对S的一阶导数。根据拉氏变换的性质,从式( -n C l L*(S)1=L?J∣Σ旦 S — $ 一 f(t)二 C i n -S i t = C i e i i吕 (F-2) (F-3) F-1)可求得原函数 (F-4) A(S)= G有重根 设A(S)=G有r重根S1 , F(S)可写为 B(S) F S-(S-S 1) r(S-S r J (S-S n) C i C r + C r4 + …+C1 + C r 出十… (S-S1)r(S-S1)r4 (S-Sj S-S r?1 -- C i ?.? . C n S — S S-S n S i为F(S)的r重根,S r十,…,S n为F(S)的n-r个单根; 421

智慧树知到数字图像处理章节测试答案

智慧树知到《数字图像处理》章节测试答案第一章 1、表示一幅灰度图像,一般用()? 一个常数 二维矩阵 三维矩阵 一个变量 答案: 二维矩阵 2、彩色图像中,每个像素点用()表示色彩值? 一个值 二个值 三个值 四个值 答案: 三个值 3、不可见光是可以形成图像的 对 错 答案: 对 4、数字图像的质量与量化等级有关 对 错 答案: 对

5、一幅模拟图像转化为数字图像,要经过()? 重拍 重拍 采样 量化 变换 答案: 采样,量化 6、某个像素的邻域,一般有()? 4-邻域 8-邻域 10-邻域 对角邻域 答案: 4-邻域,8-邻域,对角邻域 第二章 1、傅里叶变换得到的频谱中,低频系数对应于()?物体边缘 噪音 变化平缓部分 变化剧烈部分 答案: 变化平缓部分 2、一幅二值图像的傅里叶变换频谱是()? 一幅二值图像

一幅灰度图像 一幅复数图像 一幅彩色图像 答案: 一幅灰度图像 3、傅里叶变换有下列哪些特点()? 有频域的概念 均方意义下最优 有关于复数的运算 从变换结果可以完全恢复原始数据 答案: 有频域的概念,有关于复数的运算,从变换结果可以完全恢复原始数据4、图像的几何变换改变图像的大小或形状,例如()? 平移 旋转 缩放 退化 答案: 平移,旋转,缩放 5、傅里叶变换得到的频谱中,高频系数对应于图像的边缘部分。 对 错 答案: 对 6、图像平移后,其傅里叶变换的幅度和相位均保持不变。 对

错 答案: 错 第三章 1、图像与其灰度直方图间的对应关系是()? 一一对应 多对一 一对多 都不对 答案: 2、下列算法中属于点处理的是()? 梯度锐化 直方图均衡化 傅里叶变换 中值滤波 答案: 3、为了去除图像中某一频率分量,除了用带阻滤波器还可以用()? 低通滤波器 高通滤波器 带通滤波器 低通滤波器加高通滤波器 答案: 4、要对受孤立噪声点影响的图像进行平滑滤波,不能达到效果的滤波器是()?

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

方波信号展开为傅里叶级数

【例4.2-1】将下图所示方波信号展开为傅里叶级数。 解:按题意方波信号在一个周期内的解析式为 ()?????? ?≤≤<≤--=2 02 2 2 T t E t T E t f 分别求得傅里叶系数: cos 22cos 22200020??? ? ??+???? ??-=-T T n tdt n E T tdt n E T a ωω ()()[]0 sin sin n E 2 000 =+-= -T T t n t n T ωωω ???? ??+???? ??-=-200020sin 22sin 22T T n tdt n E T tdt n E T b ωω ()()[] 2 0020 cos cos n E T T t n t n T ωωω-+= - ()[]ππn n E cos 222-= 即: ??? ??=为偶数 为奇数n n n E b n 0 2π 故得信号的傅里叶级数展开式为 ()?? ? ??+++++=ΛΛt n n t t t E t f 0000sin 15sin 513sin 31sin 2ωωωωπ 它只含有一、三、五、……等奇次谐波分量。

【例 解: 首先将图示信号分解为奇、偶函数,如下图(a)、(b)所示。 (a) 从图(a)可见为一个半波反对称偶函数。在这种情况下,其傅里级数展开式 中将只含有余弦项,且只含奇次谐波分量而不含偶次谐波分量,即有: 06420321========ΛΛb b b b a a a ()?? ? ??+++++= ΛΛt n n t t t t f ev 02 0002cos 15cos 2513cos 91cos 8ωωωωπ

(完整版)从头到尾彻底理解傅里叶变换算法

从头到尾彻底理解傅里叶变换算法、上 从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 连续傅里叶变换的逆变换(inverse Fourier transform)为: 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对: 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。 分数傅里叶变换的物理意义即做傅里叶变换a 次,其中a 不一定要为整数;而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。

将下列各周期函数展开成傅里叶级数(下面给出函数在一个...

习题11-8 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1))2 12 1(1)(2<≤--=x x x f ; 解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ? ? ?), 而 611)1(4)1(2/1221 0221 020=-=-=??dx x dx x a , ?-=21022/1c o s )1(2/12dx x n x a n π 2 2 121 2 )1(2c o s )1(4π πn x d x n x n +-= -=? (n =1, 2, ? ? ?), 由于f (x )在(-∞, +∞)内连续, 所以 ∑ ∞ =+-+=1 2 1 2 2c o s )1(1 1211)(n n x n n x f ππ , x ∈(-∞, +∞). (2)?? ? ???? <≤-<≤<≤-=1 21 12 1 0 101 )(x x x x x f ; 解 2 1)(1 2 121 1 11 -=-+==????--dx dx xdx dx x f a n , ?? ??-+==--1 2 121 1 11 c o s c o s c o s c o s )(x d x n x d x n x d x n x x d x n x f a n ππππ 2 s i n 2])1(1[122πππ n n n n +--= (n =1, 2, ? ? ?), dx x n xdx n xdx n x xdx n x f b n ?? ??-+==--1 2 1210 1 1 1 sin sin sin sin )(ππππ π ππ n n n 12 c o s 2+-= (n =1, 2, ? ? ?).

傅里叶级数展开matlab实现

傅里叶级数展开matlab 实现给个例子说明下:将函数 y=x*(x-pi)*(x-2*pi),在(0,2*pi)的范围内傅里叶级数展开syms x fx=x*(x-pi)*(x-2*pi); [an,bn,f]=fseries(fx,x,12,0,2*pi)%前12 项展开latex(f)%将f 转换成latex 代码an = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] bn = [ -12, 3/2, -4/9, 3/16, -12/125, 1/18, -12/343, 3/128, -4/ 243, 3/250, -12/1331, 1/144] f = 12*sin(x)+3/2*sin(2*x)+4/9*sin(3*x)+3/16*sin(4*x)+12/ 125*sin(5*x)+1/18*sin(6 *x)+12/343*sin(7*x)+3/128*sin(8*x)+4/243*sin(9*x)+3/ 250*sin(10*x)+12/1331* sin(11*x)+1/144*sin(12*x) ans = 12\,\sin \left( x \right) +3/2\,\sin \left( 2\,x \right) +4/9\,\sin \left( 3\,x \right) +3/16\,\sin \left( 4\,x \right) +{\frac {12}{125}}\,\sin \left( 5\,x \right) +1/18\,\sin \left( 6\,x \right) +{\frac {12}{343}}\,\sin \left( 7\,x \right) +{\frac {3}{128}}\,\sin \left( 8\,x \right) +{\frac {4}{243}}\,\sin \left( 9\,x \right) +{\frac {3}{250}}\,\sin \left( 10\,x \right) +{\frac {12}{1331}}\,\sin \left( 11\,x \right) +{\frac {1}{144}}\,\sin \left( 12\,x \right) function [an,bn,f]=fseries(fx,x,n,a,b) %傅里叶级数展开% %an 为fourier 余弦项系数%bn 为fourier 正弦项系数%f 为展开表达式%f 为给定函数%x 为自变量%n 为展开系

傅里叶系数的推导

傅里叶级数的数学推导 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。

然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

傅里叶变换的应用

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

第五章傅里叶函数

第五章 傅里叶函数 §5.1 傅里叶级数 以上函数是将其展为幂级数,除此外,还有一个常见的情况是将函数展为三角级数(每一项是三角函数),三角函数是周期性。 一般是周期性函数展为三角级数 一.周期函数的傅里叶展开 1、周期是2π的函数即f(x)=f(x+2π)的三角展开为: f(x)=0a +1(cos sin )k k k a kx b kx ∞ =+∑ 其中:k a =1 ()cos f k d π πξξξπ - ? k b =1 ()sin f k d π πξξξπ - ? (1) 0a = 1 ()2f d π πξξπ - ? 2、周期为2的函数,即f(x)=f(x+2)的三角展开和傅里叶展开: f(x)=0a +1(cos sin )k k k k x k x a b ππ∞ =+∑ 其中:系数:0a =1 ()cos 2k f d πξ ξξ- ? k a =1()cos k f d πξ ξξ- ? ………(2) k b = 1 ()sin k f d πξ ξξ- ? 可将0a 、 k a 合并后来表示:k a =1 ()cos k k f d πξ ξξσ- ? k=0、1、2…… 其中:k σ= 2..................0. 1.....................k 0k =??≠? 时 3、三角级数的性质

(1)、周期性 (2)、正交性: 指的是: 1 cos cos k n d πξ πξ ξ- ? = 1.................. 0.....................k k n n =?? ≠?当 (3) 1 sin sin k n d πξ πξ ξ- ? = 1.................. 0.....................k k n n =?? ≠?当 (3)、完备性 1 sin sin k n d πξ πξ ξ- ? =0 略…… 完备方程: 当n →∞时,对一致连续f(x): []2()f x dx - ?=22 220 0cos sin .......(4)k k k k k x k x a b ππ∞ ∞ ==????+????????∑∑ (4)、狄里希里定理(傅氏级数的收敛性) 周期函数()f x 若满足:(1)处处连续或在每个周期只有有 限个第一关键断点。 (2)、处处连续或在每个周期只有 有限个极值。 则()f x 展开的傅氏级数收敛,且: 级数和 = []()................(5)1 (0)(0) (2) f x f x f x ? ?++-?连续点间断点 二、奇函数和偶函数的傅里叶展开 1、若周期函数f(x)是奇函数,则因为傅氏展开成0a =0 k a =0 因为三角级数中,没有余弦级数项。

傅里叶变换

第4章 连续时间傅里叶变换 4.1.1 非周期信号傅里叶变换表示的导出 为了对傅里叶变换表示的实质求得更深入地了解,我们还是先由在例3.5中所研究过的连续时间周期方波的博里叶级数表示入手。在—个周期内 ?????<<<=2 /,0,1)(11 T t T T t t x 以周期T 周期重复,如图4.1所示。 在例3.5曾求出,该方波信号的傅里叶级数系数k a 是 0,) s i n (2010≠= k T k T k a k ωω 式中T /20πω=,如下图所示,展示出了对于固定的1T 值和不同的T 值时,这些系数的 条状图。 理解(4 .1)式的另一种方式是把它当作一个包络函数的样本,即 1 s i n 2ωωω ωk k T Ta == 这就是,若将ω看作一个连续变量,则函数 ω ω1 sin 2T 就代表k Ta 的包络,这些系数就是 在此包络上等间隔取得的样本。而且,若1T 固定,则k Ta 的包络就与T 无关。在下图中,再次表明了该周期方波的傅里叶级数系数,不过,这次是按上式作为k Ta 包络的样本给出

的,从该图可以看到,随着T 增加(或等效地,基波频T /20 πω=减小),该包络就被以愈 来愈密集的间隔采样。随着T 变得无穷大,原来的周期方波就趋近于一个矩形脉冲 (也就是说,在时域所保留下的是一个非周期信号,它对应于原方波的一个周期)。与此同时,博里叶级数系数(乘以T 后)作为包络上的样本也变得愈来愈密集,这样从某种意义上说(稍后将说明),随着∞→T ,博里叶级数系数就越来越趋近于这个包络函数。 这个例子说明了对非周期信号建立傅里叶表示的基本思想。这就是在建立非周期信号的博里叶变换时,可以把非周期信号当作—个周期信号在周期任意大时的极限来看待,并且研究这个周期信号博里叶级数表不式的极限特性。现在,我们来考虑一个信号)(t x ,它具有有限持续朗,即对某个1T ,当1T t >时,0)(=t x ,如图 4.3(a)所示。从这个非周期 信号出发,可以构成一个周期信号)(t z ,使)(t x 就是)(t z 的一个周期,如图4.3(b)所示。当随着∞→T ,对任意有限时间t 值断言,)(t z 就等于)(t x 。

傅里叶变换

傅里叶变换: 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。 对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量;也就是说,傅里叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。 图像进行二维傅里叶变换得到频谱图,就是图像梯度的分布图。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。 傅里叶变换的作用: (1)图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频—噪音;边缘也是图像的高频分量,可以通过添加高频分量来增强图像的边缘; (2)图像分割之边缘检测 提取图像高频分量 (3)图像特征提取 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换使特征具有平移,伸缩、旋转不变形 (4)图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅里叶变换的实变换。 频域中的重要概念: 图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪音更多是两者的混合; 低频分量:图像变换平缓部分,也就是图像轮廓信息 高通滤波器:让图像使低频分量抑制,高频分量通过 低通滤波器: 带通滤波器:使图像在某一部分的频率信息通过,其他过低或过高的都抑制。 模板运算与卷积公式: 在时域内做模板运算,实际上就是对图像进行卷积。模板运算是图像处理一个很重要的处理过程,很多图像处理过程中,比如增强/去噪,边缘检测中普遍用到。根据卷积定理,时域卷积等价于频域乘积。因此,在时域内对图像做模板运算就等效于在频域内对图像做滤波处理。 比如说一个均值模板,其频域响应为一个低通滤波器;在时域内对图像作均值滤波就等效于在频域内对图像用均值模板的频域响应对图像的频域响应做一个低通滤波。 为什么我们要用正弦曲线来代替原来的曲线呢?分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单。因为正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波德形状仍是一样的,且只有正弦曲线才拥有这样的性质,挣因如此我们才不用方波或三角波来表示。 傅里叶变换分类:

傅里叶描述子计算函数

//m_vedgepoint:存放边界点坐标的容器定义: //typedef std::vector ptLineTable;// Point是二维坐标结构体 //index:边界点数 //Fourierout:存放傅里叶描述子的地址指针 int Fourierdescriber(ptLineTable m_vedgepoint,int index, double* Fourierout) { Point *newP = new Point[index]; int j = 0; for (ptLineTable::iterator i = m_vedgepoint.begin(); i != m_vedgepoint.end(); i++) { newP[j].x = i->x; newP[j].y = i->y; j++; } complex *Z=new complex[j];//定义傅立叶描述子(复数类型) memset(Z,(0.0,0.0),j); complex temp=(0.0,0.0); double *d=new double[j]; if(j>12) { for(int k=0;k<12;k++)//前k个描述子 { complex temp=(0.0, 0.0); for(int l=0;l(newP[l].x, newP[l].y)*complex(cos((2*PI*l*k)/j),-sin((2*PI*l*k)/j)); } Z[k]=temp/complex((double)j,0.0); //传统的归一化傅立叶描述子 if (k>0) { d[k]=sqrt(pow(Z[k].real(),2)+pow(Z[k].imag(),2))/sqrt(pow(Z[0].real(),2)+pow(Z[0].imag(), 2)); // fprintf(fileHandle, "%f ", d[k]); //可存入队列传出 *(Fourierout+k-1) = d[k]; } } } else

傅里叶公式理解

有关指导 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量 信号分析:从信号中提取有用信息的方法和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。 质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ??? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

)cos(000φω+t x 简谐信号及其三个要素 幅值 频率 相角 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐 信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 ) 21() ()2()()(ΛΛ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2/T 。 ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

傅里叶变换

傅里叶变换 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复 杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先 由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数 形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。连续傅里 叶变换的逆变换 (inverse Fourier transform)为: 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里

叶变换对(transform pair)。除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对: 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。 分数傅里叶变换的物理意义即做傅里叶变换 a 次,其中 a 不一定要为整数; 而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。 当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform). 另一个值得注意的性质是,当f(t)为纯实函数时,F(?ω) = F*(ω)成立. 傅 里叶级数 连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积 分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

傅里叶描述子研究应用.docx

傅里叶描述子研究应用 姓名:李罗川 学号:ZY1403222 完成时间:2015年05 月06 日

目录 1傅里叶描述子概述 (1) 1.1概念与特点 (1) 1.2现状与发展 (1) 2一维傅里叶描述子 (3) 3二维傅里叶描述子 (6) 参考文献 (9)

1傅里叶描述子概述 1.1概念与特点 傅里叶分析的理论始于1822年,当时是由法国数学家傅里叶(Fourier J)提出的傅里叶级数的概念。目前,傅里叶理论已经发展了近二百年,作为一种有力的信号分析处理工具,广泛应用在各个领域,但在20世纪六十年代初,才被Cosgriff 引用到形状分析领域中来。 傅里叶描述子(Fourier Descriptor)是一种基于频域变换的形状表示算法。傅里叶描述子是首先将物体轮廓线表示成一个一维的轮廓线函数,然后对该函数作傅里叶变换,由傅里叶系数构成形状描述子。同一形状不同的轮廓线函数,会产生不同的傅里叶描述子,如切角函数、曲率函数、中心距离函数、三角形面积函数等。FD是目前形状表示方法中应用最多的描述子之一。通过把形状在频域进行表示,可以很好的解决描述子对存在噪声和边界变化的敏感度。傅里叶描述子按照基于轮廓和基于区域的分类方式可以分为两类:基于轮廓的一维傅里叶描述子(1-D FD)和基于区域的二维傅进叶描述子(2-D FD)。 傅里叶描述子不仅是目前应用最广泛的描述子,而且是最具有发展潜力的形状表示算法之一。傅里叶描述子作为全局形状特征的一种描述方式,具有计算简单,抗噪性强,较高的形状区分能力,但不包含局部形状信息,对形状的细节辨识能力较弱。 1.2现状与发展 傅里叶描述子(Fourier Descriptor)是目前形状表示方法中应用最多的描述子之一。傅里叶描述子按照基于轮廓和基于区域的分类方式可以分为两类:基于轮廓的一维傅里叶描述子(1-D FD)和基于区域的二维傅进叶描述子(2-D FD)。 传统的一维傅里叶描述子只能处理根据形状图像提取出的闭合曲线,它依赖于边缘检测算法对形状轮廓线的准确提取。Lin和Mitchell等经过研究和变形将1-D FD应用于部分闭合曲线。Arbter等首次提出了具有仿射变换不变性的1-DFDo Granlund提出了可以描述轴对称形状的傅里叶不变量。Eichmann等利用短时傅里叶变换(SFD)来提取傅里叶描述子。同时,Zhang和Lu证明了 SFD描述子在形状检索上的性能要优于传统的傅里叶描述子[31]。这是因为SFD虽然不能

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

周期性函数分解的傅里叶级数

周期性函数分解的傅里叶级数 周期电压、电流等都可以用一个周期函数表示,即 210),()(、、 =+=k kt t f t f 式中T 是周期函数的周期,且 210、、 =k 如果给定的周期函数在有限的区间内,只有有限个第一类间断点和有限个极大值和极小值,那么就可以展开成一个收敛的级数(三角级数) 设给定的周期函数)(t f ,则)(t f 可展开成 ) ()(1)sin cos (sin cos )2sin 2cos ()sin cos ()(1022110 ∑∞ =++=+++++++=k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω 上式中的系数,可按下列公式计算: ????? ?? ? - - -= ====== = π ππ π ππωωπ ωωπωωωπ ωωπω) (sin )(1 ) (sin )(1sin )(2)(cos )(1 ) (cos )(1cos )(2)(1 )(1 20 020 00 22 0t td k t f t td k t f tdt k t f T b t td k t f t td k t f tdt k t f T a dt t f T dt t f T a T k T k T T T )(2 这些公式的对导,主要的依据是利用三角函数的定积分的特点。 设m.n 是任意整数,则下列定积分成立: ?=π 200 sin mxdx ? =π 20 cos mxdx ?=π 200cos sin nxdx mx , n m ≠ ?=π 200 sin sin nxdx mx , n m ≠ ? =π 200cos cos nxdx mx , n m ≠ ? =π π 20 2)(sin dx mx ,

那些年傅里叶的故事

目录 1 引言 (1) 1.1傅立叶变换的提出 (1) 1.2傅里叶积分变换的意义 (2) 2傅里叶级数 (2) 2.1周期函数的傅里叶展开 (2) 2.2奇函数及偶函数的傅里叶展开 (3) 2.3复数形式的傅里叶级数 (4) 3傅里叶积分与傅里叶变换 (5) 3.1实数形式的傅里叶变换 (5) 3.2复数形式的傅里叶积分 (6) 3.3傅里叶变换的基本性质 (7)

傅里叶变换及其运用 王霖普(学号20101101949) (物理与电子信息学院物理学专业2010级,内蒙古呼和浩特 010022) 指导老师:孙永萍 摘要:傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦或余弦函数)或者它们的线性组合。在不同的研究领域,傅里叶变换具有不同的形式,它在物理学、声学、光学、信号处理、通讯等领域都有着广泛的应用,本文将由浅入深地讲述傅立叶变换及其基本公式推导 关键词:傅里叶;变换;级数;正余弦;实数形式;复数形式 中图分类号:O551文献标识码: A 1 引言 傅里叶变换非常重要但又不易理解,确实需要一定的耐心,为了使人们更好的利用傅立叶变换并造福于人类,我们有必要掌握最基本的级数变换和傅立叶变换的基础公式 1.1傅立叶变换的提出 法国数学家和物理学家傅立叶Fourier(1768-1830)一直对热传递感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(1736-1813)和拉普拉斯(, 1749-1827)当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸

常用函数傅里叶变换

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1)

式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []? ?? ?? ?-==∑=--n i i i s s c L s F L t f 11 1 )()(= t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---=+ = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→-

相关主题
文本预览
相关文档 最新文档