当前位置:文档之家› 初中数学几何三大难题

初中数学几何三大难题

初中数学几何三大难题
初中数学几何三大难题

几何三大难题

如果不知道远溯古希腊前辈所建立和发展的概念、方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就.

Herm a nn Weyl

§ 1 问题的提出和解决

1.1 数学的心脏

数学是由什么组成的?公理吗?定义吗?定理吗?证明吗吗?公式吗?诚然,没有这些组成部分数学就不存在,它们都数数学的必要组成部分,但是,它们中间的任一个都不是数学的心脏.数学家存在的主要理由就是提出问题和解决问题.因此,数学的真正组成部分是问题和解.两千多年以来,数学就是在解决各种问题中进行的.

那么,什么样的问题是好问题呢?对此希尔伯特有一段精彩的论述:“要想预先正确判断一个问题的价值是困难的,并且常常是不可能的;因为最终的判断取决于科学从该问题获得的收益,虽说如此,我们仍然要问:是否存在一个一般准则,可以借以鉴别好的数学问题,一个老的法国数学家曾经说过:一种数学理论应该这样清晰,使你能向大街上遇到的第一个人解释它.在此以前,这一理论不能认为是完善的.这里对数学理论所坚持的清晰性和易懂性,我想更应该把它作为一个数学问题堪称完善的要求.因为清楚地、易于理解的问题吸引着人们的兴趣,而复杂的问题却使我们望而却步.”

“其次,为了具有吸引力,一个数学问题应该是困难的,但却不能是完全不可解决的,使我们白费力气.在通向哪隐藏的真理的曲折道路上,它应该是指引我们前进的一盏明灯,最终以成功的喜悦作为我们的报偿.”

在数学史上这样的例子是不胜枚举的.本章介绍的几何作图三大问题就是最著名的问题之一.

1.2 希腊古典时期数学发展的路线

希腊前300年的数学沿着三条不同的路线发展着.第一条是总结在欧几里得得《几何原本》中的材料.第二条路线是有关无穷小、极限以及求和过程的各种概念的发展,这些概念一直到近代,微积分诞生后才得以澄清.第三条路线是高等几何的发展,即园和直线以外的曲线以及球和平面以外的曲面的发展.令人惊奇的是,这种高等几何的大部分起源于解几何作图三大问题.

1.3 几何作图三大问题

古希腊人在几何学上提出著名的三大作图问题,它们是:

( 1) 三等分任意角.

( 2) 化园为方:求作一正方形,使其面积等于一已知园的面积.

( 3) 立方倍积:求作一立方体,使其体积是已知立方体体积的两倍.

解决这三大问题的限制是,只许使用没有刻度的直尺和圆规,并在有限次内完成.

1.4问题的来源

这三个问题是如何提出来的呢?由于年代久远,已无文献可查.据说,立方倍积问题起源于两个神话.厄拉多赛(Eratoshenes of Cyrene,约公元前27―约前194)是古希腊著名的科学家、天文学家、数学家和诗人.他是测量过地球周长的第一人.在他的《柏拉图》一书里,记述了一个神话故事.说是鼠疫袭击了爱琴海南部的一个小岛,叫提洛岛.一个预言者说,他得到了神的谕示:须将立方形的阿波罗祭坛体积加倍,瘟疫方能停息.建筑是很为难,

不知道怎样才能使体积加倍.于是去请教哲学家柏拉图.柏拉图说,神的真正意图不在于神坛的加倍,而是想使希腊人因忽视几何学而羞愧.

另一个故事也是厄多拉塞记述的.说古代一位悲剧诗人描述克里特国王米诺斯为他的儿子克劳科斯修坟的事.他嫌坟修造得太小,命令有关人必须把坟的体积加倍,但要保持立方的形状.接着又说,“赶快将每边的长都加倍.”厄拉多塞指出,这是错误的,因为边长加倍,体积就变成原来的8倍.

这两个传说都表明,立方倍积问题起源于建筑的需要.

三等分任意角的问题来自正多边形作图.用直尺和圆规二等分一个角是轻而易举的.由此可以容易地作出正4边形、正8边形,以及正2n次方边形,其中n ≥2是自然数.很自然地,人们会提出三等分一个角的问题.但这却是一个不可能用尺规解决的问题.

圆和正方形都是最基本的几何图形,怎样做一个正方形和一个已知圆有相同的面积呢?这就是化园为方的问题.历史上恐怕没有一个几何问题像这个问题那样强烈地吸引人们的兴趣.早在公元前5世纪,就有很多人研究这个问题了,都想在这个问题上大显身手.

化园为方的问题相当于用直尺和圆规作出√π的值.这个问题的最早研究者是安那克萨哥拉,可惜他的关于化圆为方的问题的研究没有流传下来,以后的研究者有希波克拉茨(Hippocrates of Chios,公元前约460年).他在化圆为方的研究中求出了某些月牙形的面积 .此外.还有安提丰,他提出了一种穷竭法,具有划时代的意义,是近代极限论的先声.

1.5 “规”和“矩”的规矩

在欧几里得几何学中,几何作图的特定工具是直尺和圆规,而且直尺上没有刻度.直尺、在欧几里得几何学中,几何作图的特定工具是直尺和圆规,而且直尺上没有刻度.直尺、圆规的用场是

直尺:(1)已知两点作一直线;(2)无限延长一已知直线.

圆规:已知点O,A,以O为心,以OA为半径作圆.

希腊人强调,几何作图只能用直尺和圆规,其理由是:

(1)希腊几何的基本精神是,从极少数的基本假定——定义、公理、公设——出发,推导出尽可能多的命题.对作图工具也相应地限制到不能再少的程度.

(2)受柏拉图哲学思想的深刻影响.柏拉图特别重视数学在智力训练方面的作用,他主张通过几何学习达到训练逻辑思维的目的,因此对工具必须进行限制,正像体育竞赛对运动器械有限制一样.

(3)毕达哥拉斯学派认为圆是最完美的平面图形,圆和直线是几何学最基本的研究对象,因此规定只使用这两种工具.

1.6问题的解决

用直尺和圆规能不能解决三大问题呢?答案是否定的,三大问题都是几何作图不能解决的.证明三大问题不可解决的工具本质上不是几何的而是代数的,再带舒缓没有发展到一定水平时是不能解决这些问题的.1637年迪卡儿创立了解析几何,沟通了几何学和代数学这两大数学分支,从而为解决尺规作图问题奠定了基础.1837年法国数学家旺策尔(Pierre L.W Antzel )证明了,三等分任意角和立方倍积问题都是几何作图不能解决的问题,化圆为方问题相当于用尺规作出的值.1882年法国数学家林得曼证明了∏是超越数,不是任何整系数代数方程的根,从而证明了化圆为方的不可能性.

但是,正是在研究这些问题的过程中促进了数学的发展.两千多年来.三大几何难题起了许多数学家的兴趣,对它们的深入研究不但给予希腊几何学以巨大影响,而且引出了大量的新发现.例如,许多二次曲线、三次曲线以及几种超越曲线的发现,后来又有关于有理数域、代数数与超越数、群论等的发展在化圆为方的研究中几乎从一开始就促进了穷竭法的发展,二穷竭法正是微积分的先导.

§

2 放弃“规矩”之后

问题的难处在于限制用直尺和圆规.两千多年来,数学家为解决三大问题投入了热大量精力.如果解除这一限制,问题很容易解决.

2. 1 帕普斯的方法

帕普斯(Pappus ,约300―350前后)是希腊亚历山大学派晚期的数学家.他把希腊自古以来各名家的著作编为《数学汇编》,共8卷.其中也包括了他自己的创作.在第4 卷中,他讨论了三等分任意角的问题.下面的方法就是帕普斯的.

设ОА=α,过点А做角α的另一边的垂线АВ.过点А作ОВ的平行线.考虑过点О的一条直线,它交АВ于点С,交平行线于D,并使СD=2a.这时∠СОВ=

1

3

α. 证 如图15-1所示,只要证明了∠AOG=2∠COB,那么∠COB就是

1

3

α. 设G是CD的中点,并作GE⊥AD,从而直线GE与AB并

行.

由CG=GD=a AE=ED,

可知△AGE≌△DGE,从而∠GDA=∠GAD,AG=GD=a.

又∠GDA与∠COB是内错角,所以∠GDA=∠COB.

注意到,△AOG是等腰三角形,于是,

图 15-1 D

G E B

C A O

∠AOG=∠AGO=∠GDA+∠GAD=2∠COB.

这就是说,OD三等分了角α.

这种作法的关键一步是,使СD=2ОА.这只能使用有刻度的直尺才能实现,它违反了欧几里得几何学作图的规则.

具体做法是这样的:在直尺上标出一段线段PQ,其长为2ОА,然后调整直尺的位置,使它过点O,并且P在АВ上,Q在过А的平行线上.这种办法叫“插入原则”.

2. 2 阿基米德的方法

在图15-2上,是任意给定的一个角,其顶点在点.我们的目的是三等分这个角.在该角的一边上取一点,然后以点为心,以为半径做一圆,圆与的延长线交于点C,与角的另一边交于点B.

作图的关键步骤是,使用“插入原则”.在直尺上标出两点L和R,并且使LR=.现在上直尺过点B,且使直尺上的点R在圆弧CB上,然后移动直尺,使R沿圆周运动,直到点L落在OC的延长线上.直线EDB表示这时直尺的位置,即直尺过点B,且DE=.

设.因为是等腰三角形,所以.同时,是的外角,从而

这就证明了是的三分之一.

2. 3 时钟也会三等分任意角

大家知道,时钟面上有时针、分针和秒针,秒针用不到,只看时针和分针.分针走一圈,时针就走一个字.也就是,分针转过角,时针转过角的12分之1,即转过角.注意到12是3的倍数,我们就可以利用时钟三等分一个任意角了.具体作法如下.

图 15-2

B

A

O

C

E D

把要三等分的任意角画在一张透明纸上.

开始时,把时针和分针并在一起,设它们正好

在12的位置上(图15-3).把透明纸铺到钟面

上,使角的顶点落在针的轴心上,角的一边通

过12的位置.然后把分针拨到和角的另一边重

合的位置.这时时针转动了一个角,在透明纸

上把时针的现在位置记下来.我们知道,时针

所走过的∠AOC一定是∠AOB的12分之

1.把∠AOC放大4倍就是∠AOB的3分之

1.

这种解法出现在前苏联别莱利曼的著作

《趣味几何学》中,这是一本很好的科普读物,

它告诉我们如何把几何知识用到实际中去.

2. 4 达芬奇的化圆为方

如何化圆为方的问题曾被欧洲文艺复兴时期的大师达·芬奇用以种巧妙的方法给出解答:取一圆柱,使其底和已知圆相等,高时底面半径r的一半.将圆柱滚动一周,产生一个

矩形,其面积为2πr×r/2

=π.这正好是圆的面积.再将矩形化为正方形,问题就解决

了.

§3从几何到代数

3.1用直尺圆规可以作什么图

用欧几里得的直尺圆规可以完成哪些作图呢?下面的5种基本作图是可以胜任的(图15-4):

(1)用一条直线连接两点.

(2)求两条直线的交点.

(3)以一点为心,定长为半径作一圆

(4)求一个圆与一条直线的交点,或切点.

(5)求两个圆的交点,或切点.

还有,用直尺圆规作图必须在有限次内完成,不允许无限次地作下去.换言之,不允许采取极限手段完成作图.

O

12

1

2

3

4

5

6

7

8

9

10

11

A

B

C

图15-3

图 15-4

根据直尺的基本功能,我们有下面的重要结论:

一个作图题可否用直尺完成,决定于是否能反复使用上面5种基本作图经有限次而完成.

这就是用直尺圆规可能与不可能的基本依据. 具体说来,用尺规作什么图呢? (1) 二等分已知线段. (2) 二等分已知角.

(3) 已知直线L和L外一点P,过P作直线垂直L.

(4) 任意给定自然数n,作已知线段的n倍,n等分已知线段. (5) 已知线段,可做其做法如图15-5所示.接着r

也可做,这里r 是正有理数.这样做:设

都是自然数,因此.先做的p 倍,再做p ,这样就做出来了.

上面各条告诉我们,已知线段的加、减、乘、除能用几何作图来实现.

图 15-5

另一方面,代数学告诉我们,从0,1出发利用四则运算可以构造出全部有理数.

事实上,1+1=2,1+2=3, .因此,我们通过加法可以得到全体自然数.0减去任何一

+b b

1

b b 1

个自然数都得到负整数,因此,借助减法可以得到全体负整数.从整数出发,借助除法,我们可以得到全体有理数.

现在我们知道了,只要给定单位1,我们可以用尺规作出数轴上的全部有理点.几何与代数在这里达到了完全的统一.

(6) 已知线段可作.这一条超出了

有理作图的范围.

如图15-6,OA a =,以OB 为直径作圆.过

A 作O

B 的垂直线交圆周于

C .直角三角形OA C 与直角三角形OBC 有一个公共角∠COB ,由 此可得,∠OCA =∠ABC. 这样一来,我们有, ?OCA ∽?ABC.

设AC =我们有,

3.2域的定义

近代代数是研究运算性质的,它把普通实数满足的运算法则推广到更大的范围中去.本段给出域的定义,为后面研究可构造数域做些准备.

设R 是一个集合,下面的公理对R 中的任何元素,b ,都成立. 公理1 (1); (2); (3)存在唯一得元素,使得; (4)对任意的,都存在惟一的,使得. 公理2 (1); (2)

(3)存在惟一的元素1,使得. (4)对任意的(除外),都存在惟一的,使得 公理3

我们把满足这些公理的集合R 叫做一个域.全体有理数对加法和乘法构成一个域,叫做有理数域.全体实数对加法和乘法构成一个域,叫做实域,全体复数也是一个域,叫复数域.

3.3可构造数域

在下面的讨论中,我们假定最初只给了一个元素,即单位长1.由1出发,我们用直尺和圆规通过有理运算——加、减、乘、除——能做出所有的有理数,这里r 和s 是整数,即做出整个有理数域.进而我们能做出平面上的所有有理点,即两个坐标皆为有理数的点.我们还能做出新的无理数,如,它不属于有理数域.从出发,通过“有理”作图,可以做出所有形如

(15-1) 的数,这里是有理数.同样地,我们可以做出所有形如

的数,这里,b ,是有理数.但这些数总可以写成(15-1)的形式.例如

C

O A B 图 15-6

这里

是有理数,且分母不可能是零(为什么?).同样,

这里是有理数.因此,由的作图,我们产生了全部形如(15-1)的数集,其中,b是任意有理数.由此得

命题1形如(15-1)形成一个域.

这个域比有理数域大.事实上在(15-1)中取就可得到有理数域.有理数域是它的一部分,称为它的子域.但是,它显然小于全体实数数域.

将有理数域记为F,这个构造的数域记为,称它为F的扩域.中的数都可用直尺和圆规做出来.现在我们继续扩充可作数的范围.在中取一个数,如.求它的平方根而得到可作图的数

用它可以得到由所有形如

的数,它们也形成一个域.称为的扩域,记为,现在可以是中的任意数,即,q形如,,b 为有理数.

从出发,我们还可以进一步扩充作图的范围.这种办法一直继续下去.用这种办法得到的数都是可用直尺圆规作出来的.

3.4进一步的讨论

代数研究的对象是数、数偶(即坐标)、一次方程式、二次方程式等.几何研究的对象是点、直线、圆、曲线、等.通过坐标法,几何的对象与代数的对象紧密的联系在一起了.

现在面临一个这样的问题:用直尺圆规作出来的数是不是都在有理数域的诸扩域中呢?会不会超出这个范围呢?下面来回答这一问题.假定我们可用直尺圆规作出某个数域F 中的所有数.

命题2 从数域F出发,只用直尺作不出数域F 以外的数.

证设∈F.过点(),()的直线方程是

它的系数是由F 中的数作成的有理式.

今有两条以F 中的数为系数的直线:

解此联立方程,可得交点坐标

它们都是F中数.这样一来,只用直尺的作图不能使我们超出F的范围.

易见,用圆规可作出F以外的数.只需在F中取一数k,使不在F中.我们能作出,因而可作出所有形如

(15-2)

的数,其中,b在F中.所有形如(15-1)的数形一个域,它是F的扩域.

命题3给定数域F,用圆规和直尺只能作出F扩域中的数.

证首先指出,圆规在作图中所起的作用只是确定一个圆与一条直线的交点或切点,或一个圆与另一个圆的交点或切点.通过解联立方程可以把交点或切点求出来.以(,)为中心,以r为半径的圆的方程是

设,,r.将上式展开得

其中,,在F内.求圆与直线的交点或切点就是解联立方程组

其中,,cF内.从第二个方程解出

代入第一个方程,得到一个二次方程

其中,,.其解为

它们可以化为形式,p,q,k F.易见,是F的扩域.交点的y坐标由(15-3)

给出,明显地,也在扩域中.这就是说,圆和直线的交点的坐标都在扩域中.

接着我们研究两个圆的交点或切点.再带书上就是接二元一次联立方程:

从第一个方程减去第二方程,得

和前面一样,把它与第一个圆的方程联立起来求出,y.它们都不超出F的扩域.

无论是哪一种情形,作图所产生的一个或两个新点的x坐标和y坐标,其量的形式都是

.在特殊情况下,

本身也可以属于F(例如,在有理数域中取k=4,那么仍在有理数域中)图 15-7这样,我们证明了;

(1)如果开始给定域中的F一些量,那么从这些量出发,只用直尺经有限次有理运算可生成域F的任何量,但不能超出域F.

(2)用圆规和直尺能把可作图的量扩充到F的扩域上.这种构造扩域的过程可以不断进行,而得出扩域

最后,我们得到结论:可作图的量是而且仅仅是这一系列扩域中的数.

例 1 说明数

的构造过程.

解 设F 表示有理数域.取

得到域,

,得到,又知,

取,得到

.因为,自然也有

取,得到(

,得到

,进而

这样,域包含我们所要求的数.

3.5 可作图的书都是代数数

如果起始数域是有理数域F ,那么所有可作图的数就都代数数(图15-7).扩域,中的数是以有理数位系数的2次方程的根,扩域中的数是以有理数位系数的4次方程的根,

,一般地,扩域中的数是以有理数位系数的次方程的根. 例2 证明是4次方程的根.

我们有

展开,得到 图

15-7

最后,我们有

这是一个整系数的4次方程

§4几个代数定理

4.1根和系数的关系

只要知道了二次方程的两个根就可将它分解因式:

代数数

超越数 可 代

理 数

作图数

由此不难得出著名的伟达公式:

利用代数基本定理我们可以得到更一般的公式.

代数基本定理设

是一个元n次多项式,它的系数是实数和复数,那么方程

至少有一实数和复数根

有了代数基本定理,我们就可以断言,一元n次多项式在复数域中有n个根,从而它可分解成一次因式的连成积,即

这里为实数或复数,它们都是多项式(15-4)的根.事实上,设式方程的一个根,用()去除,由于除式是一次的,所以余数就是一个常数R,我们有恒等式

式中是一个次多项式.因为是的一个根,所以把代入上式,就得到

于是

这就是说,()能整除此多项式.同样的道理,我们有

n次分解之后,我们得到(15-5)式.

把(15-5)式乘开,并比较系数就得到伟达公式:

当代数方程的次数时,就是我们熟知的二次方程的根与系数的关系,

当时,对三次方程

我们有

这就是三次方程的韦达公式,下面要用到此结果.

定理 1 若整系数的一元n次方程

有有理根(既约分数),则a是的因数,是的因数.

证将有理根代入方程(15-9),得

两边乘以,得

移项,并提出公因数:

记着a与b是互素的,所以a是的因数.同样,用提出公因数b的方法可证明,b是的因数.同样,用提出公因数b的方法可证明,b是的因数.

系设整系数的一元n次方程的首项系数为1,即

若它有理根,则此根一定是整数,且为常数项的因数.

4.2 3次方程的根

考虑有理系数的一元3次方程

只需作变换,就可以把上面的方程化为缺项的3次方程(参考第九章4):

(15-10)

这个方程的系数还是有理数.为简单计,我们考虑缺项的方程(15-10).

设方程(15-10)没有有理数,但有一个可作的数为根,那么将属于某一串扩域中最后的一个域.因为(15-10)没有有理根,所以k>0.于是可以写成

下面的形式:

其中.今指出,

也是方程(15-10)的根.为了证明这一点,只需做些计算.事实上把代入方程(15-10)得

展开、合并同类项,得到

其中,且.这时,若,必有

与假设矛盾.所以一定有,从而也有.

另一方面,把代入(15-10),并做同样的计算.在计算中,只需把换成

,从而得到

由此我们知道,是方程(15-10).这个结论对方程(15-7)也是成立的.总之,我们证明了以下命题.

命题4 若是(15-7)的根,则也是(15-7)的根.

将上面结果应用到两个特殊方程上面去.

例1证明方程

(15-11)

没有有理根.

证有定理1的系知,如果(15-11)有有理根,则此根必是整数,而且是2的因数.直接验证就知道1,2不是方程(15-11)的根.这样一来,方程(15-11)没有有理根.

例2 证明方程

(15-12)

没有有理根

证如果方程(15-12)有有理根,则a是1的因子,b是8的因子.这样一来,方程(15-12)的有理根不外是直接验证知道它们都不是.因此,方

程(15-12),没有有理根.

定理2 如果一个有理系数的3次方程没有有理根,则它没有一个根是由有理数域F出发的可作图的数.

证我们用反证法来证明这个定理.假设是方程(15-7)的一个可作图的根,则将属于某一串扩域中的最后一个域,我们可以假定,k是使得扩域包含3次方程(15-7)的根的最小正整易次方程(15-7)的根的最小正整数.易见,k>0.因此,可以写成下面的形式:

其中.前面已指出,

也是方程(15-7)的根.有韦达定理,方程的第3个根是

这里消失了,所以是中的数,这和k是使得扩域包含3次方程(15-9)的根的最小正整数的假设相矛盾.因此假设是错误的,在这种域中不可能有3次方程(15-7)的根.

推论方程(15-11),(15-12)都没有可作图的数作为它们的根.

§ 5 几何作图三大问题的解

有了上面的准备,我们来解三大几何难题.

5.1 倍积问题

设给定立方体的边长是a.若体积为这立方体的两倍的立方体的边长是x(图15-8),则

y

a

Q

所以本题就是求满足下面方程的:

取,则此方程化为更简单的形式:

如果立方倍积问题可解,则我们一定能用直尺和圆规构造出长度为的线段.但是前面已证这是不可能的.这样一来,立方倍积问题是不可解的.

5.2三等分任意角

我们现在要证明只用直尺和圆规三等分任意一般说来是不可能的.当然,像和

那样的角是可以三等分的.我们要说明的是,对每一个角的三等分都有效的办法是不存在的.为了证明这一点,只要证明有一个角不能三等分就足够了,因为一个合理的一般方法必须适用于每一种情况.因此如果我们能够证明角只用直尺和圆规不能三等分,那就证明了一般方法是不存的.

如果15-9所示,我们从角着手.设,并设线段的长度为1.假定三等分任意角是可能的.如图设∠ROP=θ=,那么,点R的纵坐标一定是有理数或可作图的数.这相当于说是有理数或可作图的数.

我们需要公式

现在,所以

令并代人上式,得到

这正是前面讨论过的方程(15-12).这个方程没有有理根,也没有可作图的根.这说明我们的假定是不对的.这就证明了三等分任意角是不可能的.

我们知道,角可作,因而正六边形可作,若角可三等分,则正18边形可作,从而正9边形也可作.刚才已经证明,角不可三等分,因而正9边形不能只用直尺和圆规作出来.

当然,这个结论是指一般情形而言.若等于某些特殊的值,则作图还是可能的,例

如,当时,而,我们得到方程

它的解是,,其中就是我们所要的解.这就是说角可三等

分,关于它的作图法,读者是熟悉的.

5.3 化园为方

考虑半径为1的单位圆,它的面积为π,现在构

造一个边长为的正方形,它的面积为π(图

15-10),于是由于是一个超越数,所以它不是可作图的数,因此“化园为方”的问题是不可解的.

自然对数的底与都是超越数.证明它们是超越数是困难的,吸引着许多数学家付出巨大的劳动去进行研究.直到1873年埃尔米特才给出了e是超越数的证明.他认为证明π的超越性更困难,而不敢去尝试,他给友人的信中写道:“我不敢去试着证明π的超越性.如果其他人承担这项工作,对于他们的成功没有比我更高兴的人了,但是请相信我,我亲爱的朋友,这决不会不使他们花去一些力气”.九年之后,林德曼在1882年用实质上与埃尔米特相同的方法证明了π的超越性.

初中数学基本几何图形

初中数学基本几何图形 这篇帖子是关于几何基本图形的。每一个几何压轴题,几乎都是由几个基本图形构成的,所以如果能把这些图形 用熟,做几何题应该不成问题。 1、 正方形与等腰直角三角形 正方形 ABCD ,EF 为过正方形点 B 的直线且 AE ⊥EF ,CF ⊥EF ,则有△AEB ≌△BFC 。 将上图进行转换,则该基本图形存在于等腰三角形中,可利用此图证明勾股定理: 1 1 令 AD=BE=a ,DB=CE=b ,AB=BC=c ,S △ABC = 2 c = 2 (a+b ) -ab ;化简得到:c =a +b 2、 梯形中位线 梯形 ABCD 中,AD ∥BC ,E 、F 分别为 AB 、DC 中点,则有 EF= 1 (AD+BC ) 结合 1、2 有一道经典题目,在此奉上。 1 △ABC ,分别以 AB 、AC 为边向外做正方形 ABFG 、ACDE ,连接 FD ,取 FD 中点 H ,作 HI ⊥BC ,证明:HI= BC 2 2 2 2 2 2 2

提示:先证明BC等于梯形上下底边之和 【变形题 1】 如图1,以△A BC的边AB、AC为边向内作正方形ABFG和正方形ACDE,M是DF的中点,N是BC的中点,连接MN.探究线段MN与BC之间的关系,并加以证 明.说明:如果你经过反复探索没有解决问题,可以从下面①、②中选取一种情况完成你的证明,选取①比原题少得6分,选取②比原题少得8分. ①如图2,将正方形ACDE绕点A旋转,使点C、E分别落在AG、AB上; ②如图3,将正方形ACDE绕点A旋转,使点B、A、C在一条直线. 答案: 解:BC⊥MN. 证明:连接CM,然后延长CM至H,使CM=MH,连接FH、BH、CM、BM,HG、CG,延长CD,与BF相交于I, ∵MF=MD,CM=HM,∠CMD=∠HMF,

初中数学经典几何难题及答案39256

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第4 题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F . B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 第1题图 第2题图 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 第3题图 第4题图 F

初中数学组卷角度计算

初中数学组卷角度计算 一.填空题(共30小题) 1.计算:15°37′+42°51′=. 2.35°48′32″+23°41′28″=°. 3.计算:10°25′+39°46′=. 4.计算:18°27′35″+24°37′43″=. 5.计算:32°﹣15°30′=. 6.计算:153°﹣26°40′=. 7.计算:70°25′﹣34°45′=. 8.(1)92°18′﹣60°54′=; (2)22.5°=度分. 9.30.26°=°′″. 10.12.42°=°′″. 11.2.42°=°′″. 12.56°45′=°. 13.56°18′=°. 14.角度换算:26°48′=°. 15.25°12′8″=度. 16.34°30′=°. 17.计算:22°18′×5=. 18.21°17′×5=. 19.计算31°29′35″×4=. 20.计算:45°36′+15°14′=;60°30′﹣45°40′=.21.计算:20°30′+15°24′×3=°′. 22.12°24′=度. 23.①23°30′=°; ②0.5°=′=″; ③3.76°=°′″; ④15°48′36″+37°27′59″=. 24.(1)23°30′=°; (2)0.5°=′=″. 25.7200″=′=°. 26.18.32°=18°′″;216°42′=°. 27.1.25°=′=″;1800″=′=°. 28.78.36°=°′″;50°24′×3+98°12′25″÷5=°.29.45°=平角,周角=度,25°20′24″=度. 30.(1)32.48°=度分秒. (2)72°23′42″=度.

初中数学几何图形综合题(供参考)

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第 4题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延 B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

长线交MN于E、F.求证:∠DEN=∠F. 经典难题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 第1题图第2题图 2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及 D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二) 3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题: 设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)

第3题图 第4题图 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 第1题图 第2题图 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)

初中数学几何压轴题组卷

绝密★启用前 初中数学几何压轴题组卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 题号 一 二 三 总分 得分 注意事项: 1 ?答题前填写好自己的姓名、班级、考号等信息 2 ?请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 ?选择题(共3小题) 1.如图,在凸四边形 ABCD 中,AB 的长为2, P 是边AB 的中点,若/ DAB= / ABC 玄PDC=90,则四边形ABCD 的面积的最小值是 2. 北京奥运会金牌创造性地将白玉圆环嵌在其中(如图) 对获胜者的礼赞,也形象地诠释了中华民族自古以来以 观.若白玉圆环面积与整个金牌面积的比值为 k ,则下列各数与k 最接近 C. D . 2+2 :■: ,这一设计不仅是 玉”比德”的价

的是() 金 金 白圭

A.丄 B.二 C.二 3 2 3 3. 在等边厶ABC所在平面上的直线m满足的条件是:等边△ 点到直线m的距离只取2个值,其中一个值是另一个值的直线m的条数是() A. 16 B. 18 C. 24ABC的3个顶2倍,这样的 D. 27

第U卷(非选择题) 请点击修改第n卷的文字说明 评卷人得分 二?填空题(共6小题) 4. 5个正方形如图摆放在同一直线上,线段BQ经过点E、H、”,记厶RCE △ GEH △ MHN、A PNQ 的面积分别为Si, S2, S3, 9,已知S i+S=17, 贝U S b+Si= _____ . 3DF 7 0 5. 设A o, A i,…,A n-1依次是面积为整数的正n边形的n个顶点,考虑由连 续的若干个顶点连成的凸多边形,如四边形A3A4A5A6、七边形A n -2A n- 1A0A1A2A3A4等,如果所有这样的凸多边形的面积之和是231,那么n的最大值是_________ ,此时正n边形的面积是_______ . 6. 已知Rt A ABC和Rt A A C'电,AC=A , D=1/ B=Z D=90°° / C+Z C =60 BC=2则这两个三角形的面积和为________ . 7. 设a, b, c为锐角△ ABC的三边长,为h a, h b, h c对应边上的高,贝U U=_ ] r的取值范围是_____________ . a+b+c 8. 如图已知四边形ABCD的对角线AC与BD相交于O,若&AOB=4,&COC=9, 则四边形ABCD的面积的最小值为______ . 9. 四边形ABCD的四边长为AB=、,BC=「「- ? | , CD= J-」—「 DA= 「,一条对角线BD=L 厂,其中m, n为常数,且0v m v 7, 0v n v 5,那么四边形的面积为__________ .

初中数学几何基本图形

432 1F E D C B A 432 1F E D C B A F E D C B A H G F E D C B A c b a C B A D C B A F E D C B A C B A 初中数学几何基本图形 1. 平行线的性质: ∵A B ∥CD (已知) ∴∠1=∠2(两直线平行,同位角相等。) ∴∠1=∠3(两直线平行,内错角相等。) ∴∠1+∠4=180° (两直线平行,同旁内角互补。) 2. 平行线的判定: (1)∵∠1=∠2(已知) ∴A B ∥CD (同位角相等,两直线平行。) (2)∵∠1=∠3(已知) ∴A B ∥CD (内错角相等,两直线平行。) (3)∵∠1+∠4=180o (已知) ∴A B ∥CD (同旁内角互补,两直线平行。) 3. 平行线的传递性: ∵A B ∥CD ,A B ∥EF (已知) ∴C D ∥EF (如果两条直线都与第三条直线平行, 那么这两条直线也互相平行。) 4. 两条平行线间距离: ∵A B ∥CD ,EF ⊥CD ,GH ⊥CD (已知) ∴EF=GH (平行线间距离处处相等。) 5. 三角形的性质: (1)∠A+∠B+∠C=180o (三角形内角之和为180o 。) (2)a+b >c ,∣a-b ∣<c (三角形任意两边之和大于第三边, 三角形任意两边之差小于第三边。) (3)∠ACD=∠A+∠B (三角形一个 外角等于与它不相邻的两个外角之和。) 6.三角形中重要线段: (1)∵AD 是△ABC 边BC 上的高(已知) ∴AD ⊥BC 即∠ADC=900(三角形高的意义) (2)∵BF 是△ABC 边AC 上的中线(已知) ∴AF=FC=12 AC (AC=2AF=2FC )(三角形中线的意义) (3)∵CE 是△ABC 的∠ACB 的角平分线(已知) ∴∠ACE=∠BCE= 1 2 ∠ACB (∠ACB=2∠ACE=2∠BCE )(三角形角平分线的意义) 6. 等腰三角形的性质和判定: (1)∵AB=AC (已知)∴∠B=∠C (等边对等角) (2)∵∠B=∠C (已知)∴AB=AC (等角对等边)

初中数学几何经典模型

初中数学几何模型 中点模型 【模型1】倍长 1、倍长中线;2、倍长类中线;3、中点遇平行延长相交 E D A B C F D A B C E 【模型2】遇多个中点,构造中位线 1、直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗写出你的猜想,并给予证明. 图3 图2 图1 G F D C G F D C G F D C A B E E B A E B A 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF 于H.求证:∠BGE=∠CHE. H G E F A B D C

E A B C O D E A B C O D B O A C 角平分线模型 【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为. H G F E A D B C 手拉手模型 【条件】OA OB OC OD AOB COD ==∠=∠ ,, 【结论】OAC OBD ?;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠ 平分; - 【例5】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为. 【例6】如图,ABC中,90 BAC? ∠=,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE,AG⊥BE 于F,交BC于点G,求DFG ∠ G F D C B A E

初中数学组卷可直接打印

初中数学组卷 一.选择题(共15小题) 1.下列各数,3.14159265,,﹣8,,,中,无理数有()A.2个B.3个C.4个D.5个 2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是() A.B. C.D. 3.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是如图中的() A.B. C.D. 4.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()

A.2B.﹣4C.﹣1D.3 5.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11 6.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为() A.B.1C.D. 7.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21B.15C.6D.21或9 8.下列图形中,表示一次函数y=ax+b与正比例函数y=(a,b为常数,且ab≠0)的图象的是() A.B. C.D. 9.如图,数轴上点A表示的数为a,化简:a+的值是()

A.2a﹣2B.2C.2﹣2a D.2a 10.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=() A.﹣1B.1C.5D.﹣5 11.小明同学解方程组时的解为,由于不小心滴上了两滴墨水,刚好遮住了“?”和“*”处的两个数,则“●”,“*”分别代表的数是() A.﹣2,1B.﹣2,﹣1C.2,1D.2,﹣1 12.在如图所示的象棋盘上,建立适当的平面直角坐标系,使“炮”位于点(﹣3,2)上,“相”位于点(2,﹣1)上,则“帅“位于点() A.(0,0)B.(﹣1,1)C.(1,﹣1)D.(﹣2,2)13.已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是() A.∠A:∠B:∠C=3:4:5B.a:b:c=1::2 C.∠C=∠A﹣∠B D.b2=a2﹣c2 14.已知正比例函数的图象经过点(﹣2,6),则该函数图象还经过的点是()A.(2,﹣6)B.(2,6)C.(6,﹣2)D.(﹣6,2)15.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是() A.y=﹣2x+24(0<x<12)B.y=﹣x+12(0<x<24) C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)

初中数学平面几何图形

第四课时几何图形初步 LYX 1、几何图形 ①几何图形:我们把从实物中抽象出的各种图形统称为几何图形。 ②平面图形:几何图形(如线段、角、三角形、长方形等)的各部分都在同一平面内。 常见平面图形: ③立体图形:有些几何图形的各部分不都在同一平内,这样的几何图形叫做立体图形。 ⑴常见立体图形:⑵常见立体图形的归类: ★画立体图形时,看得见的棱线画成实线,看不见的棱线画成虚线。 ④展开图:有些立体图形是由平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 例1、圆锥由_______面组成,其中一个是_______面 ,另一个是_______面. 例2、如图所示,一个三边相等的三角形,三边的中点用虚线连接,如果将三角形沿虚线 向上折叠,得到的立体图形是(). (A)三棱柱(B)三棱锥(C)正方体(D)圆锥 例3、分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()

例4、下列各图形,都是柱体的是() 例5、下列四个图形中,经过折叠能围成如图所示的几何图形的是() 2、点、线、面、体 ①点动成线,分为直线和曲线; ②线动成面线运动生成的有平面、曲面; ③面运动成体;(直角三角板绕它的一边旋转,形成了什么图形?长方形绕着它的一边旋转,形成了什么图形?) 总结: ⑴几何图形是由点、线、面、体组成。点是构成图形的基本元素。 ⑵点无大小,线有直线和曲线,面有平的面和曲的面。 ⑶点动成线,线动成面,面动成体。 ⑷体由面围成,面与面相交成线,线与线相交成点。 3、直线、射线、线段 ①两点确定一条直线:经过两点有一条直线,并且只有一条直线。 ⑴因为两点确定一条直线,所以除了用一个小写字母表示直线(直线)外,还经常用一条直线上的两点来表示这个直线; ⑵一个点在直线上,也可以说这条直线经过这个点;一个点在直线外,也可以说直线不经过这个点; ⑶当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 ②线段的表示方法 ③射线的表示方法 ★用数学符号表示直线、线段、射线?

2020年05月12日数学的初中数学组卷

2020年05月12日数学的初中数学组卷 一.选择题(共1小题) 1.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(1,0),顶点B、C在第一象限,顶点D在y轴的正半轴上,∠BAD=60°,将菱形ABCD沿AB翻折得到菱形ABC′D′,点D′恰好落在x轴上,若函数y=(x>0)的图象经过点C′,则k的值为() A.B.2C.3D.4 二.填空题(共1小题) 2.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P 从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为. 三.解答题(共7小题) 3.如图1,在矩形ABCD中,AB=6,AD=8,E、F分别为AB、AD边的中点,四边形AEGF 为矩形,连接CG. (1)如图1,请直接写出=;如图2,当矩形AEGF绕点A顺时针旋转至点G落在AB上时,=; (2)当矩形AEGF绕点A旋转至图3的位置时,图2中DF与CG之间的数量关系是否还成立?说明理由. (3)如图4,在?ABCD中,∠B=60°,AB=6,AD=8,E、F分别为AB、AD边的中点,四边形AEGF为平行四边形,连接CG,当?AEGF绕点A顺时针旋转60°时(如图5),请直接写出CG的长度.

4.如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E. (1)求证:BC=BC′; (2)若AB=2,BC=1,求AE的长. 5.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点D的坐标为(4,3). (1)求k的值. (2)若将菱形ABCD向右平移,使点D落在反比例函数y=(x>0)的图象上,求菱形ABCD平移的距离. (3)怎样平移可以使点B、D同时落在第一象限的曲线上? 6.如图1,在平面直角坐标系xOy中,点F(2,2),过函数y=(x>0,常数k>0)图象上一点A(,a)作y轴的平行线交直线l:y=﹣x+2于点C,且AC=AF.

初中数学几何经典难题精选

初三数学总复习辅导学习资料(6)——几何经典难题 1.已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF . 2.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 .求证:△PBC 是正三角形. 3.如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、 C 2、 D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2 C 2 D 2是正方形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 5.已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600 ,求证:AH =AO . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

F 6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及 CD 分别交MN 于P 、Q .求证:AP =AQ . 7.如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作 两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ . 8.如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 9.如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于 10.如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF . E

2018年04月初中数学应用题难题组卷

2018年04月初中数学应用题难题组卷 一.填空题(共2小题) 1.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn= . 2.心理学家研究发现:一般情形下,在一节40分钟的课中,学生的注意力随教师讲课的时间变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持为理想的稳定状态,随后学生的汪意力开始分散.经过实验分析,知学生的注意力指数y随时间x(分钟)的 变化规律为:y= 有一道数学竞赛题需要讲解16.5分钟,为了使效果更好,要求学生的注意力指数最低值达到最大.那么,教师经过适当安排,应在上课的第分钟开始讲解这道题. 二.解答题(共13小题) 3.重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:

z(元/m2)5 5 2 5 4 5 6 5 8 … x(年)12345… (1)求出z与x的函数关系式; (2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元; (3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值. (参考数据:,,) 4.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值; (2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t 的函数关系为;y与t的函数关系如图所示. ①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式; ②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出 最大值.(利润=销售总额﹣总成本)

新初中数学几何图形初步技巧及练习题

新初中数学几何图形初步技巧及练习题 一、选择题 1.如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ?的面积是( ) A .25米 B .84米 C .42米 D .21米 【答案】C 【解析】 【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可. 【详解】 连接OA ∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD = ∴点O 到AB 、AC 、BC 的距离为4 ∴ABC AOC OBC ABO S S S S =++△△△△ ()142 AB BC AC =??++ 14212 =?? 42=(米) 故答案为:C . 【点睛】 本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.

2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】 【分析】 【详解】 解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A. 【点睛】 本题考查余角、补角的计算. 3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是() A.B.C. D. 【答案】D 【解析】 解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D. 首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可. 4.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是

初中数学圆的专题训练

圆的专题训练初中数学组卷 一.选择题(共15小题) 1.如图,⊙O的半径为4,△ABC是⊙O的接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为() A.3 B.4 C.5 D.6 2.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O 到弦CD的距离为() A.cm B.3cm C.3cm D.6cm 3.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为() A.B.πC.2πD.4π 4.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为() A.20° B.40° C.50° D.70° 5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan ∠OBC为()

A.B.2 C.D. 6.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=() A.2πB.π C.π D.π 7.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是() A.15° B.25° C.30° D.75° 8.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=() A.100°B.72° C.64° D.36° 9.如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P的坐标是()

A.(5,3)B.(5,4)C.(3,5)D.(4,5) 10.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是() A.B.1﹣C.﹣1 D.1﹣ 11.如图,△ABC接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于() A.B.C.D. 12.如图所示,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,阴影部分的面 积为() A.B.C.D. 13.如图,某工件形状如图所示,等腰Rt△ABC中斜边AB=4,点O是AB的中点,以O为圆心的圆分别与两腰相切于点D、E,则图中阴影部分的面积是() A.B.C.D.2﹣π 14.若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是() A.3:2 B.3:1 C.5:3 D.2:1

初中数学几何图形初步技巧及练习题

初中数学几何图形初步技巧及练习题 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是() A.主视图B.俯视图C.左视图D.一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C. 2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是 A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小,

∵点A 、B 的坐标分别为(1,4)和(3,0), ∴B ′点坐标为:(-3,0),则OB′=3 过点A 作AE 垂直x 轴,则AE=4,OE=1 则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE , ∵C ′O ∥AE , ∴∠B ′C ′O=∠B ′AE , ∴∠B ′C ′O=∠EB ′A ∴B ′O=C ′O=3, ∴点C ′的坐标是(0,3),此时△ABC 的周长最小. 故选D . 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴

初中数学几何图形初步真题汇编附答案

初中数学几何图形初步真题汇编附答案 一、选择题 1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是() A.∠ABE=2∠CDE B.∠ABE=3∠CDE C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180° 【答案】A 【解析】 【分析】 延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】 解:延长BF与CD相交于M, ∵BF∥DE, ∴∠M=∠CDE, ∵AB∥CD, ∴∠M=∠ABF, ∴∠CDE=∠ABF, ∵BF平分∠ABE, ∴∠ABE=2∠ABF, ∴∠ABE=2∠CDE. 故选:A. 【点睛】 本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点. 2.下列图形经过折叠不能围成棱柱的是().

A.B.C.D. 【答案】B 【解析】 试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成. 考点:棱柱的侧面展开图. 3.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是 A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小, ∵点A、B的坐标分别为(1,4)和(3,0), ∴B′点坐标为:(-3,0),则OB′=3 过点A作AE垂直x轴,则AE=4,OE=1 则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE, ∵C′O∥AE, ∴∠B′C′O=∠B′AE, ∴∠B′C′O=∠EB′A ∴B′O=C′O=3, ∴点C′的坐标是(0,3),此时△ABC的周长最小. 故选D.

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正 方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC , M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . D 2 C 2 B 2 A 2 D 1 C 1 B 1 C D A A 1 A N F E C D M B

经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初 二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) · A D H E M C B O · G A O D B E C Q P N M

C G D E 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边, 在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. · O Q P B D E C N M · A

初中数学几何基本图形+初中数学图形与几何

初中数学几何基本图形初中数学图形与几何导读:就爱阅读网友为您分享以下“初中数学图形与几何”资讯,希望对您有所帮助,感谢您对https://www.doczj.com/doc/d29352532.html,的支持! 课程简介 初中数学图形与几何 【课程简介】 本模块主要研讨数学课程标准修订稿中“初中数学空间与图形”部分的内容要求,目的是通过研讨,使教师们明确本模块内容的具体要求,并提出教学实施过程中的一些建议。总体分为六个部分: 1. 图形与几何内容结构分析——主要探讨图形与几何部分的整体结构框架和三条主要线索; 2. 图形的性质内容与教学分析——主要探讨图形的性质部分的内容要求、与实验稿的变化以及教学实施中注意的问 1 题; 3. 图形的变化内容与教学分析——主要探讨图形的变化部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 4. 图形与坐标内容与教学分析——主要探讨图形与坐标部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 5. 空间观念与几何直观——主要探讨核心概念空间观念与几何直观的含义,以及在图形与几何的教学中如何培养学生的空间观念与几何直观能力; 6. 推理能力——主要探讨核心概念推理能力的含义,以及在图形与几何的教学中如何培养学生的推理能力。

课程既有理论指导,又有大量的教学实例,同时还有主讲教师间的相互交流,给教师们提供了较为广阔的思考空间。 【学习要求】 1(对“初中数学空间与图形”模块的内容结构和主线有清楚 2 的认识,能够说出这些线索之间的区别与联系; 2(了解图形的性质部分的研究的图形有哪些,认识图形的哪些方面,以及在这部分中是如何认识这些图形的; 3(体会图形的变化是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 4(体会图形与坐标是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 5(能够结合自己的教学实践,举出相应的实例,说明图形的性质、图形的变化和图形与坐标的教学经验和方法; 6(理解核心概念——空间观念、几何直观和推理能力的具体含义,体会它们与知识技能的区别和联系,能够借助具体实例说出培养学生上述能力的途径和方法。 专题讲座 初中数学图形与几何 刘晓玫(首师大数学,教授) 史炳星(北京教育学院,副教授 ) 章巍(河北保定三中分校,高级教师 ) 3 一、图形与几何内容结构分析

(完整版)初中数学三角形证明题经典题型训练汇总

专业技术资料整理 2015年05月03日初中数学三角形证明组卷 一.选择题(共20小题) 1.(2015?涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是() A .13 B . 10 C . 12 D . 5 2.(2015?淄博模拟)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD 的角平分线,则图中的等腰三角形有() A .5个B . 4个C . 3个D . 2个 3.(2014秋?西城区校级期中)如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则 S△ABD:S△ACD=() A .4:3 B . 3:4 C . 16:9 D . 9:16 4.(2014?丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()

A .70°B . 80°C . 40°D . 30° 5.(2014?南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为() A .30°B . 36°C . 40°D . 45° 6.(2014?山西模拟)如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD 等于() A .145°B . 110°C . 70°D . 35° 7.(2014?雁塔区校级模拟)如图,在△ABC中,∠ACB=90°,BA的垂直平分线交BC边于D,若AB=10,AC=5,则图中等于60°的角的个数是() A .2 B . 3 C . 4 D . 5 8.(2014秋?腾冲县校级期末)如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD 的周长的差是()

相关主题
文本预览
相关文档 最新文档