当前位置:文档之家› 固体物理复习提纲2015

固体物理复习提纲2015

固体物理复习提纲2015
固体物理复习提纲2015

固体物理复习提纲

第一章

?固体可分为晶体、非晶体、准晶体

(1)晶态,非晶态,准晶态在原子排列上各有什么特点?

答:晶体就是原子排列上长程有序)、非晶体(微米量级内不具有长程有序)、准晶体(有长程取向性,而没有长程的平移对称性)

?晶体分为单晶与多晶,晶体的性质①②③课本p3或者ppt

$1、1晶体结构的周期性

?晶体结构周期性,晶体:基元+布拉维格子

(2)实际的晶体结构与空间点阵之间有何关系?

答:晶体结构=空间点阵+基元。

(3)原胞与晶胞的区别?

答:原胞就是晶体的最小重复单元,它反映的就是晶格的周期性,原胞的选取不就是唯一的,但就是它们的体积都就是相等的,结点在原胞的顶角上,原胞只包含1个格点;为了同时反映晶体的对称性,结晶学上所取的重复单元,体积不一定最小,结点不仅可以在顶角上,还可以在体心或者面心上,这种重复单元称为晶胞。

?晶体可以分为7大晶系,14种布拉维格子

要求掌握立方晶系3个布拉维格子的原胞、晶胞基矢写法、

(4)如作业1、7证明体心立方格子与面心立方格子互为倒格子

?复式格子与单式格子

$1、2 常见的实际晶体结构

?要求掌握氯化钠结构,氯化铯结构、金刚石结构、闪锌矿结构的结构特点,基元组成,构成的布拉维格子,原胞包含1个格点,?个原子。

(5)试简要说明CsCl晶体所属的晶系、布喇菲格子类型与结合键的类型。

答:CsCl晶体属于立方晶系,布拉维格子为简单立方,所以离子晶体,结合类型为离子键。

(6)说明半导体硅单晶的晶体结构、布拉菲格子、所属晶系;每个原胞中硅原子数,如

果晶格常数为a,求原胞的体积;

答:半导体硅单晶的晶体结构为金刚石结构、面心立方,立方晶系、原子数为2个,

如果晶格常数为a,正格子初基原胞的体积为1/4a 3。

$1、3 晶体结构的对称性

? 四种基本对称操作:转动、中心反演、平面反映、平移操作

? 晶体的宏观对称性

(7)什么就是晶体的对称性?晶体的基本宏观对称要素有哪些?

答:晶体的对称性指晶体的结构及性质在不同方向上有规律重复的现象。描述晶体宏观对称性的基本对称要素有8个,1、2、3、4、6、对称心i 、对称面m 与4次反轴。(P 课本15)

$1、4 密堆积 配位数

晶体具有可能的配位数为12(立方密堆积,六角密堆积),8(氯化铯结构),6(氯化钠结构),4(金刚石结构),3(石墨、层状结构)2(链状结构)

$1、5 晶向,晶面及其标志

给出晶向指数,画晶向,晶面,见ppt

(8)

数画出晶面。请在下面两个立方体中画出立方晶系的(021)与(011)晶面.

$1、6 倒格子 布里渊区

? 倒格子与正格子关系,如何互为计算

(9)分别指出简单立方、体心立方与面心立方晶体倒格点阵的结构类型。

答:简单立方的倒格点阵就是简单立方,体心立方的倒格点阵就是面心立方,

面心立方的倒格点阵就是体心立方。 O a b c O a b c

$1、7 晶体的X 射线衍射

(10) 在晶体衍射中,为什么不能用可见光?

答;晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于

1010-米、 但可见光的波长为7、

6?4.0

米, 就是晶体中原子间距的1000倍、 因此, 在晶体衍射中,不能用可见光、

第二章 晶体的结合

(11)结合能, 晶体的内能, 原子间的相互作用势能有何区别?

答:自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量称为晶体的结合能;原子的动能与原子间的相互作用势能之与为晶体的内能;在0K 时,原子还存在零点振动能,但它与原子间的相互作用势能的绝对值相比小很多,所以,在0K 时原子间的相互作用势能的绝对值近似等于晶体的结合能。

(12)原子结合力的类型有哪些?

答:按照晶体结合力的不同,晶体可以分为:

离子晶体:正负离子之间的静电库仑力.

原子晶体:原子之间的共价键能.

金属晶体:原子实与电子云之间的静电库仑力.

分子晶体:极性分子之间的作用力就是偶极距之间的作用力,非极性分子之间

的作用力为瞬时偶极距.也可以说成范德斯力.

氢键晶体:氢原子的电子参与形成共价键后,裸露的氢核与另一负电性较大的

原子通过静电作用相互结合

(13) 已知某晶体中相距为r 的相邻原子的相互作用势能可表示

为:n m r B r A r U +-

=)(,其中A 、B 、m>n 都就是>0的常数,求:

(1)说明哪一项表示吸引作用,哪一项表示排斥作用

(2)两原子间的距离;

(3)平衡时结合能;

解:(1)()m

r A r -

=吸引U ,、。。 (2)

代入原式,得到的即就是结合能 7 10 - ?

固体物理精彩试题库(大全)

一、名词解释 1.晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。 2.非晶态--非晶态固体材料中的原子不是长程有序地排列,但在几个原子的围保持着有序性,或称为短程有序。 3.准晶--准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。 4.单晶--整块晶体原子排列的规律完全一致的晶体称为单晶体。 5.多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。 6.理想晶体(完整晶体)--在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。 7.空间点阵(布喇菲点阵)--晶体的部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。 8.节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。 9.点阵常数(晶格常数)--惯用元胞棱边的长度。 10.晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。 11.配位数—晶体中和某一原子相邻的原子数。 12.致密度—晶胞原子所占的体积和晶胞体积之比。 13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能) 14.肖特基缺陷—晶体格点原子扩散到表面,体留下空位。 15.费仑克尔缺陷--晶体格点原子扩散到间隙位置,形成空位-填隙原子对。 16.色心--晶体能够吸收可见光的点缺陷。 17.F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。 18.V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。 19.近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。 20.Einsten模型--在晶格振动中,假设所有原子独立地以相同频率E振动。 21.Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且=vq 。 22.德拜频率D──Debye模型中g()的最高频率。 23.爱因斯坦频率E──Einsten模型中g()的最可几频率。 24.电子密度分布--温度T时,能量E附近单位能量间隔的电子数。 25.接触电势差--任意两种不同的物质A、B接触时产生电荷转移,并分别在A和B上产生电势V A、V B,这种电势称为接触电势,其差称为接触电势差。 25.BLoch电子费米气--把质量视为有效质量 m,除碰撞外相互间无互作用,遵守费米分布的

固体物理复习_简述题

《固体物理》基本概念和知识点 第一章基本概念和知识点 1) 什么是晶体、非晶体和多晶?() 晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。 2) 什么是原胞和晶胞?() 原胞是一个晶格最小的周期性单元,在有些情况下不能反应晶格的对称性; 为了反应晶格的对称性,选取的较大的周期单元,称为晶胞。 3) 晶体共有几种晶系和布拉伐格子?() 按结构划分,晶体可分为7大晶系, 共14布拉伐格子。 4) 立方晶系有几种布拉伐格子?画出相应的格子。() 立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。 5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。() 简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。碱金属具有体心立方晶格结构;Au、Ag和Cu具有面心立方晶格结构,它们均为简单晶格 复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格,复式格子由它们的子晶格相套而成。 一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是相同原子但几何位置不等价的原子构成的晶体,如:具有金刚石结构的C、Si、Ge等 6) 钛酸钡是由几个何种简单晶格穿套形成的?() BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。三组氧(OI,OII,3 OIII)周围的情况各不相同,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方结构子晶格(共5个)套构而成的。 7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?() 金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。金刚石结构由两套完全等价的面心立方格子穿套构成。金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。

固体物理试题库

一、名词解释 1、晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。 2、非晶态--非晶态固体材料中的原子不就是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。 3、准晶--准晶态就是介于晶态与非晶态之间的固体材料,其特点就是原子有序排列,但不具有平移周期性。 4、单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。 5、多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。 6、理想晶体(完整晶体)--内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。 7、空间点阵(布喇菲点阵)--晶体的内部结构可以概括为就是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。 8、节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。 9、点阵常数(晶格常数)--惯用元胞棱边的长度。 10、晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。 11、配位数—晶体中与某一原子相邻的原子数。 12、致密度—晶胞内原子所占的体积与晶胞体积之比。 13、原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲与能) 14、肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。 15、费仑克尔缺陷--晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。 16、色心--晶体内能够吸收可见光的点缺陷。 17、F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。 18、V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。 19、近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。 20、Einsten模型--在晶格振动中,假设所有原子独立地以相同频率ωE振动。 21、Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq 。 22、德拜频率ωD──Debye模型中g(ω)的最高频率。 23、爱因斯坦频率ωE──Einsten模型中g(ω)的最可几频率。 24、电子密度分布--温度T时,能量E附近单位能量间隔的电子数。 25、接触电势差--任意两种不同的物质A、B接触时产生电荷转移,并分别在A与B上产生电势V A、V B,这种电势称为接触电势,其差称为接触电势差。 25、BLoch电子费米气--把质量视为有效质量→ m,除碰撞外相互间无互作用,遵守费米分布的 Bloch电子的集合称为BLoch电子费米气。 26、惯用元胞(单胞):既能反映晶格周期性,又能反映其对称性的结构单元。 27、简谐近似:晶体中粒子相互作用势能泰勒展开式中只取到二阶项的近似。 28、杜隆-伯替定律:高温下固体比热为常数。 29、晶体的对称性:经过某种对称操作后晶体能自身重合的性质。 30、格波的态密度函数(振动模式密度):在ω附近单位频率间隔内的格波总数。 31、晶体结合能:原子在结合成晶体过程中所释放出来的能量。 32、倒格矢:

材料科学基础知识点

材料科学基础 第零章材料概论 该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。 主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。 材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。 按基本组成分为:金属、陶瓷、高分子、复合材料 金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、

Cu、Ni等。原子之间的键合方式是金属键。陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。它可以是晶体、非晶体或混合晶体。原子之间的键合方式是离子键,共价键。 聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。它主要是非晶体或晶体与非晶体的混合物。原子的键合方式通常是共价键。 复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。其原子间的键合方式是混合键。 材料选择: 密度 弹性模量:材料抵抗变形的能力 强度:是指零件承受载荷后抵抗发生破坏的能力。 韧性:表征材料阻止裂纹扩展的能力功能成本

结构(Structure) 性质(Properties) 加工(Processing) 使用性能(Performance) 在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。 宏观结构←显微镜下的结构←晶体结构←原子、电子结构 重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。 第一章材料结构的基本知识 1.引言 材料的组成不同,性质就不同。 同种材料因制备方法不同,其性能也不同。这是与材料的内部结构有关:原子结构、原子键合、原子排列、显微组织。 原子结构 主量子数n

固体物理题库

一、填空题 第一章 1、某些晶体的物理性质具有各向异性:原因在于晶体中原子排列 (在不同方向上具有不同的周期性) 2.按结构划分,晶体可分为大晶系, 共布喇菲格子? 3、面心立方原胞的体积为;第一布里渊区的体积为。 4、简单立方原胞的体积为;第一布里渊区的体积为。 5.体心立方原胞的体积为;第一布里渊区的体积为。 6、对于立方晶系,有、和三种布喇菲格子。 7、金刚石晶体是格子,由两个的子晶格沿空间对角线位移 1/4 的长度套构而成,晶胞中有个碳原子。 8.原胞是的晶格重复单元。对于布喇菲格子,原胞只包含个原子。 9、晶面有规则、对称配置的固体,具有长程有序特点的固体称为;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为。 10. 由完全相同的一种原子构成的格子,格子中只有一个原子,称为布喇菲格子。满足关系的b1,b2,b3为基矢,由G h=h1b1+ h2b2+ h3b3构成的格子,称为。由若干个布喇菲格子相套而成的格子,叫做,其原胞中有以上的原子。 11、CsCl晶体是格子,由两个的子晶格沿空间对角线位移 1/2 的长度套构而成。 12、对晶格常数为a的SC晶体,与正格矢R=a i+2a j+2a k正交的倒格子晶面族的 2 面指数为 , 其面间距为。122, a3 13、晶体有确定的熔点,晶体熔化热实际是能量(破坏晶体结构的或者说晶体由晶态转化为非晶态的)

14、一个面心立方晶格单元(晶胞)包含有个面心原子和个顶点原子,其原胞拥有个原子 (3,1,1) 15、晶胞是能够反映晶体的结构单元,在固体物理学中重要的是理解晶胞结构 (晶格的对称性和周期性) 16、根据晶胞对称性,晶体分为晶系;根据晶格特点,晶格分为Bravais格子 (7种,14种) 18、晶格分为简单晶格和复式晶格, NaCI是复式晶格,CsCI是复式晶格 (面心立方,简立方) 19、晶格常数大小为晶胞的边长,利用实验可以测量出的晶格常数(X射线衍射) 20、常用的X射线衍射方法主要有、和转动单晶法 (劳厄法、粉末法) 21、单晶具有规则的几何外形,是的结果和宏观体现 (晶体中原子排列具有周期性) 22、按照原子排列特征,固体分为:、和准晶体 (晶体和非晶体) 23、晶体分为单晶和多晶,单晶是长程有序,具有规则的和物理性质(几何外形、各向异性) 24、金属晶体是典型的多晶,构成多晶的单晶晶粒大小为 m (10-6~10-5) 25、晶体结构的基本特征是原子排列的周期性,原胞是能够反映的最小单元,一个原胞拥有一个原子 (晶格周期性) 26、一个体心立方晶格单元(晶胞)包含有个顶点原子和个体心原子,其原胞拥有个原子

中国科学院大学考研《固体物理》考试大纲知识分享

中国科学院大学考研《固体物理》考试大 纲

中国科学院大学考研《固体物理》考试大纲 本《固体物理》考试大纲适用于中国科学院凝聚态物理及相关专业的硕士研究生入学考试。固体物理学是研究固体的微观结构、物理性质,以及构成物质的各种粒子的运动规律的学科,是凝聚态物理的最大分支。本科目的考试内容包括晶体结构、晶格振动、能带理论和金属电子论等。要求考生深入理解其基本概念,有清楚的物理图象,熟练掌握基本的物理方法,并具有综合运用所学知识分析问题和解决问题的能力。 一、考试形式 (一)闭卷,笔试,考试时间180分钟,试卷总分150分 (二)试卷结构 第一部分:简答题,共50分 第二部分:计算题、证明题,共100分 二、考试内容 (一)晶体结构 1、单晶、准晶和非晶的结构上的差别 2、晶体中原子的排列特点、晶面、晶列、对称性 3、简单的晶体结构,二维和三维晶格的分类 4、倒易点阵和布里渊区 5、 X射线衍射条件、基元的几何结构因子及原子形状因子 (二) 固体的结合 1、固体结合的基本形式

2、共价晶体,金属晶体,分子晶体与离子晶体,范德瓦尔斯结合,氢键,马德隆常数 (三) 晶体中的缺陷和扩散 1、晶体缺陷:线缺陷、面缺陷、点缺陷 2、扩散及微观机理 3、位错的物理特性 4、离子晶体中的点缺陷和离子性导电 (四) 晶格振动与晶体的热学性质 1、一维链的振动:单原子链、双原子链、声学支、光学支、色散关系 2、格波、简正坐标、声子、声子振动态密度、长波近似 3、固体热容:爱因斯坦模型、德拜模型 4、非简谐效应:热膨胀、热传导 5、中子的非弹性散射测声子能谱 (五) 能带理论 1、布洛赫定理 2、近自由电子模型 3、紧束缚近似 4、费密面、能态密度和能带的特点 5、表面电子态 (六) 晶体中电子在电场和磁场中的运动 1、恒定电场作用下电子的运动 2、用能带论解释金属、半导体和绝缘体,以及空穴的概念

最新尼尔曼第三版半导体物理与器件小结+重要术语解释+知识点+复习题

尼尔曼第三版半导体物理与器件小结+重要术语解释+知识点+复 习题

第一章固体晶体结构 (3) 小结 (3) 重要术语解释 (3) 知识点 (3) 复习题 (3) 第二章量子力学初步 (4) 小结 (4) 重要术语解释 (4) 第三章固体量子理论初步 (4) 小结 (4) 重要术语解释 (4) 知识点 (5) 复习题 (5) 第四章平衡半导体 (6) 小结 (6) 重要术语解释 (6) 知识点 (6) 复习题 (7) 第五章载流子运输现象 (7) 小结 (7) 重要术语解释 (8) 知识点 (8) 复习题 (8) 第六章半导体中的非平衡过剩载流子 (8) 小结 (8) 重要术语解释 (9) 知识点 (9) 复习题 (10) 第七章pn结 (10) 小结 (10) 重要术语解释 (10) 知识点 (11) 复习题 (11) 第八章pn结二极管 (11) 小结 (11) 重要术语解释 (12) 知识点 (12) 复习题 (13) 第九章金属半导体和半导体异质结 (13) 小结 (13) 重要术语解释 (13) 知识点 (14) 复习题 (14) 第十章双极晶体管 (14)

小结 (14) 重要术语解释 (15) 知识点 (16) 复习题 (16) 第十一章金属-氧化物-半导体场效应晶体管基础 (16) 小结 (16) 重要术语解释 (17) 知识点 (18) 复习题 (18) 第十二章金属-氧化物-半导体场效应管:概念的深入 (18) 小结 (19) 重要术语解释 (19) 知识点 (19) 复习题 (20)

第一章固体晶体结构 小结 1.硅是最普遍的半导体材料。 2.半导体和其他材料的属性很大程度上由其单晶的晶格结构决定。晶胞是晶体 中的一小块体积,用它可以重构出整个晶体。三种基本的晶胞是简立方、体心立方和面心立方。 3.硅具有金刚石晶体结构。原子都被由4个紧邻原子构成的四面体包在中间。 二元半导体具有闪锌矿结构,它与金刚石晶格基本相同。 4.引用米勒系数来描述晶面。这些晶面可以用于描述半导体材料的表面。密勒 系数也可以用来描述晶向。 5.半导体材料中存在缺陷,如空位、替位杂质和填隙杂质。少量可控的替位杂 质有益于改变半导体的特性。 6.给出了一些半导体生长技术的简单描述。体生长生成了基础半导体材料,即 衬底。外延生长可以用来控制半导体的表面特性。大多数半导体器件是在外延层上制作的。 重要术语解释 1.二元半导体:两元素化合物半导体,如GaAs。 2.共价键:共享价电子的原子间键合。 3.金刚石晶格:硅的院子晶体结构,亦即每个原子有四个紧邻原子,形成一个 四面体组态。 4.掺杂:为了有效地改变电学特性,往半导体中加入特定类型的原子的工艺。 5.元素半导体:单一元素构成的半导体,比如硅、锗。

半导体物理与器件第四版课后习题答案(供参考)

Chapter 4 4.1 ??? ? ? ?-=kT E N N n g c i exp 2υ ??? ? ??-??? ??=kT E T N N g O cO exp 3003 υ where cO N and O N υ are the values at 300 K. (b) Germanium _______________________________________ 4.2 Plot _______________________________________ 4.3 (a) ??? ? ??-=kT E N N n g c i exp 2υ ( )( )( ) 3 19 19 2 113001004.1108.2105?? ? ????=?T ()()?? ????-?3000259.012.1exp T () 3 382330010912.2105.2?? ? ???=?T ()()()()?? ????-?T 0259.030012.1exp By trial and error, 5.367?T K (b) () 252 12 2105.2105?=?=i n ( ) ()()()()?? ????-??? ???=T T 0259.030012.1exp 30010912.23 38 By trial and error, 5.417?T K _______________________________________ 4.4 At 200=T K, ()?? ? ??=3002000259.0kT 017267.0=eV At 400=T K, ()?? ? ??=3004000259.0kT 034533.0=eV ()()()() 172 22102 210025.31040.11070.7200400?=??= i i n n ? ? ????-??????-???? ??? ?? ??=017267.0exp 034533.0exp 3002003004003 3 g g E E ?? ? ???-=034533.0017267.0exp 8g g E E ()[] 9578.289139.57exp 810025.317-=?g E or ()1714.38810025.3ln 9561.2817=??? ? ???=g E or 318.1=g E eV Now ( ) 3 2 1030040010 70.7?? ? ??=?o co N N υ

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

西安电子科技大学2018考研大纲:半导体物理与器件物理.doc

西安电子科技大学2018考研大纲:半导体 物理与器件物 出国留学考研网为大家提供西安电子科技大学2018考研大纲:801半导体物理与器件物理基础,更多考研资讯请关注我们网站的更新! 西安电子科技大学2018考研大纲:801半导体物理与器件物理基础 “半导体物理与器件物理”(801) 一、 总体要求 “半导体物理与器件物理”(801)由半导体物理、半导体器件物理二部分组成,半导体物理占60%(90分)、器件物理占40%(60分)。 “半导体物理”要求学生熟练掌握半导体的相关基础理论,了解半导体性质以及受外界因素的影响及其变化规律。重点掌握半导体中的电子状态和带、半导体中的杂质和缺陷能级、半导体中载流子的统计分布、半导体的导电性、半导体中的非平衡载流子等相关知识、基本概念及相关理论,掌握半导体中载流子浓度计算、电阻(导)率计算以及运用连续性方程解决载流子浓度随时间或位置的变化及其分布规律等。 “器件物理”要求学生掌握MOSFET器件物理的基本理

论和基本的分析方法,使学生具备基本的器件分析、求解、应用能力。要求掌握MOS基本结构和电容电压特性;MESFET器件的基本工作原理;MOSFET器件的频率特性;MOSFET器件中的非理想效应;MOSFET器件按比例缩小理论;阈值电压的影响因素;MOSFET的击穿特性;掌握器件特性的基本分析方法。 “半导体物理与器件物理”(801)研究生入学考试是所学知识的总结性考试,考试水平应达到或超过本科专业相应的课程要求水平。 二、 各部分复习要点 ●“半导体物理”部分各章复习要点 (一)半导体中的电子状态 1.复习内容 半导体晶体结构与化学键性质,半导体中电子状态与能带,电子的运动与有效质量,空穴,回旋共振,元素半导体和典型化合物半导体的能带结构。 2.具体要求 半导体中的电子状态和能带 半导体中电子的运动和有效质量 本征半导体的导电机构

半导体物理与器件实验报告

课程实习报告 HUNAN UNIVERSITY 题目:半导体物理与器件 学生姓名:周强强 学生学号:20100820225 专业班级:通信二班 完成日期:2012.12.22

运行结果截图: 2.2 函数(),cos(2/)V x t x t πλω=-也是经典波动方程的解。令03x λ≤≤,请在同一坐标中 绘出x 的函数(),V x t 在不同情况下的图形。 (1)0;(2)0.25;(3)0.5;(4)0.75;(5)t t t t t ωωπωπωπωπ =====。 3.27根据式(3.79),绘制出0.2()0.2F E E eV -≤-≤范围内,不同温度条件下的费米-狄拉克概率函数:()200,()300,()400a T K b T K c T K ===。

4.3 画出a ()硅,b ()锗,c ()砷化镓在温度范围200600K T K ≤≤内的本征载流子浓度曲线 (采用对数坐标)。

4.46 已知锗的掺杂浓度为15 3a =310 cm N -?,d =0N 。画出费米能级相对于本征费米能级的位 置随温度变化 200600)K T K ≤≤(的曲线。

5.20硅中有效状态密度为 19 3/2c 2.8 10()300T N =? 193/2 1..0410() 300 T N ν=? 设迁移率为 3/2 n =1350300T μ-?? ? ?? 3/2 =480300T ρμ-?? ? ?? 设禁带宽带为g =1.12V E e ,且不随温度变化。画出200600K T K ≤≤范围内,本征电导率随绝对温度T 变化的关系曲线。

历年固体物理考试题 6

一.名词解释(20) 1、倒格子空间 5 2、配位数 2 3、声子 6 4、Frenkel缺陷和Schottky缺陷 9 5、能带(结构、理论) 8 6、刃位错 3 7、晶体结构4 8、滑移2 9、费米面、费米能6 10、10、布拉格定律

11、晶体结构与非晶体结构特征 12、布洛赫波 13、声子与光子 14、隧道效应2 15、正格子和倒格子空间 16、布里渊区 17、倒空间 18、晶带 19、倒易点阵 20、带隙 二.简述题(20) 1、引入玻恩-卡门边界条件的理由是什么?玻恩-卡门边界条件及其意义是什么?8 2、晶体热容理论中爱因斯坦模型建立的条件?晶体热容理论中低温条件下爱因斯坦模型 与实验条件存在偏差的根源?晶体热容理论中德拜模型建立的条件?晶体热容理论中德拜和爱因斯坦模型建立的条件分别是什么?理论研究与实验结果的相符特点是什么? 为什么?7 3、共价键为什么有饱和性和方向性?共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?共价键及其特点?5 4、固体的宏观弹性的微观本质是什么?6 5、说明淬火后的金属材料变硬的原因。4 6、杂化轨道理论。2 7、晶体膨胀时, 费密能级如何变化? 8、为什么温度升高,费米能反而降低? 9、费米子和玻色子特征及其各自所遵循什么统计规律?4 10、引入周期性边界条件的理由?原子运动的周期性边界条件的建立及其理由?2 11、固体的宏观弹性的微观本质是什么?4 12、晶态、非晶态和准晶态在原子排列上各有什么特点?简便区分的方法及依据?4 13、两块同种金属温度不同, 接触后在温度未达到相等前, 是否存在电势差? 为什么? 3 14、晶体中原子结合的类型有哪些? 2

半导体物理与器件公式以及全参数

半导体物理与器件公式以及参数 KT =0.0259ev N c =2.8?1019N v =1.04?1019 SI 材料的禁带宽度为:1.12ev. 硅材料的n i =1.5?1010 Ge 材料的n i =2.4?1013 GaAs 材料的n i =1.8?106 介电弛豫时间函数:瞬间给半导体某一表面增加某种载流子,最终达到电中性的时间,ρ(t )=ρ(0)e ?(t /τd ),其中τd =?σ,最终通过证明这个时间与普通载流子的寿命时间相比十分的短暂,由此就可以证明准电中性的条件。 E F 热平衡状态下半导体的费米能级,E Fi 本征半导体的费米能级,重新定义的E Fn 是存在过剩载流子时的准费米能级。 准费米能级:半导体中存在过剩载流子,则半导体就不会处于热平衡状态,费米能级就会发生变化,定义准费米能级。 n 0+?n =n i exp (E Fn ?E Fi kT )p 0+?p =n i exp [?(E Fp ?E Fi )kT ] 用这两组公式求解问题。 通过计算可知,电子的准费米能级高于E Fi ,空穴的准费米能级低于E Fi ,对于多子来讲,由于载流子浓度变化不大,所以准费米能级基本靠近热平衡态下的费米能级,但是对于少子来讲,少子浓度发生了很大的变化,所以费米能级有相对比较大的变化,由于注入过剩载流子,所以导致各自的准费米能级都靠近各自的价带。

过剩载流子的寿命: 半导体材料:半导体材料多是单晶材料,单晶材料的电学特性不仅和化学组成相关而且还与原子排列有关系。半导体基本分为两类,元素半导体材料和化合物半导体材料。 GaAs主要用于光学器件或者是高速器件。 固体的类型:无定型(个别原子或分子尺度内有序)、单晶(许多原子或分子的尺度上有序)、多晶(整个范围内都有很好的周期性),单晶的区域成为晶粒,晶界将各个晶粒分开,并且晶界会导致半导体材料的电学特性衰退。 空间晶格:晶格是指晶体中这种原子的周期性排列,晶胞就是可以复制出整个晶体的一小部分晶体,晶胞的结构可能会有很多种。原胞就是可以通过重复排列形成晶体的最小晶胞。三维晶体中每一个等效的格点都可以采用矢量表示为r=pa?+qb?+sc?,其中矢量a?,b?,c?称为晶格常数。晶体中三种结构,简立方、体心立方、面心立方。 原子体密度=每晶胞的原子数每晶胞的体积

固体物理知识题指导

固体物理习题指导 第一章 晶体的结构 第二章 晶体的结合 第三章 晶格振动与晶体热学性质 第四章 晶体的缺陷 第五章 能带 第六章 自由电子论和电子的输运性质 第一章 晶体的结构 思 考 题 1. 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为() 3 3/4R , 一个晶胞包含两个原子, 一个原子占的体积为()2/3/43 R ,单位体积晶体中的原子数为()3 3/4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为()3 2/4R , 一个晶胞包含四个原子, 一个原子占的体积为()4/2/43 R , 单位体积晶体中的原子数为()3 2/4/4R . 因此, 同体积的体心和面心立方晶体中的原子数 之比为2/323 ? ??? ??=0.272. 2. 2. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.

3. 3. 基矢为=1a i a , =2a aj , =3a ()k j i ++2a 的晶体为何种结构? 若=3a ()k j +2a +i 23a , 又为何 种结构? 为什么? [解答] 有已知条件, 可计算出晶体的原胞的体积 23321a = ??=a a a Ω. 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量 =-=13a a u 2a ()k j i ++-, =-=23a a v 2a ()k j i +-, =-+=321a a a w 2a ()k j i -+. w v u ,,对应体心立方结构. 根据14题可以验证, w v u ,,满足选作基矢的充分条件.可见基矢为=1a i a , =2a aj , =3a ()k j i ++2a 的晶体为体心立方结构. 若 =3a ()k j +2a +i 23a , 则晶体的原胞的体积 23 321a Ω= ??=a a a , 该晶体仍为体心立方结构. 4. 4. 若3 21l l l R 与hkl R 平行, hkl R 是否是321l l l R 的整数倍? 以体心立方和面心立方结构证明之. [解答] 若 3 21l l l R 与hkl R 平行, hkl R 一定是321l l l R 的整数倍. 对体心立方结构, 由(1.2)式可知 32a a a +=,13a a b +=, 21a a c +=, hkl R =h a +k b +l c =(k+l )+1a (l+h )+2a (h+k )3a =p 321l l l R =p (l 11a +l 22a +l 33a ), 其中p 是(k+l )、(l+h ) 和(h+k )的公约(整)数. 对于面心立方结构, 由(1.3)式可知, 321a a a a ++-=, =b 321a a a +-, =c 321a a a -+, hkl R =h a +k b +l c =(-h+k+l )1a +(h-k+l )2a +(h+k-l )3a =p ’321l l l R = p ’(l 11a +l 22a +l 33a ), 其中p ’是(-h+k+l )、(-k+h+l )和(h-k+l )的公约(整)数. 5. 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基矢1a 、2a 和3a 重

《固体物理学》基础知识训练题及其参考答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将错误!未找到引用源。两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将错误!未找到引用源。组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图: 电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触 附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。 2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低 附常规npn截面图 造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。 通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图: 由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。 附基区中电子浓度示意图: 电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

13级固体物理题库

一、填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠?r r 当时 (,当时 关系的123,,b b b r r r 为基矢,由112233h K hb h b h b =++r r r r 构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________ 14. 体心立方的倒点阵是________________点阵,面心立方的倒点阵是________________点阵,简单立方的倒点阵是________________。 15. 一个二维正方晶格的第一布里渊区形状是________________。 16. 若简单立方晶格的晶格常数由a 增大为2a ,则第一布里渊区的体积变为原来的___________倍。

固体物理重要知识点总结

固体物理重要知识点总结 晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点:微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量

化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 爱因斯坦模型在低温下与实验存在偏差的根源是什么? 答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。 陶瓷中晶界对材料性能有很大的影响,试举例说明晶界的作用 答:晶界是一种面缺陷,是周期性中断的区域,存在较高界面能和应力,且电荷不平衡,故晶界是缺陷富集区域,易吸附或产生各种热缺陷和杂质缺陷,与体内微观粒子(如电子)相比,晶界微观粒子所处的能量状态有明显差异,称为晶界态。 在半导体陶瓷,通常可以通过组成,制备工艺的控制,使晶界中产生不同起源的受主态能级,在晶界产生能级势垒,显著影响电子的输出行为,使陶瓷产生一系列的电功能特性(如PTC特性,压敏特性,大电容特性等)。这种晶界效应在半导体陶瓷的发展中得到了充分的体现和应用。 从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制

相关主题
文本预览
相关文档 最新文档