当前位置:文档之家› 核医学深刻复习重要归纳

核医学深刻复习重要归纳

核医学深刻复习重要归纳
核医学深刻复习重要归纳

以下是根据老师给的重点总结的,内容有点多,有些遗漏的请同学们告知我,我会再补充上去的。考试题型是选择题单选50分,多选20分(每题1分),简答题3道30分。简答题老师说从各论出,重点放在显像原理和应用方面,老师不愿透露具体哪几章出题。

神经系统、内分泌系统和心血管系统老师都没给重点,我下面就没总结了,我觉得这三章挺重要的,大家根据老师上课重点和课件复习吧。还有就是李贵平老师最后几节课的内容复习一下吧。

第一章总论

核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。主要任务是用核技术进行诊断、治疗和疾病研究。

核医学三要素:研究对象放射性药物核医学设备

一、核物理基础

(一)基本概念:元素---凡质子数相同的一类原子称为一种元素

核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。

放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。(具有放射性和放出射线)

稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。不具有放射性的核素称为稳定性核素。(无放射性)

同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。

同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。(质量数相同,能量不同,如99mTc和99Tc)

(二)核衰变类型四种类型五种形式

α衰变释放出α粒子的衰变过程,并伴有能量释放。

β衰变放射出β粒子或俘获轨道电子的衰变。β衰变后,原子序数可增加或减少1,质量数不变。

?β-衰变

?β+衰变

?电子俘获(EC)

γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程

γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。

(三)核衰变规律

放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。随时间延长,放射性核素的原子核数呈指数规律递减。

N=N0e-λt

N0:t=0时原子核数

N:t时间后原子核数

e:自然对数的底(e≈2.718)

λ:衰变常数

(λ=0.693/T1/2)

物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb

放射性活度描述放射性核素衰变强度的物理量。用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:

1Ci=3.7×1010Bq

比活度单位质量物质内所含的放射性活度。常用单位:Bq/g、Bq/mg、Bq/mol,等。放射性浓度单位容积的放射性制剂中的放射性活度。常用单位:Bq/l、Bq/ml等。(四)射线和物质的相互作用

带电粒子与物质的相互作用:电离、激发、散射、韧致辐射、湮没辐射、吸收作用

光子与物质的相互作用:光电效应、康普顿效应和电子对生成

(五)电离辐射剂量及其单位

?照射剂量:是指在离放射源一定距离的物质受照射的量,单位为库仑/公斤(C/Kg)。

与放射源的活度大小和距离有关。照射剂量可以测量。

?吸收剂量:是指单位质量的受照物质吸收射线的平均能量。单位为戈瑞(Gy),不能直接测量。

?当量剂量:是衡量射线生物效应及危险度的辐射剂量。单位为希沃特(Sv),与吸收剂量的关系是:当量剂量=吸收剂量×射线的权重因子

(六)核医学显像原理及方法

单光子与正电子显像 1. 单光子显像:“99mTc”γ-相机,SPECT

2.正电子显像:18F PET

γ闪烁探测器由闪烁体、光电倍增管和放大器-分析器-定标器系统组成。

基本原理是将射入闪烁晶体的γ光子转化为荧光光子,再通过光电倍增管将荧光光子转化为电脉冲,记录这些电脉冲数,即可得到γ光子的发射数量即放射性强度。

晶体闪烁体作用:有效地吸收γ光子,并能在大约一微妙或更短的时间内发射出强度正比于所吸收γ射线能量的光子。

无机闪烁体碘化钠晶体特点:高密度高原子序数

随晶体厚度的增加,光子探测率也增加

PET不需要准直器,SPECT也可以做18F 显像

(七)二.显像剂聚积原理

1、细胞选择性摄取

.合成代谢:131I、131I-胆固醇,18F-FDG 等

选择性排泄:99mTc-DTPA,99mTc-HIDA等

细胞吞噬:99mTc-植酸钠等

2、化学吸附和离子交换:99mTc-MDP

3、特异性结合:抗原-抗体, 受体-配体等

4、微血管栓塞:99mTc-MAA等

5、生物区通过和容积分布:99mTc-RBC,99mTc-Dx等

(八)核医学显像方法分类

静态与动态显像平面与断层显像局部与全身显像静息与负荷显像

1.阴性显像病灶为“冷区”

2.阳性显像(positive imaging):病灶为“热区”

?早期显像:指显像剂注入体内后2小时以内进行的显像称为早期显像

?延迟显像:指显像剂注入体内后2小时以后进行的显像称为延迟显像。

“弹丸”式静注特点:体积小,强度大,不易被血液稀释,一分钟成像对采用。

第二章显像剂

一放射性药物

1、定义:含有放射性核素的、用于医学诊断和治疗的特殊药物。放射性药物可以是放射性核素本身,也可以是放射性核素标记的药物。

2、放射性核素的来源反应堆,核裂变产物中提取,核素发生器,加速器

放射性核素发生器生产

是从长半衰期核素(母体)的衰变产物中分离得到短半衰期核素(子体)的装置,俗称“母牛(cow)”。

99Mo-99mTc发生器属于色谱柱型发生器

三氧化二铝作吸附柱,三氧化二铝对母体核素99Mo有很强的亲和力,子体核素99mTc则几乎不被吸附,用生理盐水淋洗液,则仅有99mTc被洗出

3、体内诊断放射性药物要求:(1)纯γ射线辐射体

(2)合适的射线能量(100~300KeV)

(3)适当的有效半衰期(Te)

(4)足够高的靶/非靶(T/NT)比值

(5)标记制备简便快速

体内治疗放射性药物要求(1)半衰期较长的纯β射线辐射体,能量适中。

(2)在组织中的电离密度大,作用时间久。

(3)定位性能好,非靶组织中的放射性清除快。

体外诊断放射性药物要求(1)射线能量较低,半衰期比较长。125I

(2)不影响药物的物理、化学、生物性质。

(3)稳定性好,放化纯度大于95%。

二辐射效应和防护

辐射的生物效应

?1、确定性效应

?是指辐射损伤的严重程度与所受剂量呈正相关,有明显阈值,剂量未超过阈值不会发生有害效应。

?一般是在短期内受较大剂量照射时发生的急性损害。

?2、随机效应

?研究的对象是群体,是辐射效应发生的几率(而非严重程度)与剂量相关的效

应,不存在具体的阈值。

辐射防护

1、辐射防护的目的

?防止确定性效应,限制随机效应。做到尽可能合理。

2、辐射防护的原则

?1)实践的正当化:注意利益/危险比

?2)放射防护最优化

?3)个人剂量限值:推荐的职业人员照射剂量限值为:连续五年内有效剂量不超过100mSv,年均20 mSv,任何一年内不超过50 mSv

外照射防护措施主要是防X、r射线,?射线主要是防护韧致辐射

?1)时间防护

?2)距离防护

?3)屏蔽防护:

内照射防护

?1、分区

?2、保洁和去污

?3、个人防护

?4、定期监测

?5、放射性废物处理

第五章内分泌系统

在甲状腺中的应用功能测定

甲状腺131碘摄取试验

●甲状腺激素抑制试验

●过氯酸盐释放试验

显像

●静态显像

●动态显像

第一节甲状腺功能测定

一、甲状腺131碘摄取试验

(一)原理

●甲状腺是合成、储存及分泌甲状腺激素合成甲状腺激素的需要一种特殊的原料:碘甲状腺能从血液中选择性地摄取和浓聚碘;摄取的量和速度与甲状腺功能密切相关。

●131I是碘的同位素,化学性质与稳定的碘相同,口服后通过血液偱环能为甲状腺摄

取131I能发射γ射线;用甲功仪于不同时间定量测定甲状腺部位的放射性,计算甲状腺摄131I率;即可得知甲状腺的功能状态。

二、过氯酸盐释放试验

(一)原理

●过氯酸钾与卤族元素(碘)化学性质相似,它有两大作用:阻止甲状腺从血中摄

取碘离子;

促进甲状腺内无机碘离子释放入血。正常人碘的有机化速度>甲状腺摄取碘的速度;甲状腺内存的无机碘离子很少。

●当酪氨酸碘化有缺陷时,碘有机化出现障碍,甲状腺内存有大量的无机碘离子;此

时给予过氯酸钾能阻止甲状腺进一步摄取碘,并能促进无机碘离子从甲状腺内释出。

使甲状腺摄131I率明显下降。

三、甲状腺激素抑制试验

(一)原理

?甲状腺摄131I率受垂体前叶分泌的促甲状腺激素(TSH)调节。正常情况下,口服甲状腺激素T3或T4后,血中甲状腺激素水平提高,通过负反馈作用,抑制垂体前叶分泌TSH,TSH的释放减少。

?甲亢患者这种负反馈调节作用部分或完全消失,甲状腺摄131I功能不再受TSH调节。

?服用T3或T4后甲状腺摄131I率无明显下降为不受抑制;

?意义:鉴别甲状腺功能亢进症。

被抑制:

说明垂体-甲状腺轴调节正常,不支持甲亢诊断。

不被抑制:

说明垂体-甲状腺轴对外源性甲状腺素反应不灵敏或反应轴已被损坏,支持甲亢诊断。

第二节甲状腺显像

一、甲状腺静态显像

(一)原理

●甲状腺能选择性摄取放射性药物:131I、99mTcO4-。131I、99mTc4能放出γ射

线。

●γ-相机或SPECT进行体外显像检查。

●显示甲状腺内131I或99mTcO4-分布图像,即为甲状腺静态显像。

●甲状腺位置、形状、大小、放射性分布及病灶的功能状态。

●采用131I全身显像,可用于探测分化较好的有功能的甲状腺癌转移灶和对异位甲状

腺进行定位

(二)显像剂:

131I-NaI液:甲状腺、异位甲状腺和甲状腺癌转移灶。

99mTcO4-:最常用显像剂,多种组织均摄取,不适合用于异位甲状腺显像,不显示甲

状腺“碘有机化”过程;

123I-NaI液:最理解显像剂,但须加速器生长,不易获得。

●设备:γ-相机或SPECT。

投药

●注射法:静脉注射99mTcO4-74~185MBq(2~5mCi),可同时行动态显像,

静态显像在20~30min进行

●口服法:空腹99mTcO4-,74~185MBq(2~5mCi),1~2h显像;

二临床应用

●“热”结节:结节区放射性分布高于正常甲状腺组织。

功能自主性甲状腺瘤:甲状腺结节部位放射性高于对侧颈动、静脉。

须与甲状腺局部增厚相鉴别:抑制试验

“温”结节:结节部位放射性分布与正常甲状腺组织基本一致。

多见于良性甲状腺腺瘤、结节性甲状腺肿或慢性淋巴细胞性甲状腺炎

●“凉”结节:结节区放射性分部明显低于正常甲状腺组织,但高于非甲状腺区本底。

“冷”结节:结节部位基本无放射性分布,与本底相近,形成“冷”区。

“冷”和“冷”结节:提示局部组织分化不良,无功能或功能低下。

可见于甲状腺囊肿、钙化、纤维化、腺瘤出血、甲状腺癌,慢性淋巴细胞性甲状腺炎或亚急性甲状腺炎也可出现

甲状腺癌:

甲状腺结节显影于14~18s(16s)达到高峰。结节部位放射性高于颈动脉。

良性结节:

甲状腺结节处放射性分布低于颈动脉

三甲亢、亚急性甲状腺炎及桥本氏病的鉴别

Graves病,毒性弥漫性甲状腺肿(Graves病)

甲状腺弥漫性增大、放射性均匀性浓聚,唾液腺摄取99mTc低或不摄取

甲状腺机能亢进症

颈动、静脉显影提前到6~8s,甲状腺提前到8s显影。以后放射性逐渐增高,并明显高于颈动脉。

亚急性甲状腺炎

又称病毒性甲状腺炎或肉芽肿性甲状腺炎或巨细胞性甲状腺炎

?本病的病因不清楚,一般认为和病毒感染有关

?亚急性甲状腺炎发病常以颈部疼痛或发热为首发症状,疼痛的程度很不相同。

?亚急性甲状腺炎是自限性疾病,可以自已缓解。

?发病早期血中T3、T4 升高。但摄碘降低或不增高,称分离现象。

表现:局限性稀疏缺损区

?甲状腺放射性摄取极低,显影欠清楚

?甲状腺不显影

?恢复期可表现为甲状腺不显影,整体纤维化,部分健康甲状腺代偿增大,总体功能

恢复正常。

桥本氏甲状腺炎

慢性淋巴细胞性甲状腺炎又名桥本氏病,是较常见的自身免疫性甲状腺疾病。

表现

●甲状腺放射性分布浓淡不均

●可呈“虫蛀样”

●“斑片状”

●“峰”、“谷”相间

四甲状腺癌亲肿瘤阳性显像

●99mTc-MIBI 201TlCl

●99mTc-DMSA: 对甲状腺髓样癌有诊断价值,T/NT>2.0

●18F-FDG:甲状腺髓样癌、分化较差的甲状腺癌

早期及延迟显像:“凉”“冷”出现阳性显像剂大量摄取

●分化良好的甲状腺癌转移灶可不同程度的摄取131I。

●甲状腺癌患者,如果在其他部位发现放射性浓聚灶,应考虑为转移灶。

●转移灶有摄取131I功能是用131I治疗的重要依据

第三节肾上腺显像

肾上腺髓质显像临床意义

1、嗜铬细胞瘤

2、寻找异位嗜铬细胞瘤

肾上腺以外异常浓聚:异位嗜铬体、恶性嗜铬细胞瘤转移灶、小儿应疑有神经母细胞瘤

3、神经母细胞瘤及其他内分泌肿瘤

4、肾上腺素能肿瘤的131I-MIBG治疗

妊娠及哺乳妇女避免此项检查

第八章肿瘤和炎症显像

第二节非特异性亲肿瘤显像

一、67Ga显像

?原理

?67Ga显像的原理至今仍未完全弄清。

?67Ga属元素周期表上第ⅢA族元素,其生物特性在许多方面类似Fe3+。

?67Ga在血液中至少有4种铁蛋白,即转铁蛋白、铁蛋白、乳铁蛋白、含铁细胞可与之结合,但主要与转铁蛋白结合。然后转铁蛋白复合物可与肿瘤细胞表面的特异铁蛋白受体结合,而进入肿瘤细胞,分布于胞浆溶酶体中。

临床应用

?肝细胞肝癌:

67Ga和99mTc-植酸钠联合显像应用

胶体显像出现“冷区”,而67Ga显像原减低区出现填充(热区),如能排除肝脓肿,就可诊断为肝恶性肿瘤。

两种显像联合应用对肝癌诊断的灵敏度为81%,特异性为90%。

缺点: 肝硬化基础上弥散性癌变呈阴性,肝脓肿100%为阳性,对胆管癌检出率较低。

?肺癌:

肺癌诊断的阳性率为80~93%

直径超过2cm的病灶一般平面像都能检出

按病理分类:肺鳞癌阳性率95.2%,未分化癌为83.3%,腺癌为77.9%

缺点:肺部炎症和良性病变,如肺结核渗出期、肺炎、肺脓肿、支气管扩张症和纵隔良性病变的急性期等也可聚集,应结合临床加以鉴别。

恶性淋巴瘤:

包括霍奇金氏淋巴瘤(HL)和非霍奇金氏淋巴瘤(NHL)

病灶显像表现为67Ga异常浓聚影

主要作用在于:

疗效监测

残留肿块的定性

预后观察

复发

二99mTc-吡哆醛-5-甲基色胺酸显像

?原理

99mTc-PMT是肝胆显像剂,可被正常肝细胞摄取并经胆道系统排出。分化好的原发性肝细胞癌或肝腺瘤细胞,近似正常肝细胞,同样可摄取99mTc-PMT。但肝癌组织中心无胆管系统供99mTc-PMT排出,故静注99mTc-PMT后2~5h显像,正常肝细胞内的99mTc-PMT已排除,而肝癌及肝腺瘤组织中的99mTc-PMT滞留在病变处而呈现异常浓聚区。

临床应用

?主要用于原发性肝细胞癌诊断

早期影像:肿瘤区为放射性稀疏缺损区;延迟影像:原稀疏缺损区表现为浓聚区

?肝肿瘤对99mTc-PMT聚集程度与癌细胞分化程度有关,分化好的且胞浆丰富的肝癌细胞聚集99mTc-PMT的量多

?对原发性肝细胞癌诊断的阳性率为57~63%,对原发性肝癌转移灶的检出率近100%,而在转移性肝癌和胆管细胞癌中无聚集,故可鉴别肝内恶性病变为原发还是转移所致

?99mTc-PMT在肝腺瘤中聚集较多,应注意与原发性PHC相鉴别

三99mTc (V)-DMSA显像

?原理

99mTc-DMSA(二巯基丁二酸)为肾脏显像剂,pH调至8,即成99mTc(V)-DMSA,可用于软组织肿瘤诊断。

99mTc(V)-DMSA在肿瘤内聚集的机理尚不清楚:有人认为,99mTc(V)-DMSA 含有一阴离子核心99mTcO43-,化学性状与PO43-相似,与DMSA形成稳定标记化合物,具有亲肿瘤作用。

临床应用

?主要用于头颈部恶性肿瘤

?甲状腺髓样癌及软组织恶性肿瘤诊断

?99mTc(V)-DMSA显像对头颈部恶性肿瘤诊断阳性率为75~79%

?软组织恶性肿瘤检出率约60%

四99mTc-MIBI 显像

?原理

99mTc-MIBI为亲脂分子,所带的正电荷与带负电荷的线粒体内膜之间的电位差

促使MIBI进入细胞,其中90%进入线粒体。影响肿瘤细胞聚集因素有:肿瘤组织类型,血流灌注、肿瘤细胞的增殖活力等。

临床上,一些肿瘤集聚MIBI的时间较短,是与一种肿瘤多药耐药性有关,存在于细胞膜上的P糖蛋白(Pgp)能将MIBI主动转运出肿瘤细胞外。因此,99mTc-MIBI显像可反映肿瘤组织内Pgp的水平,可预测MDR的发生及化疗效果。

临床应用

◆乳腺癌

99mTc-MIBI显像乳腺癌表现为示踪剂浓聚影。

◆肺癌

99mTc-MIBI显像肺癌表现为病灶示踪剂浓聚影。

对于肺部结节病变的良、恶性鉴别和肺癌纵隔淋巴结转移的诊断具有一定意义。

99mTc-MIBI显像可用于预测小细胞肺癌化疗效果及评价治疗反应。

◆甲状腺癌

131I或99mTcO-4甲状腺扫描与99mTc-MIB 显像可联合应用鉴别甲状腺结节性质。

甲状腺“冷结节”,99mTc-MIBI显像检出的灵敏度为83%~100%,特异性为72%,阳性预测值43%。

无摄131I功能的甲状腺癌复发和转移灶99mTc-MIBI显像可弥补131I显像的不足五肿瘤放射免疫显像

原理

?以免疫学抗原-抗体特异性结合为理论基础

?放射性核素标记单抗经一定途径引入体内后可定向地与肿瘤细胞的相应抗原结合,

经一段时间后,肿瘤部位放射性聚集至一定浓度,用SPECT或PET进行平面或断层显像即可显示肿瘤及其转移灶的大小、部位和范围。

?是一种无创性定位和定性诊断和检测肿瘤的方法。

利于标记抗体在肿瘤组织内滞留的因素

?肿瘤血供丰富、肿瘤内微环境的毛细血管壁通透性较高使大分子抗体易于进入肿瘤?肿瘤血管外和细胞外间隙扩大及肿瘤局部缺乏淋巴回流系统可使抗体渗入量增多而排除量减少

禁忌证

血清人抗鼠抗体阳性者和妊娠期及哺乳期妇女

六、标记白细胞显像

(一)原理

炎症反应最重要的功能是将白细胞输送到损伤部位,白细胞游出是炎症反应最重要的指征。白细胞从血管内到血管外的游出是复杂而连续的过程,包括

白细胞的边集、粘着和游出。随后在趋化因子的作用下运动到炎症灶,在局

部发挥防御作用。

核素标记的白细胞可集聚于炎症病灶,通过体外显像即可显示炎症病灶的部位。

其显像机制是反映局部病灶白细胞浸润聚集病理学变化。

对于发热病程在2周以内的炎症病灶,探测效果更好的显像剂是99mTc-HMPAO。

对于发热病程在2周以上的炎症病灶,则使用67Ga更为适宜。

第九章骨与关节系统核医学显像

一、骨骼显像的原理

?骨的组成:无机盐成分-羟基磷灰石晶体,有机基质成分-骨胶原。

?显像剂:磷酸盐或膦酸类物质(99mTc-MDP)

?骨显像剂通过血液循环到达骨表面,应用γ照相机或SPECT可使骨骼显像

?骨显像剂被骨骼摄取的可能机制:离子交换、化学吸附、亲和结合作用

?骨骼各部位聚集放射性的多少与骨骼局部血流量、新生骨形成和骨盐代谢活跃程度有关

?超级显像:肾影不明显,膀胱内放射性少,全身骨骼浓聚异常增高,软组织本底低,是弥漫性骨转移的一种表现,亦见于甲亢和软骨病。

闪耀现象(Flare Phenomenon):骨骼的恶性肿瘤病灶经过治疗后的一段时间,患者的临床表现有显著地好转,但复查骨显像可见病灶部位放射性浓聚程度较治疗前更为明显,反映骨骼的愈合和修复。

二肥大性肺性骨关节病与全身骨转移的鉴别

?肥大性肺性骨关节病(hypertrophic pulmonary osteoarthropathy, HPO):主要见于肺癌及肺转移灶

?其发病机制主要是骨膜新骨形成,可能与病灶产生毒素和自主神经紊乱引起末梢循环异常有关

?HPO核素骨显像的表现:主要是沿长骨特别是下肢骨的“双条”征或“双轨”征,通常对称

?同时HPO的特征表现随病情好转和恶化也有相应变化,有的病例经化疗临床有所

缓解,“双条”征消退。

骨转移瘤的早期诊断

?骨转移瘤最多发生在具有红骨髓的部位如中轴骨,而较少的病灶位于四肢骨和颅骨。

?骨转移瘤最多见于乳腺癌、前列腺癌、肺癌、鼻咽癌等。

?典型图像表现:骨转移的大部分病变表现为放射性摄取浓聚或增高。最常见的是显示有多发、无规律、大小和形态各异的放射性浓聚或增高区。

?转移性骨肿瘤的诊断

?1)探查恶性肿瘤转移灶最常用而有效的检查是全身骨显像

?2)较X线检查早3-6个月发现

?3)骨显像骨转移灶的特征改变为多发性、非对称性、不规则放射性浓聚灶?4)单发病灶需要结合临床与其它影像资料。

骨显像的适应症

?1)骨痛的筛查

?2)恶性肿瘤患者探查有否骨转移及其骨转移灶的治疗随访.

?3)评价原发性骨肿瘤病灶侵犯范围及转移与复发.

?4)各种代谢性骨病的诊断

?5)骨折愈合评定

?6)关节炎的诊断

?7)X线检查未能确定的隐性骨折

?

三假体松动与假体感染的鉴别

假体置换术(THA)后常见合并症是松动和感染,临床采取的治疗方法截然不同。骨显像中

这两种合并症的表现完全不同,对鉴别诊断很有帮助。

人工关节在没有并发症时常表现为患侧股骨头区域(大小转子和髋臼)血流相、血池相正常,未见到放射性增高区域。延迟相放射性异常聚集增加,

人工关节松动:血流相、血池相正常,延迟相人工关节附近骨组织放射性异常浓聚;

人工关节感染:血流相、血池相和延迟相人工关节周围放射性异常聚集。

四代谢性骨病的诊断

影像特征:

除骨质疏松症和畸形性骨炎的影像表现较为特殊外,代谢性骨病影像特征是:

①全身骨骼的放射性对称性增浓;

②颅骨(黑颅征)和下颌骨的明显放射性浓聚;

③肋软骨连接处增浓呈串珠状;

④胸骨呈领带样聚集;

⑤肾影不清晰;

⑥有时可见肺、胃等软组织钙化影;

⑦24h延迟显像时骨显像剂存留率明显增高;

⑧散在的假性骨折表现。

五18F-FDG PET显像在骨病灶中的应用评价

?18F-FDG PET显像在以成骨性改变为主的病灶中阳性检出率低于普通全身骨显像。

?18F-FDG PET显像在以溶骨性改变为主的病灶中阳性检出率高于普通全身骨显像。第十章消化系统

第二节肝胆显像

一、肝胆动态显像

核医学重点归纳.(精选)

绪论 1定义: 核医学是利用放射性核素诊断、治疗疾病和进行医学研究的学科。 2核医学的内容出来显像外还有器官功能测定、体外分析法、放射性核素治疗 第一章 1、元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I和127I; 2、核素:质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元 素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 3、同质异能素:质子数和中子数都相同,但处于不同的核能状态原子,如99m Tc、99Tc 。 4、同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互 称为该元素的同位素。 5、放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称 为放射性核素 6、放射性衰变:放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上 的射线并转化为另一种原子的过程称为放射性衰变。 7、电子俘获:原子核俘获核外的轨道电子使核内一个质子转变成一个中子和放出一个中微子 的过程 8、放射性衰变基本规律 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。放射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都有自己特有的衰变速度。放射性核素原子随时间而呈指数规律减少,其表达式为: N=N e-λt 指数衰减规律: N = N e-λt N 0: (t = 0)时放射性原子核的数目 N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 9、半衰期:放射性原子核数从N 0衰变到N 的1/2所需的时间 10、放射性活度(A) 定义:单位时间内发生衰变的原子核数1Bq=1次× S-1 1Ci=3.7×1010 Bq 1Ci=1000mCi 11、比放射性活度定义:单位质量或体积中放射性核素的放射性活度。 单位: Bq/kg; Bq/m3; Bq/l 12、电离当带电粒子通过物质是和物质原子的核外电子发生静电作用,是电子脱离原子轨道 而发生电离 13、激发如果核外电子获得的能量不足以使其形成自由电子,只能有能量较低的轨道跃迁到 能量较高的轨道 14、散射带电粒子与物质的原子核碰撞而改变运动方向的过程 15、韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低, 多余的能量以x射线的形式辐射出来 16、湮灭辐射正电子衰变产生的正电子具有一定的动能,能在介质中运行一定得距离,当其 能量耗尽是可与物质中的自由电子结合,而转化为 17、光电效应光子同(整个)原子作用把自己的全部能量传递给原子,壳层中某一电子获得动 能克服原子束缚跑出来,成为自由电子,光子本身消失了。

影像医学与核医学专业临床能力考核内容和要求

影像医学与核医学专业临床能力考核内 容和要求 申请临床医学硕士专业学位 申请人在获得医学学士学位后,应从事本专业(放射医学、核医学、超声医学三者之一)临床工作三年以上,完成本专业基础和专业知识的学习,了解本学科领域的国内外研究动态和新进展。 一、影像医学 (一)理论知识 1、掌握 (1)影像医学的发展史及现状。 (2)影像医学诊断仪器的基本构成、部件名称、功能及成像原理。 (3)人体各系统影像学应用解剖,各种影像学象征与病理的关系。 (4)人体各系统常见疾病的X线及CT诊断,鉴别诊断。 2、熟悉 (1)介入放射的原理,以及对常见、多发疾病的诊断、鉴别诊断及治疗原理。 (2)造影剂副反应的处理和抢救治疗。 (3)相关临床医学的基础和专业理论知识。 1、了解 (1)放射防护知识、规则和要求。

(2)影像学新进展。 (二)临床技能 1、掌握 (1)X线造影与检查技术。 (2)检查技术。 (3)消化道检查技术。 (4)人体各系统急诊影像检查方法的选择、诊断及鉴别诊断。 (5)造影剂副反应的处理与抢救技术。 2、熟悉X线投照技术。 二、核医学 (一)理论知识 1、掌握 (1)放射性核物理知识及各项成像原理。 (2)核医学各项检查的适应证、禁忌证和注意事项的原理,以及出现反应时的处理抢救方法。 (3)心、脑、肺、肝胆、肠胃、骨骼系等脏器的解剖和病理生理影像特征。 (4)各项核医学检查对疾病的诊断与鉴别诊断。 (5)放射性核素治疗甲亢、甲癌、骨肿瘤的原理。 2、熟悉相关临床医学的基础和专业理论知识。 3、了解放射防护基本常识和防护规则与要求。 (二)临床技能

1、掌握 (1)放射性药物的标记、分装、测量、注射方法与技术。 (2)体外分析技术及质控。 (3)核医学仪器的操作,包括摆位、采集、图像处理和核素治疗的技术。 (4)核医学仪器的基本校正。 (5)独立正确分析各项核医学检查结果,书写报告。 2、熟悉放射性废物的处理原则和规定。 三、超声医学 (一)理论知识 1、掌握 (1)超声医学的发展史及现状。 (2)超声影像医学成像原理以及相关物理基础知识。 (3)超声检查的适应证,禁忌证。各种影像学方法的优选及综合使用。 (4)人体解剖,尤其要求对局部解剖、断面解剖有深入了解。对全身正常声像图、常见病理超声征象的成像理论有正确认识。 (5)全身常见疾病的灰阶和彩色多普勒超声影像诊断和鉴别诊断。 (6)常用的临床检查方法及其临床意义。 2、熟悉 (1)临床医学的基础和专业理论知识。

核医学作业习题

绪论 一、单项选择题 1. 核医学的定义是( )。 A.研究放射性药物在机体的代谢 B.研究核素在脏器或组织中的分布 C.研究核技术在疾病诊断中的应用 D.研究核技术在医学的应用及理论 2. 1896年法国物理学家贝可勒尔发现了( )。 A.同位素 B.放射性衰变 C.人工放射性核素 D.放射现象 二、多项选择题 1.临床核医学包括( )。 A.显像诊断 B.体外分析 C.核素功能测定 D.核素治疗 2. 临床核医学应用范围( )。 A. 应用于临床各器官系统 B.仅显像诊断 C.仅在内分泌系统应用 D.临床诊断、治疗和研究 三、名词解释 1. 核医学(Nuclear Medicine) 四、问答题 1. 核医学包括的主要内容有哪些 第一章核医学物理基础 一、单项选择题 1.同位素具有( )。 A.相同质子数 B. 相同质量数 C. 相同中子数 D. 相同核能态 2. 5mCi等于( )。 A. 185kB 3. 放射性活度的国际单位是( )。 A.居里(Ci) B.希沃特(Sv) C.戈瑞(Gy) D.贝可(Bq) 4. 18F的中子数为是( )。 5. 在射线能量数值相同的情况下内照射危害最大的是( )。 A.α射线照射 B. β射线照射 C.γ射线照射 D.γ和β射线混合照射 6. 原子核是由以下哪些粒子组成的( )。 A.中子和电子 B.质子和核外正电子 C.质子和中子 D.质子和核外负电子 7. 具有特定的质子数、中子数及核能态的一类原子,其名称为( )。 A.同位素 B.原子核 C.同质异能素 D.核素 8. 核衰变后质量数减少4,原子序数减少2,是哪类衰变( )。 A.β-衰变 B.α衰变 C.γ衰变 D.β+衰变 9. 剂量单位贝可勒尔是( )。 A.照射量的单位 B.剂量当量的单位 C.放射性活度的单位 D.半衰期的单位 10. 设某核素的物理半衰期为6h,生物半衰期为4h,该核素的有效半衰期是( )。 、9 h 二、多项选择题 1. 下列哪些是影响放射性核素有效半衰期的因素( )。 A.物理半衰期 B.核的衰变方式 C.射线的能量 D.生物半衰期 2. 在β-衰变中,原子核发射出的粒子有( )。 A.中子 B.电子 C.质子 D.氦核 三、名词解释 1.放射性核素(radionuclide) 2.物理半衰期(T1/2) 3.放射性活度(radioactivity) 四、问答题 1. 常见的放射性核衰变类型有哪些

核医学重点整理(仅供参考)

核医学考试: 题型:选择题(单选20*1,多选5*2) 名词解释5个*4 问答题4道+ 病例题1道共50分 所给重点混合分布在A,B卷;病例题重点仅此一道,AB卷相同,请重点背下来。 录音已存放至教室电脑,同时上传一份重点(仅供参考)。 所给重点价值80-85分,请自行把握。 注意:试卷答案以上课PPT内容为标准,其次参照课本内容。请认真对照录音复习课件。 选择题内容跟所给重点有关,或分布在所提及重点的相关章节。 放射免疫章节较不重要,可简要看看。 名词解释: 闪烁现象:骨转移癌患者在治疗中定期做全身骨显像时,少数患者在化疗或放疗后近期(2~3个月)内可见病灶显像剂浓集增加,似有恶化,但临床上却属改善,这种不匹配的现象称“闪烁现象”。 超级骨显像:指肾影不明显,全身骨影普遍异常增浓且清晰,软组织本底低,是弥漫性骨转移的一种表现,亦见于甲状旁腺功能亢进和软骨病。肾功能衰竭时肾影也不明显,但血液中存留多量99mTc-MDP致软组织明显而骨影不清晰。 放射性活度:是用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。国际单位是贝可(Bq),定义1Bq 等于每秒内发生一次核衰变,可写成1Bq=1s-1。常用单位是居里(Ci)。两者换算关系:1Ci=3.7x1010Bq 1 Bq=2.703X10-11Ci 传能线密度(LET):直接电离粒子在其单位长度径迹上消耗的平均能量,常用单位为KeV/um,其值取决于两个因素:1、粒子所载的能量高低和粒子在组织内的射程。高LET射线的电离能力强,能有效杀伤病变细胞;低LET的射线电离能力弱,不能有效杀伤病变细胞。 SUV(标准化摄取值):是描述病灶放射性摄取量的半定量分析指标,在18F-FDG PET 显像时,SUV对于鉴别病变良恶性具有一定参考价值。SUV=(单位体积病变组织显像剂活度(Bq/ml)/显像剂注射剂量(Bq))x体重(g) 有效半减期及其计算公式:是指生物体内的放射性核素由于从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一半所需要的时间。 T e=(T p xT b)/(T p+T b) 内放射治疗:是将非密封辐射源(放射性核素治疗药物)引入人体内病变的器官或组织,通过射线的辐射生物学效应破坏病变,达到治疗病变的目的,能用于治疗体内各器官和组织病变。 韧致辐射:粒子在介质中受到阻滞而急剧减速时能将部分能量转化为电磁辐射,即X射线。它的发生概率与β-粒子的能量及介质的原子序数成正比。因此在防护上β-粒子的吸收体核屏蔽物应采用低密度材料,如有机玻璃、铝等。 湮没辐射:当β+粒子与物质作用能量耗尽时和物质中的自由电子结合,正负电荷抵消,两个电子的静止质量转化为两个方向相反、能量各为0.511MeV的两个γ光子,这一过程称为湮没辐射或光化辐射。正电子发射CT的探测原理就是利用湮没辐射事件发生两个方向互为相反的γ光子,并通过符合电路对这一事件进行空间定位。 同质异能素书上P4 可逆性心肌缺血(本次未提及):在负荷影像存在缺损,而静息或者延迟显像又出现显像剂分布或充填,应用201TI显像时,这种随时间改善称为“再分布”,常提示心肌可逆性缺血。 问答题: 2、肾上腺髓质显像的正常及异常表现 正常影像:利用131I-MIBG显像时,正常人肾上腺髓质一般不显影。利用123I-MIBG显像时,常于注射后24小时肾上腺髓质对称显影,唾液腺、心肌显影尤其清晰,心肌显影程度也与血浆去甲肾上腺素浓度呈负相关。

影像医学与核医学硕士研究生培养方案

影像医学与核医学硕士研究生培养方案 一、培养目标 培养能坚持四项基本原则,掌握马克思主义、毛泽东思想、邓小平理论和“三个代表”重要思想的基本原理,热爱祖国,遵纪守法,坚持真理,献身科学,作风严谨,为人正派,具有较强的独立从事医学影像诊断学科研和教学,热爱专业,适应面向现代化,面向世界,面向未来需要的德、智、体全面发展的专门人才。 二、研究方向 1、分子影像诊断与研究 2、脑肿瘤MRI与病理对照分析 3、脑血管MRA与CTA的研究 4、高分辨CT在肺间质性病变诊断上的研究 5、脑、心脏、肾灌注成像研究 6、血管性病变介入治疗的临床、实验研究 7、三维成像研究 8、血管病和介入超声研究 9、电子束CT在心血管病的应用研究 三、招生对象 已获医学(医学影像专业)学士的在职人员、应届本科毕业生,参加全国硕士研究生统一考试合格,再经面试合格者。 四、学习年限 硕士生学习年限一般为2.5年。 五. 课程设置 A类: 科学社会主义理论与实践(2学分) 自然辩证法(2学分) 公共英语(4学分) B类: 分子生物学(4学分) 生化分析(4学分) 神经解剖学(4学分)

C类: 医学影像学(4学分) 影像解剖学(2学分) 影像技术与基础(2学分) D类: 医学统计学(4学分) 医用微机(2学分) 医学文献检索(2学分) 医学免疫学(3学分) 细胞免疫学(2学分) 肿瘤学(2学分) 医学电子学(2学分)肿瘤生物学(2学分)六,培养方式 第一阶段:集中学习学位课程,由医学院统一组织教学。 第二阶段:主要进行专业基础技能训练,同时学习专业理论知识,医学影像诊断与技术的培养与教学能力,查阅和综述专业文献。 第三阶段:进行专业定向培养,包括各研究方向特定的实验技能,科研设计,影像设备使用,专业知识学习,课题研究,撰写论文,毕 业答辩。 硕士研究生在学期间,需要参加教研室和院、校组织的各种学术活动和讲座,以增强学生的综合能力和素质。 七. 考核方式 1、公共课及基础课以笔试为主,由有关教研室负责考核工作。 2、专业课除笔试考核外,要求写专题综述报告,以了解研究生对专业知 识的掌握和综合分析的能力。 3、中期考核 为了保证研究生的质量,在入学后的第三学期末进行中期考核。由导师组成的研究生中期考核小组对研究生学位课程,论文进展情况以及掌握国内外最新研究动态等方面进行考核,考核小组本着公正、负责、实事求是的态度对研究生做出评价,评定成绩。对成绩不合格或完成学业确有困难者,劝其退学或作肄业处理。

核医学试题和答案(备考必备)

影像核医学总论 自测题 一、名词解释 1.核医学 6.阳性显像 2.临床核医学 7.单光子显像 3.放射性药物 8.分子影像学 4.放射化学纯度 9.放射性核素治疗 5.平面显像 10.放射性核素发生器 三、填空 1.核医学在内容上分为和两部分。 2.诊断核医学包括以和为主要内容的诊断法和以为主要内容的诊断法。 3.放射性药物包括放射性药物和放射性药物。 4.99Yc m核性能优良,为发射体,能量为,物理半衰期为。 5.临床应用的放射性核素可通过、、和获得。 6.核医学显像仪器主要包括、、和。 7.放射性核素或其标记化合物能够选择性聚集在特定脏器、组织或受检病变部位中主要机制有:、、、、和等。 8.根据显像的部位、影像的采集及显示时间、方式、核射线的种类,放射性核素显像可分为:、、、、、、和。 9.放射性核素治疗具有、、、等优点,已成为治疗疾病的一种有效法方法。 10.放射性核素治疗常用的方法有:、 , 、等。 11.医学中常用的核素发生器有:和等。 12.分子影像能从分子水平上揭示人体的、、及变化,实现了在分子水平上对人体内部生理或病理过程进行无创、实时的,富有广阔的应用前景。 四、选择题 (一)A型题 1.放射性核素治疗主要是利用哪种射线 A.α射线 B.γ射线 C.射线 D.X射线 E.正电子 2.放射性核素显像最主要利用哪种射线 A.α射线 B.γ射线 C.射线 D.X射线 E.俄歇电子 3.以下哪一项不是放射性核素显像的特点 A.较高特异性的功能显像 B.动态定量显示脏器、组织和病变的血流和功能信息 C.提供脏器病变的代谢信息 D.精确显示脏器、组织、病变和细微结构

13核医学总结

13核医学总结 13核医学总结 13核医学总结本文简介:核医学绪论核医学是一门利用开放型放射性核素诊断和治疗疾病的学科将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。凡不将放射性核素引入体内者称体外检查法或体外核医学,最有代表性的是放射免疫分析(R。 13核医学总结 核医学 绪论 核医学是一门利用开放型放射性核素诊断和治疗疾病的学科 将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。 凡不将放射性核素引入体内者称体外检查法或 体外核医学,最有代表性的是放射免疫分析(Radioimmunoassay

RIA) 元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,因而物理性 能不同,如131I和127I 。 核素:质子数相同,中子数也相同,且具有相同能态的原子,称为一种核素。 同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。 每秒钟1次核衰变,称为1贝克 核医学必备的物质条件:放射性药物 放射性试剂 核医学仪器 放射性药物 凡引入体内用作诊疗的放射性核素及其标记化合物。分为:诊断用药(γ射线) 治疗用药(β- 射线 ) 放射性试剂 不需引入体内的放射性核素及其标记化合物。 静态显像(static

imaging) 当显像剂在脏器内或病变处的浓度处于稳定状态时进行显像称为静态显像。 多用作观察脏器和病变的位置、形态、大小和放射性分布。 阳性显像(positive imaging) 又称热区显像(hot spot imaging)指在静态影像上主要以放射性比正常增高为异常的显像 阴性显像(negative imaging) 又称为冷区显像(cold spot imaging)指在静态影像上主要以放射性比正常减低为异常的显像 中枢神经系统 脑血流灌注显像 原理 应用一类能自由通过血脑屏障(BBB Blood

核医学复习重点

核医学复习重点 填空: 1.核医学定义、内容 核医学是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科,是核科学技术与医学相结合的产物,是现代医学的重要组成部分。 核医学的主要内容就是放射性核素分子水平的靶向显像诊断,放射性核素分子水平的靶向治疗,利用放射性核素靶向、灵敏特点进行医学研究。 2.放射性药物定义,99m Tc、131I及18F的特性(射线,能量,半衰期等) 放射性药物指含有放射性核素供医学诊断和治疗用的一类特殊药物。用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。 3.SPECT,PET中文名称 单光子发射计算机断层成像术SPECT PET 正电子发射型计算机断层显像 4.显像类型 书本P24 5.放射性核素显像特点 P28 6.放射性核素发生器,物理半衰期,放射性活度及国际制、旧单位及换算。 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re发生器、Sr–Rb发生器、Rb–Kr发生器 7.脑血流灌注显像临床应用 脑血管疾病:脑梗死、短暂性脑缺血发作;癫痫;阿尔兹海默症;帕金森氏病;

脑积水、脑脊液漏、脑脊液分流术后疗效观察;脑肿瘤脑功能研究、脑外伤、脑死亡、颅内感染等 8.甲状腺摄131I率检查适应症,禁忌症,诊断甲亢的重要指标。P74 9.甲状腺显像(冷、凉、温、热结节,甲状腺炎) P76 表8-3、P78 10.外照射的防护措施有那些? 时间、距离、设置屏蔽 P56 11.最常用的心室收缩功能参数及正常值,最常用的心室舒张功能参数? P102~103 12.目前评价心肌活力最可靠的无创性检查方法是( PET心肌代谢显像)。名词解释 1.放射性核素:原子核不稳定,它能自发放射出一种或几种核射线,由一种核素衰变为另一种核素者。 2.物理半衰期:放射性核素因物理衰变减少至原来的一半所需的时间 放射性活度:单位时间内衰变的原子数量等于原子核衰变常数与其核数目之乘积。核医学中反映放射性强弱的常用物理量。国际单位:贝克勒尔(Bq)、旧单位是居里(Ci) 1居里(Ci)=3.7×1010贝可(Bq) 3.放射性核素发生器: 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re 发生器、Sr–Rb发生器、Rb–Kr发生器 4.心肌可逆性缺损:负荷显像出现的灌注缺损于静息显像基本恢复,一般代表负荷诱发的心肌缺血 不可逆性缺损:又称固定性灌注缺损,是指静息和负荷显像比较,灌注缺损在部位、面积和程度上无变化 5.反向运动:又称矛盾运动,指心脏舒张时病变心肌向中心凹陷,收缩时向外膨出,与正常室壁运动方向相反,是诊断室壁瘤的特征影像。 6.超级影像:超级骨显像显像剂在全身骨骼分布呈均匀对称性异常浓聚,软组织分布很少,骨骼影像非常清晰,而肾影常缺失 7.热结节,冷结节,凉结节,温结节 P76

影像医学与核医学考核试题库_川大

影像医学与核医学复习提纲答案 一、名词解释: 1、放射性核素 凡原子核内质子数、中子数和能量状态均相同的一类原子,称为一种核素。按其能量状态,分为稳定性核素和放射性核素。放射性核素指能自发的发生核内成分或能态的改变而转变为另一种核素,同时释放出一种或一种以上的射线,即能进行放射性核衰变的核素。 2、同位素 具有相同质子数,不同中子数的同一化学元素的多种原子,在周期表上占有同一位置,其化学行为几乎相同,但原子质量或质量数不同,其质谱行为、放射性转变和物理性质不同。 3、天然放射性本底 天然放射性本底是指在辐射测量中,被测源之外的其它天然辐射源,包括宇宙射线和来自天然放射性核素如钾-40、碳-14、镭-226、钍-232及衰变产物等所产生的总辐射水平。 4、甲状腺冷结节 甲状腺结节与邻近正常甲状腺组织相比放射性减低或缺损,表明结节组织分化不良,无功能或功能低下,常见于甲状腺囊肿、钙化、纤维化、出血、甲状腺癌等,此类结节恶变率较高。 5、甲状腺热结节 甲状腺结节与邻近正常甲状腺组织相比放射性增高,表明结节组织功能亢进,常见于功能自主性甲状腺腺瘤。 6、利尿肾图 应用利尿剂通过利尿作用得到的肾图称利尿肾图。有助于鉴别机械性尿路梗阻和非梗阻性尿路扩张,非梗阻性尿路扩张患者利尿肾图表现为C段曲线迅速下降,机械性梗阻患者利尿肾图与与常规肾图无显著变化。 7、三时相骨显像 显像仪置低能通用型准直器,成人静脉“弹丸式”注射99TC-MDP15-25mci,即刻开始显像采集,首先以1帧/1-3秒速度采集60s,获得动脉灌注像即“血流相”

然后以1帧/分或300-500k/帧采集1-5帧,获得血池相,2-6小时后采集静态显像,为“延迟相”,通常称为三时相骨显像。 8、左心室射血分数每搏输出量占心室舒张末期容积量的百分比。 9、交叉性小脑失联络 脑梗死时,梗死区同侧或对侧的局部脑组织呈现低血流灌注,而此类低血流灌注并非是由于脑的器质性病变所引起,而是一种血管神经反应。最常见到的是“交叉性小脑失联络”(CCD),即:运动皮质的脑卒中将干扰皮质脑桥小脑束的传导,引起病变对侧小脑半球的血流与放射性代谢的减低。 10、肺灌注显像 经肺静脉注射大于毛细血管直径的放射性颗粒后,这些颗粒与肺动脉血混合均匀并随机地一过性嵌顿在毛细血管或肺小动脉内,其在肺内的分布与局部血流量成正比,通过体外测定肺内放射性分布并进行肺显像即可反映局部肺血流灌注情况,故称肺灌注显像。 11、骨显像的“过度曝光征” 即超级骨显像,是显像剂异常浓聚的特殊表现,显像剂在中轴骨和附肢骨近端呈均匀,对称性异常浓聚,或广泛异常浓聚,组织本地很低,骨骼影像异常清晰,肾脏和膀胱影像常缺失,常见于以成骨为主的肿瘤广泛性骨转移,甲旁亢等患者,产生的机制可能为疾病引起的全身骨骼广泛性反应性成骨,引入体内的显像剂多为代谢旺盛的骨骼摄取,很少经泌尿系统排泄。 12、放射化学纯度 放射性标记化合物的放射性活度占该样品的总放射性活度的百分比。 放化纯度(%)=标记物的放射性活度/样品总的放射性活度x100% 13、肝血池显像中的过度填充 肝血池显像平衡相病变部位放射性高于周围正常肝组织,有时可近于心血池,这种现象称“过度填充”,常见于肝血管瘤,可显示放射性明显高于周围正常肝组织的血管瘤体影像。 14、放射免疫分析中的非特异结合率

影像医学和核医学科细责

专科医师/住院医师培养标准 医学影像科细则 (讨论稿) 医学影像科学涉及面广,整体性强,发展迅速,是一门独立而成熟的学科。它的研究范围主要由以下三部分组成:1.放射医学,包括传统的X线诊断、计算机体层成像(CT)、磁共振成像(MRI)、介入性放射学;2.超声医学(US),包括B型超声、超声心动图、介入超声;3.核医学,包括γ照相、单光子发射计算机断层照相(SPECT)、正电子发射计算机断层照相(PET)和介入核医学。鉴于该学科专科医师日后从事的医疗工作侧重点不同,因此,培训计划的特点既包括有共性部分,也包括个性的部分。 专科培养阶段(第1~3年) 一、培养目标 着重三基(基本理论、基本知识、基本技能)培训,训练观察和逻辑推理能力。了解影像医学和核医学的现状和发展前景,建立较为完整的现代医学影像概念(包括影像诊断及其治疗)。通过培训使受训者达到能独立从事本专业工作的水平,并能够在上级医师的指导下,进行简单的科研工作。 二、培养方法 第一年、在学科内各专业组之间轮转,专业组内培训6个月、各专业组之间培训6个月。其轮转时间依所从事专业不同而异。 第二年、相关临床科室轮转,内科4个月、外科4个月、非指定科室培训4个月(即根据本专业所涉及的科室进行安排,其中包括儿科,妇产科,神经内科和神经外科,耳鼻喉科,口腔科等;此外,也可根据专业特点适度延长在内、外科的培训时间)。 第三年、本专业组内进行专科培训。 三、培养内容与要求 (一)第一年的第1~6月:本专业组内培训 1、轮转目的: 系统掌握和熟悉本学科的基本理论、基本技能和基本操作,初步掌握本学科所涉及的常见病、多发病的基本诊断和治疗原则。了解这些专业组的日常工作程序、内容及涉

核医学重点总结

第一张绪论 核医学概念:利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科;是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。 第二章核医学物理基础、设备和辐射防护 衰变类型:α衰变(产生α粒子);β–衰变(产生βˉ粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低,多余的能量以x射线的形式辐射出来 电子俘获:质子从核外取得电子变为中子。由于外层电子与内层能量差,形成的新核素的不稳定常产生:特征性X射线-能量转化;俄歇电子:能量 使电子脱离轨道。 衰变规律:放射性核素原子数随时间以指数规律减少。指数衰减规律 e-λt N = N (t = 0)时放射性原子核的数目 N 0: N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 带电粒子与物质的相互作用(电离作用、激发作用) γ射线与物质的相互作用(光电效应、康普顿效应、电子对生成)光电效应:康普顿效应:电子对生成: 辐射防护目的:防止有害的确定性效应, 限制随机效应的发生率,使之达到可以接受的水平。 总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。 非随机效应有阈值正相关; 随机效应无阈值严重程度与剂量无关。 基本原则:实践正当化;防护最优化;个人剂量限制。外照射防护措施:1.时间2.距离3.屏蔽电离辐射生物学效应对机体变化:按效应出现的对象,分为躯体效应(somatic effect)及遗传效应(genetic effect)。按效应出现的时间,分为近期效应(short-term effect)及远期效应( long-term effect)。按效应发生的规律,分为随机效应(stochastic effect)及非随机效应( non-stochastic effect)。 2、正电子显像常用标记核素 11C、13N、15O和18F 18F-FDG半衰期:110分钟 第四章放射性示踪与显像技术 放射性核素制备1.核反应堆制备。 2.医用回旋加速器制备。3.放射性核素发生器(长半衰期核素产生短半衰期核素)。应用最广的是99Mo(钼)66h-99mTc

核医学考试 分章重点总结

K L M N 原子核结构: X为元素符号 Z为质子数 N为中子数 A为质量数 元素——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I; 核素——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 同位素——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。eg 131i 127i 同质异能素——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc .基态:能量处于量低的稳定能级状态称之为基态。

激发态:原子获得能量时,即具有较高的能级状态时称为原子的激发态。 退激:处于激发态时电子不稳定,非常容易将多余的能量以光子的形式辐射释放出来而回到基态的过程称为退激。 一、核衰变方式 1. α衰变:α粒子得到大部分衰变能,α粒子含2个质子,2个中子 α衰变:241Am(镅)→237Np(镎)+4He α衰变:射程短、能量大、破坏力强、屏蔽用低原子序数物质即可 2. β衰变 ?β-衰变:3215P → 3216S + β- + Ue + 1.71MeV(富中子)β-衰变:3H→3He+ β- ? ?正电子衰变:137N → 136C + β++ υ + 1.190MeV(贫中子)正电子衰变:11C→11B+ β+ ? β射线本质是高速运动的电子流 β衰变:射程、能量适中适合治疗、显像、屏蔽首先低原子序数物质再用高原子序数物质 γ衰变 γ衰变往往是继发于α衰变或β衰变后发生,这些衰变后,原子核还处于较高能量状态,由激发态回复到基态时,原子核释放出γ射线。 ?99Mo → 99m Tc + β-→ 99Tc + γ (T : ①66.02d; ②6.02h) 1/2 ?131I → 131Xe + β- +γ :8.04d) (T 1/2 γ衰变:99m Tc→99Tc γ衰变射程长、能力低、适合显像屏蔽用高原子序数物质 γ衰变特点: 1.从原子核中发射出光子 2.常常在α或β衰变后核子从激发态退激时发生 3.产生的射线能量离散 4.可以通过测量光子能量来区分母体的核素类别 P26 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变,但其衰变数目与原子核数目的比率是固定不变化,这个的概率称之为衰变常数(λ) 带电粒子与物质的作用(α,β) Ionization 电离 Excitation 激发

(影像医学与核医学)硕士专业学位考试大纲

(影像医学与核医学)硕士专业学位考试大纲

同等学力人员申请临床医学(影像医学与核医学)硕士专业学位 学科综合水平全国统一考试大纲 影像医学与核医学 I.考试范围 要求考生系统掌握医学影像专业基础知识及各系统大体解剖、正常影像解剖和变异。掌握各种影像检查方法(X 线、DSA、CT、MRI、B 超、核医学)的特点、基本成像原理、适应证和禁忌证、图像质量控制及图像后处理技术、对比剂的使用、毒副作用的表现及抢救原则。了解各种介入治疗方法的治疗原则、适应证和禁忌证。了解各系统疾病的病因、病理学改变、临床特点、实验室相关检查项目的临床意义、治疗原则及相关临床学科知识,掌握并能综合应用各系统常见疾病的影像学表现、影像诊断和鉴别诊断,了解各系统少见疾病或疑难疾病的影像学表现、影像诊断和鉴别诊断。 II.考试要求 要求考生系统掌握影像医学中最主要的基础理论、基本知识和基本技能,并且能运用它们来分析和解决实际问题。

【能力要求】主要测试考生以下几个方面的能力: 1.对医学影像学领域中最主要的基本理论、基本知识和基本技能的掌握程度2.运用这些基本理论、基本知识和基本技能对有关的理论和实际问题做出综合判断和评 论的正确程度3.分析解决实际问题的能力 III.考试形式及试卷结构 一、答卷方式 闭卷、笔试。 二、考试时间 180 分钟(试卷满分为100 分)。三、题型分数比例 选择题A1 型选择题85 题约42.5% A2 型选择题40 题约20% B 型选择题50 题约25% X 型选择题25 题约12.5% IV.大纲内容 第一部分放射医学 一、医学影像检查技术

1. X 线成像(掌握) 2.数字减影血管造影(DSA)(识记) 3.计算 机断层成像(CT)(掌握) 4.磁共振成像(MRI)(掌握) 二、呼吸系统 1.检查方法(掌握)? 2.正常影像解剖及基本病变影像学表现(掌握) 3.肺部肿瘤病因病理(识记)、临床特点(识记)、影像学表现(应用)、诊断和鉴别诊断(应用) 4.肺部感染性疾病(肺炎、肺结核、肺脓肿等)病因病理(识记)、临床特点(识记)、影像学表现(应用)、诊断和鉴别诊断(应用) 5.气管和支气管疾病病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握) 6.支气管及肺先天性病变病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握) 7.胸部外伤病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握) 8.肺间质性疾病病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握)

核医学重点名词解释大题总结

名词解释(百分之百涵盖率) Α衰变:原子核自发放射α粒子的核衰变过程。α粒子是电荷数为2、质量数为4的氦核He。散射:带电粒子与物质的原子核碰撞而改变运动方向或/和能量的过程 核素:指具有相同的质子数、中子数及特定能态的一类原子。可以表示某种院子的固有特征。同位素:具有相同质子数而中子数不同的核素。同位素在元素周期表上处于同一位置,具有相同的化学性质和物理学特征。 同质异能素:质子数和中子数都相同而核能状态不同的核素。激发态的原子和基态的原子互为同质异能素。 放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能成为稳定的核素称为放射性衰变:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。 有效半衰期:指生物体内的放射性核素由于机体代谢从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一半所需的时间。 物理半衰期:指放射性核素减少一半所需要的时间,越短说明衰变越快。 生物半衰期:指生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间 放射性活度:单位时间内原子核的衰变数量。指一定量的放射性核素在很短的时间间隔内发生的和衰变数除以该时间间隔。 剂量当量:衡量射线生物效应及危险度的辐射剂量。单位为希沃特(Sv),不仅与吸收剂量有关,还和射线种类有关。与吸收剂量的关系是:剂量当量=吸收剂量×射线的权重因子 最大容许剂量:经过长期积累或者一次照射以后对机体损害最轻也不发生遗传危害的剂量。全年不能超过5雷姆。 天然放射本底:指原有的放射性水平,包括宇宙射线,环境中的放射性,体内放射性。 核素发生器:用特定的洗液将母体长半衰期核素洗脱后获得短半衰期子体核素的一种装置,称为母牛。 内照射:放射性核素进入生物体,使生物受到来自内部的射线照射称为内照射 放射性免疫分析中的非特异性结合率:不加抗体时标记抗原与非特异性物质的结合率,一般要求<5~10% 放射性免疫分析中的最高结合率:又叫零标准管结合率,指不加非标记抗原时,标记抗原与抗体的结合率,要求在30~50% GFR:肾小球滤过率。指单位时间内两肾生成滤液的量,正常成人为125ml/min左右。肾小球滤过率与肾血浆流量的比值称为滤过分数。 PFR:心室充盈期的最大容量变化速率,是目前最常用的心脏舒张功能参数 LVEF:每搏输出量占心室舒张末期容积量的百分比。 PET:正电子发射型计算机断层显像。是专门探测体内正电子发射体产生湮灭辐射而设计的显像仪器。它克服了平面显像的缺点,所获得的图像反应人体的生化、生理、病理及功能,并能进行定量分析,能获得核医学显像中最理想的三维图像,空间分辨率好,灵敏度高且不受深度影响。对疾病的早期诊断确定治疗方案,检测疗效和判断预后有很大价值。SPET:单光子发射型计算机断层。是高性能、大视野、多功能的γ照相机和支架旋转装置、计算机和图像重建软件等组成,可进行多角度多方位的数据采集,最后将获得的多幅二维投影图像,利用计算机重建软件显示出横断面、矢状面和冠状面三种断层显像,完成各种脏器的动静态显像。 时相图:在心血池影像基础上以不同的颜色和灰阶代表每一像素开始收缩的时间,构成时相图,亦称相位图。正常情况下左右心室收缩基本同步,故具有相同的灰阶和颜色,反映心肌收缩良好;心肌缺血或梗死时,病变局部时像明显延迟,灰阶或颜色与正常部位有较大差异。极坐标靶心图:在心肌灌注显像影像图中,以短轴断面自心尖部展开所形成的二维同心圆,构成靶心图。缺血区域在靶心图上表现为变黑区。靶心图与冠状动脉供血区相匹配,因而能明确责任血管之所在。 利尿肾图:对肾图出现梗阻型曲线者给予利尿剂,经一定时间再次检测的肾图称为利尿肾图。临床上主要用于机械性梗阻与单纯扩张性肾盂和输尿管的鉴别。若利尿肾图无明显恢复即仍呈梗阻型肾图则为前者,若利尿肾图改善或恢复正常为后者。 超级骨显像:是显像剂异常浓聚的特殊表现。显像剂在全身骨骼分布呈均匀、对称性异常浓聚,或广泛多发异常浓聚,软组织分布很少,骨骼影像异常清晰,肾和膀胱影像常缺失。常见于以成骨为主的恶性肿瘤广泛性骨转移、甲旁亢等患者。 肿瘤受体显像:用67Ga显示肿瘤的一种方法。67Ga通过转铁蛋白受体结合到肿瘤细胞表面,然后被转运到细胞内与胞浆蛋白结合,这些蛋白在肿瘤细胞中的浓度通常很高。67Ga 被生长旺盛有活力的肿瘤组织摄取,而坏死或纤维化的肿瘤不能摄取,进而对活动肿瘤进行显像。

(完整word版)核医学重点[1]

核医学:采用核技术来诊断、治疗和研究疾病的一门新兴学科。它是核技术、电子技术、计算机技术、化学、物理和生物学等现代科学技术与医学相结合的产物。 核素:质子数中子数相同,原子核处于相同能级状态的原子 同位素:质子数相同,中子数不同的核素互称同位素 同质异能素:质子数和中子数相同,核能状态不同的原子 放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素 放射性衰变:放射性元素自发地释放放射线和能量,最终转化为其他稳定元素的过程 物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。 生物半衰期Tb:指生物体内的放射性核素由于机体代谢从体内排出一半所需要时间。 放射性活度:表示为单位时间内原子核的衰变数量 SPECT单光子发射型计算机断层仪 PET(正电子发射型计算机断层仪)的原理:通过化学方式,将发射正电子的核素与生物学相关的特定分子连接而成的正电子放射性药物注入体内后,正电子放射性药物参加相应生物活动,同时发出正电子射线,湮灭后形成的能量相同(511keV)方向相反的两个γ光子 放射性药物:含有放射性核素供医学诊断和治疗用的一类特殊药物 放射性药物的特点:具有放射性,具有特定的物理半衰期和有效期,计量单位和使用量,脱标及辐射自分解 光子量范围100~250keV最为理想,目前使用较多的放射性核素衰变方式是β-衰变组织内的射程在纳米水平,在这样短的射程内释放所有能量,其生物学特性接近于高LET射线,治疗用放射性药物的有效半衰期不能太短,也不宜过长,以数小时或数天比较理想 吸收剂量:单位质量被照射物质吸收任何电离辐射的平均能量。 确定性效应:辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应 随机效应:研究的对象是群体,是辐射效应发生的几率与剂量相关的效应,不存在具体的阈值 辐射防护的原则:1.实践的正当化2.放射防护最优化3.个人剂量限值 外照射防护措施:1.时间2.距离3.设置屏蔽 放射性核素示踪技术的方法特点:1.灵敏度高2.方法相对简便、准确性较好3.合乎生理条件 4.定性、定量与定位的相对研究相结合 5.缺点与局限性方法学原理:1.合成代谢:根据甲状腺内131I分布的影像可判断甲状腺的位置、形态、大小以及甲状腺结节的功能状态2.细胞吞噬3.循环通路4.选择性浓聚5.选择性排泄6.通透弥散7.离子交换和化学吸附8.特异性结合 静态显像:当显像剂在脏器内或病变处的浓度到达高峰且处于较为稳定状态时进行的显像 动态显像:在显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影像或系列影像 局部显像:仅限于身体某一部位或某一脏器的显像 全身显像:利用放射性探测器沿体表做匀速移动,从头至足依序采集全身各部位的放射性,将它们合成为一幅完整的影像 平面显像:将放射性显像装置的放射性探测器置于体表的一定位置采集某脏器的放射性影像 断层显像:用可旋转的或环形的放射性探测装置在体表连续或间断采集多体位平面影

影像医学与核医学-xzhmu

影像医学与核医学 Medical Imaging and Nuclear Medicine (专业代码100207) Ⅰ. 医学学术学位硕士研究生培养方案 一、培养目标 为适应医药卫生事业发展的需要,培养德、智、体全面发展的二十一世纪医药卫生高层次专门人才,影像医学与核医学科学术学位培养目标如下: 1.坚持四项基本原则,热爱社会主义祖国,遵纪守法,具有高尚医德医风和为社会主义现代化建设和祖国医学事业献身的精神。 2.了解和掌握科研工作的全过程,在导师指导下能进行科研设计,确立科研路线及分析方法、总结科研结果,并训练有一定的教学能力。 3.系统掌握本专业的基础理论、基本知识和基本技能,了解本专业国内外进展,在临床工作上,能掌握基本操作及常见病的诊断。 4.熟练掌握一门外语,具有较强的听、说、读、写的能力,能熟练地阅读专业外文资料。 5.身心健康。 二、学习年限和总体时间安排 学习年限为三年。 第一学期集中学习公共必修课、指定选修课、专业必修课及选修课等,参加研究生学术例会。 第二至四学期开始临床培训,为期12个月。第一学期结束前开始作文献综述报告、开题报告及评议。第二学期结束前完成文献综述、开题报告及评议。 第五至六学期进行科学研究和答辩12个月。第二学期中期举行预答辩,6月初举行答辩。 研究生第二、三年级均不享受寒暑假,两年中休假日为40天,即每年20天,由研究生申请,导师安排。具体培养进程参照研究生学院颁发的《徐州医学院硕士研究生培养工作进程表》。 三、研究方向 1.影像诊断新技术的开发和应用 2.放射诊断的基础与应用研究

3.介入放射学的基础与应用研究 4.超声诊断的基础与应用研究 5.临床核医学的基础与应用研究 四、课程设置与要求 (一)课程设置(见课程设置表) 包括公共必修课、指定选修课、专业必修课及选修课(根据研究方向不同在导师指导下选择以下各类课程)。 备注:大学英语六级考试未通过的研究生必须选修英语(普通班),通过的研究生可根据自身需要选

相关主题
文本预览
相关文档 最新文档