当前位置:文档之家› 微积分与数学思想方法

微积分与数学思想方法

微积分与数学思想方法
微积分与数学思想方法

数学思想方法的解释有多种多样,其中胡炯涛《数学教学论》广西教育出版社,一书中指出数学思想方法则是数学知识发生过程中的提炼、抽象、概括和升华,是对数学规律更一般的认识,它蕴藏在数学知识之中,需要学习者去挖掘[6]。数学思想方法分为两部分,一是数学思想,二是数学方法,其中数学思想是指我们对教材中理论知识及内容最本质的认识,而数学方法是数学思想的具体化形式,运用到实际的题目中[20]。下面就具体来阐述一下微积分习题中的数学思想方法:

5.1函数思想

函数思想是我们在中学阶段中常见的一种思想方法,是指用函数的概念、性质、特点去分析问题、转化问题和解决问题的一种思维,函数思想是一个基本的数学思想,方程,不等式问题可以在函数的观点下统一起来,数列是特殊的函数,集合论的知识作为建立函数的基础,也包括在其中[11]。在新版教材微积分的内容中,函数思想更为重要,其中一部分题目就是借助“微积分”这个工具,最后还是依据函数的基本性质去解决问题。例如:

一条长为l 的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?[12](新版教材人教A 版选修2–2课本37页习题)

解:设其中一段铁丝的长度为x ,则另一段为x l -,面积为s

根据题意得:

整理得:

求导数,并令导数等于零,解得:

分析:这类题型在新版教材中为常见的一种题型,根据题意得到函数表达式,

借助“微积分”这个工具,结合函数的性质来解决问题。当 时导函数的函

数值为零,这时函数取得最小值(函数的性质)。

例如:有一家宾馆有50个房间共旅客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价每增加10元,就会有一个房间空闲,如果旅客居住房间,宾馆每间每天需花费20元的各种维护费用,房间定价多少时,宾馆利润最大? 分析:这是一个生活中实际的问题,解决方法,根据题意列出函数表达式,我们4444x

l x l x x s -?-+?=162222l lx x s +-=2l x =2l x =

要找到关键问题,利润是由房间数乘以房间定价让后减去房间数乘以房间维护费,所以关键就是房间数,我们设房间定价为x 元,利润为s ,

对x 进行求导,并令导数为零,得到350=x ,即可解得利润的最大值

把数学问题用函数表示出来,借助“微积分工具”去解决数学问题,这是我们常用的方法,即函数思想结合“微积分”去解决问题。特别的我们在学习了“微积分”之后,这种题型是我们常见题型及常考题型之一。

5.2极限思想

我们所谓的极限思想是我们微积分的基本思想之一,所谓极限思想是指:利用极限概念去分析及解决问题的一种数学思想方法。

高中数学新版教材微积分虽然不学习极限理论,但是在问题解决中却处处应用了极限思想。由于中学生对极限思想已经不再陌生,早在学习求圆的面积公式时就有了极限思想(刘徽的割圆术)、后来学习球的体积公式时对极限思想有了更进一步的体会。因此在导数、定积分定义的引入和导数的几何意义学习过程中,学生可以再次体会到极限思想在问题解决中的重要价值[21]。

(1)我们在求一个物体的瞬时速度时,是规定在很小的时间间隔t ?,即:

0→?t 时,物体的平均速度 就是物体在0t 这个时刻时的瞬时速

度,即: (2)我们在解决曲边梯形面积时:我们首先把曲边梯形的面积S 进行无限分割,从而就把有限变成了无限,我们把小矩形的面积用S '?来表示,用来表示S ?;再把小的矩形无限累加得到曲边梯形的近似值,又从无限回到有限。最终我们求得曲边梯形的面积为:

导数:函数)(x f y =在0x x =处的导数,就是此函数在此点的瞬时变化率,

定积分:我们表示函数()x f 在区间[]b a ,上的定积分,是指将区间],[b a 等分成n 个小区间,当∞→n 时,它们的和式就无限接近的一个确定值,即

(3)对于学习导数的几何意义,我们是从函数)(x f y =在0x 处的切线开始

()()201018050-??? ?

?--=x x s x x f x x f x f x ?-?+='→?)()(lim )(0000)(lim )(1i n i n b a f n a b dx x f ξ∑?-∞→-=()x f S i n

i x ?∑==→?ξ10lim t

t v t t v ?-?+)()(00t t v t t v v t ?-?+=→?)()(lim 00

的学习的,我们通过观察函数在点0x 处的切线的变化趋势,总结得到的导数的几何意义。

(4)高中新版教材“微积分”部分在解决求变速直线运动的路程,求平面图形面积、变力做功中也都应用到了极限思想。[13]

5.3数形结合思想

数形结合思想是我们中学解决数学问题中常用的一种思想方法。所谓数形结合是指:把比较抽象的数学符号和语言与直观的图形结合起来,使抽象思维和形象思维相结合,通过直观的图像来帮助我们简化问题和解决问题,就是在研究数学问题时,由数思形、见行思数、数形结合考虑问题的一种思想方法[14]。数形结合思想往往能够帮助我们分析问题,使复杂的问题通过图像形象直观的表达出来。在新版教材中“微积分”领域的习题中比较常见,例如:

求函数 上的最大值与最小值。 解:分析:在我们学习“微积分”之前这类问题不容易解决,但现在学习了

“微积分”这个有利的“工具”就比较简单。先求函数的导函数易得()42'-=x x f 令导函数等于零,得到极值点,根据函数性质画出函数的图像[]3,0如图:

从图形中易得函数 的最大值及最小值。 数形结合思想更加倾向于帮助我们分析问题,了解问题的本质,这个本质是利用图像来表示出来,使得我们能够直观的观察问题的本质,从而能够更好地解决问题。例如我们在研究函数的单调性与导数的关系时,我们就是通过图形,先求得函数的导函数,然后画出导函数的函数图像,我们可以直观的通过观察函数的图像,从而得知单调性与导数之间的关系。我们利用导数来研究函数的单调性,然后讨论导数与函数的极值、导数与函数的最值等问题时,我们都是借助于函数的图像来得到直观的结论[22]。我们在学习研究定积分的概念时,就是通过研究曲边梯形的面积,首先画出它的草图,然后借助图形,直观地确定被积函数的上、下限。

()[]3,044313在+-=x x x

f ()[]3,044313在+-=x x x f

例如:计算由曲线22,x y x y ==所围图形的面积s.

分析:画出图形,易知阴影部分为所求的面积 我们通过观察直观的图像来确定被积函数

的上、下限。

综上可知,数形结合思想在“微积分”的内容上是解决问题的至关重要的一个思想方法。借助数形结合的思想方法不但有利于学生的抽象思维能力,提高学生探究问题、解决问题的能力,而且有助于学生具体地看到数学来源于生活,是现实生活的高度抽象,有着广泛的应用价值,使学生自然而然地产生学好数学的愿望。

5.4模型思想

要懂得模型思想,首先要懂得数学建模。数学建模是指对现实世界中原型进行具体构造数学模型,是问题解决的一个重要方面和类型,将考察的实际问题转化为数学问题,构造出相应的数学模型,通过对数学模型的研究和解答,使原来的实际问题得以解答的过程。我们构造出相应的数学模型,通过对数学模型的研究和解答,使原来的实际问题得以解答的过程[28],数学模型是关于现实世界的,为一定目的而作的抽象,简化的数学结构。它用数学符号、公式、图像等刻画客观事物的本质属性与内在规律。数学的模型方法是指:我们在解决数学问题时,把问题抽象成一个模型,利用数学知识去解决这个模型,我们称之为建模,如下图:

在我们高中新版教材中,运用了大量的建模思想,特别是在微积分的内容中,例如:利用导数处理解决汽车汽油使用效率最高、磁盘的最大存储量、饮料瓶大小对饮料公司利润的影响等优化问题的基本思路就应用了以上形式的数学

模型:(新版教材课本36页)

建模思想现在在中学发展比较迅速,我国每年都会组织数学建模大赛,以加强中学生对该知识的学习,培养学生的学习兴趣,有助于开发学生的思维能力。特别在学习“微积分”这类知识时运用的更加广泛,例如新版教材中的题目相对来说比较“抽象”,我们运用建模思想来解决此类题目。

5.5转化与化归思想

转化与化归思想是我们中学数学在解决问题时常用的思想方法之一,所谓转化与化归思想是指:我们在解决数学问题时,把我们不会的知识转化一下,归结成我们已经会的知识(旧知识),从而把问题解决掉。

例如:新版教材中定积分概念的引入,求曲边梯形面积时就应用了转化与化归的思想,其步骤是:曲边梯形分解成小曲边梯形,然后转化成小矩形(我们熟悉的矩形,求矩形的面积,化归思想),最后利用和式极限求出面积,即定积分。用下图来表示:

波利亚是这样说的:“去设计并解出一个合适的辅助问题,从而用它求得一条通向一个表面上看来很难接近的问题的通道,这是最富有特色的一类智力活动。”[18]

在定积分概念的引入,求曲边梯形面积时就应用了这样的思想,对曲边梯形通过分割(分解的思想)成小的曲边梯形,在无限小的范围内,近似认为是小的矩形(化归的思想),在通过对小矩形的累加求和,使问题得到解决,这一过程可以归结为[19]:

[13]

通过以上叙述,数学习题是数学思想方法的直接表达方式,我们在做习题时应该挖掘习题中所蕴含的思想方法,通过挖掘思想方法来节省巩固我们所学习的

知识。

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

物理中的微积分思想

高中物理中微积分思想 浙江省湖州中学物理组 潘建峰 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。 1、解决变速直线运动位移问题 匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢? 例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里? 【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。 但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即202 1at t v x +=。 【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(5025 02050050=-=+=+==?? 小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v -t 图像,找“面积”就可以。或者,利用定积分就可解决. 2、解决变力做功问题 恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我 们如何求解呢? 例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运 动,已知物体与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到

浅谈大一微积分

浅谈大一微积分 姓名:龚文皓学号:1511010411 关键词:微积分,极限,求导,不定积分 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。 微积分是每个大学生都必修的内容,而学习微积分,我们首先学习的就是极限,数列,函数都有极限,在没有进入大学之前,我们的知道了极限这个名词。但是一次没有介绍过,然而在我们的学习中一直在用到极限思想来解决一些数学问题。极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从直线形认识曲线形,从近似认识精确。所以学习极限对于学习微积分这一块是十分重要的,极限就是微积分学习的基础,盖房的砖瓦。 再接着我们学习的就是导数了,求导我们在高中的学习中已经无数次的用到了它,有时候解决一些物理问题,如天体的运动也要利用到求导。导数的概念是从良多现实的科学问题抽象而发生的,在经济剖析、经济抉择妄想、经济打点中,有着普遍的应用意义其作为数学剖析课程中最主要的根基概念之一,反映了一个变量对另一个变量的转变率。在经济学中,也存在转变率问题,如:边际问题和弹性问题。运用导数可以对经济活动中的实际问题进行边际分析、需求弹性分析和最值分析,从而为企业经营者科学决策提供量化依据。如今许多企业在判断一项经济活动对企业的利弊时,仅仅依据它的全部成本。而我认为还应当依据它所引起的边际收益与边际成本的比较。求导也就是求函数的变化率,它直观的反映出一种变化趋势,所以我们要学会求导,掌握好这一数学工具。 求导是微分运算,而不定积分是积分运算,微分运算和积分运算是互逆的。我们可以通过积分的形式可以求出路程,不规则图形面积,可以帮我们解决一些问题复杂问题,而求积分又涉及了多种方法,学习掌握好不定积分的求法很重要,也可以帮助我们更加深层次的理解理解微分,什么是微分以及为什么要微分。对于微积分的学习很有帮助。 总而言之,因为微积分是高等数学学习的入门,所有很有必要每个大学生都掌握好微积分的知识,以便今后的高等数学的学习。以为微积分还可以解决很多经济学上的问题,可以帮助我们从数学角度去分析经济学,对于之后所要学习的其他学科也有一定的帮助。以上是我关于微积分学习的一点收获。

微积分方法及应用

微积分方法及应用(部分) 1.求导公式 ()0'=c ()1'-=n n nx x ()Ina a a x x =' ()= 'l o g x a x I n a 1 ()x x cos 'sin = ()x x s i n 'c o s -= ()x x 2sec 'tan = ()x x 2c s c 'c o t -= ()x x x tan sec 'sec = ()x x x c o t c s c 'c s c -= ()2 11'arcsin x x -= ()2 11'a r c c o s x x --= ()211'arctan x x += ()2 11 'a r c t a n x x +-= 【应用】 求()x e x f =的导数. 解:由公式知,()x x e Ine e x f =='. 2.链法则与导数法则运算 链法则: 二次复合:()[]{}()[]()x g x g f x g f '''= 三次复合:()[]{} {}''f x g f =?()[]{}()[]()x x g x g ''??? 运算法则: 加法减法: ()()[]()()'''x v x u x v x u ±=± 乘法: ()()[]()()x v x u x v x u ''=()()x v x u '+ 除法: ()()()()()()()[]2 '''x v x u x v x v x u x v x u -=?????? 【应用】

求y=()[] x x e Inx x cos sin -+的导数 解:设()x e Inx x cos sin -+为u ,则原式为:xInu x e u =,对其求导,有 ()单,'''xInx xInu e u x u Inu e xInu y ?? ? ?? +==独求 ()()()()x e Inx x x x e Inx x Inx x u u x x sin cos 11'cos cos '','cos cos ++??? ??+=-++=,再将 .'代入即可与u u 隐函数求导 隐函数是隐藏的函数,不易求出,其导数却较易求出. 在求导时,只需将y 看作含x 的式子,求导时写作y ’即可 例如:.0'.,2,时的导数值并求出的导数求隐函数满足已知=+=y y y e x y x y xy ()()'1'22'1'22y e xy y In y e xy In y xy y xy +=+?+=解:两边求导得 .2 2122''In x e y In y y xy y xy --=提至一边,有:将 1'',00-===y y x y ,求出再一起代入代入原式,得将 3.极限公式与用法 ★★★注:以下x 可任意替换成含.,322 等的式子,如ax x x - 极限四则运算

微积分的起源与发展.

微积分的起源与发展 主要内容: 一、微积分为什么会产生 二、中国古代数学对微积分创立的贡献 三、对微积分理论有重要影响的重要科学家 四、微积分的现代发展 一、微积分为什么会产生 微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。 困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。 第二类问题是求曲线的切线的问题。 这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。这个定义对于十七世纪所用的较复杂的曲线已经不适应了。

数学模型课后答案

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q值方法; (3).d’Hondt方法:将A、B、C各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, , 432 ,333 ,235321 ===p p p ∑==3 1 . 1000i i p 方法一(按比例分配) , 35.23 1 11 == ∑=i i p N p q , 33.33 1 22 == ∑=i i p N p q 32 .43 1 33 == ∑=i i p N p q 分配结果为: 4 ,3 ,3321 ===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分 配)为: 4 ,3 ,2321===n n n 第10个席位:计算Q 值为

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ??+=n t dn wkn r k vdt 0 )(2π ) 2 2 2 n wk k(r n πvt +=∴ . 2 2 2n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日) 1. 在 3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

微积分2方法总结

第七章 矢量代数与空间解析几何 ★类型(一) 向量的运算 解题策略 1. a a a ?=,2.},,{321a a a a = , .||232221a a a a ++= 3. 利用 点积、叉积、混合积的性质及几何意义. ★类型(二) 求直线方程 解题策略 首先考虑直线方程的点向式与一般式,否则再用其它形式. 类型(三) 直线点向式与参数式转化 类型(四) 异面直线 ★类型(五) 点到直线的距离、两直线的夹角 ★类型(六) 求平面方程 解题策略 平面方程的点法式、一般式、平面束. 类型(七) 直线与平面的位置 类型(八)求曲线与曲面方程 解题对策 一般用定义求曲线与曲面方程 疑难问题点拨 一般参数方程?? ???===Γ)()()(:t h z t g y t f x 绕Oz 轴旋转所成旋转曲面∑的方程 .)]}([{)]}([{212122z h g z h f y x --+=+ 证如图4-7, 设),,(z y x M 是曲面 上任意一点,而M 是由曲线Γ上某点),,(1111z y x M (对应的参数为t 1)绕Oz 轴旋转所得到。因此有).(),(),(111111t h z t g y t f x === ,1z z =,2 12122y x y x +=+),()(111z h t t h z -=?=? )]([)],([1111z h g y z h f x --==, 故所求旋转曲面方程为.)]}([{)]}([{212122z h g z h f y x --+=+ 特别地,若Γ绕Oz 轴旋转时,且Γ参数方程表示为???==). (),(z g y z f x 则 ).()(2222z g z f y x +=+ 事实上,由前面的证明过程可知),(),(1111z g y z f x ==1z z =,212122y x y x +=+ ),(),(11z g y z f x ==? 故).()(2222z g z f y x +=+ 图4-7

经济数学微积分试题

经济数学-微积分模拟试题-按模块分类 一、单项选择题(每小题3分,) 1.下列各函数对中,( D )中的两个函数相等. A. x x g x x f ==)(,)()(2 B. 1)(,1 1)(2 +=--= x x g x x x f C. x x g x x f ln 2)(,ln )(2== D. 1)(,cos sin )(2 2 =+=x g x x x f 2.已知1sin )(-= x x x f ,当( A )时,)(x f 为无穷小量. A. 0→x B. 1→x C. -∞→x D. +∞→x 3. ? ∞+1 3 d 1x x ( C ). A. 0 B. 2 1- C. 2 1 D. ∞+ 1.下列函数中为奇函数的是( ).B (A) x x y sin = (B) x x y -=3 (C) x x y -+=e e (D) x x y +=2 2.下列结论正确的是( ).C (A) 若0)(0='x f ,则0x 必是)(x f 的极值点 (B) 使)(x f '不存在的点0x ,一定是)(x f 的极值点 (C) 0x 是)(x f 的极值点,且)(0x f '存在,则必有0)(0='x f (D) 0x 是)(x f 的极值点,则0x 必是)(x f 的驻点 3.下列等式成立的是( ).D (A) x x x d d 1= (B) )1d( d ln x x x = (C) )d(e d e x x x --= (D) )d(cos d sin x x x =- 1.若函数x x x f -= 1)(, ,1)(x x g +=则=-)]2([g f ( ).A A .-2 B .-1 C .-1.5 D .1.5

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

微积分求解技巧

有时候就是需要大胆去想,大胆去尝试。你自认为不可能的事情恰恰成为出卷人考察你的把柄。 计算不定积分:x e x x e x x d ) () 1(2 ?-- 我的解法: C xe xe xe xe xe x xe x e x e x x e x x x x x x x x x +-=-=--=--=--=---------????11)1d()1(1)1()d(d )1()1(d )()1(2 222 同类型的题目 C x x x x x x x x x x x x x x x x x x x x x x x x x x x x x +-=---=-=-+=-+=-+?????tan 11)tan 1()tan 1d()tan 1()tan d()tan 1(d tan dtan d )tan 1(tan cos d )sin (cos cos sin 222222再来一题: x x x d ln 1 ln 2?- 我的解法: C x x x x x x x x x x x x x x x x x x x x x x x x x +=++-=-+--=--=---=-?????ln d ln ln 1ln ])1(ln d[ln 1 ln )1(ln ln 1d )1(ln d ln )1(ln d ln 1ln 22 不要把出题人想象的多么神圣,他只是看的题目比你多,仅此而已! 下面一题是用分部积分算的,但是我们可以用微分的性质快速的进行计算。 其实过度的依赖规则就是对思维的桎梏,有时候我们就是要转变思想,打破规则! 再来一个抽象函数的题目:

()ln()()ln()ln()ln() =d d ()()()() ln()d ln()ln()d ln()d[ln()ln()]ln()ln()x a x a x b x b x a x b x x x a x b x b x a x a x b x b x a x a x b x a x b C +++++++=+++++=+++++=++=+++? ???原式 有时候就是要换个角度看问题,避开出题人设置的障碍,虽然这并不是出题人的本意,但是这却是他没有充分考虑的Bug !怪只能怪出题人太笨,脑子不转弯。

高等数学思想方法

高等数学思想方法 第一章函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。 (2)极限的思想 极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。 第二章导数与微分 主要的思想方法: (1)微分的思想 微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。 (2)数形结合的思想 书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。 (3)极限的思想 不难发现导数概念的引入与定义深刻地体现了极限的思想。 (4)逻辑思维方法 在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。 第三章中值定理与导数的应用 主要的思想方法: 导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

微积分学习方法

《微积分》学习方法 来源:东财网院 很多同学都会认为,数学是一门比较难学的学科,有那么多的定义、公式、定理,还有图像以及各种曲线等等,总是让人头疼。所以同学们在接触微积分之前,可能就已经对它产生了心理恐惧,甚至是排斥心理。而事实并非如此,之所以会这样是因为你还没有掌握正确的学习方法。 首先,大家应该大致翻一下教科书,或者是看看目录和前言,了解学习这么课程所需具备的基础知识是什么。从第一章的内容中,大家可以了解到,微积分的起点是中学里的函数概念和解析几何。所以,如果以往的知识不牢固,或是没有接触过,那么最好找来中学的教科书复习一下。接下来,大家就接触到了极限,数列的极限以及函数的极限。大家可能会发现,极限的定义很难看懂。那是不是就能以此为借口,停顿在这里呢?当然不能,我们可以先把这个问题放一下,继续向下。实际上,极限的概念是很直观的,理解其思想即可,看不懂定义并不影响下面的学习。 接下来的部分就较为重要了,而且不能跳过。导数的概念其实也很简单,就是一个量关于另一个量的变化率。下面可能牵扯到很多导数的公式和运算技巧,很少有人会马上记住,这也不要紧,可以在平时的练习中慢慢掌握。可能有些同学喜欢解题,喜欢推导和运算,这固然是好事,但不要过度的沉浸在题海中。接触到微分,大家会发现,它和导数没有实质性的区别,只是在表达方式上有所不同,这是需要大家分清楚地。 下一个难点就是积分了。积分的数学定义可能较难理解,那么可以从图形下手,可以充分发挥想象力:为了求得曲线所围的面积,用无数小梯形去无限逼近,这也就是极限的思想。其实积分的本质就是极限。理解它的本质后,运算技巧可以暂放一下,在考试前可以集中解决运算技巧的问题。 对于多数同学来说,微积分的后半部分会更难些。对于无穷级数,同学们还是重在理解思想。多元函数微积分比前面的一元函数稍微复杂了些,但是基本的思路是一样的。最后一个难点,就是关于微分方程了。首先,要理解微分方程的有关概念以及微分方程的解,这样才能对微分方程有所识别。其次,对各种类型的微分方程,都要抓住其特征的本质,领会每一道例题中解题的方法和含义。 在学习数学的过程中,前后的连贯性较为重要,所以要注意知识点之间的衔接。但也不排除个别的情况,比如前文中说到的极限和级数。事实上很多人的亲身经历也证明了,微积分并不可怕,关键看你肯不肯下功夫。相信在大家的努力和老师的帮助下,微积分的难关是可以攻克的。 微 积 分》 的 学 习 方 法 读书好比走路。不知道去那里干什么,走起路来也没 劲儿。读书也是这样,没有目的,读起书来也没兴趣。 走路也得有方法,方法对走起路来才省劲儿。读书也 是这样,方法得当才能收到好效果。学生在校期间, 读书当然应以教科书为主,但是大学生与中小学生不

微积分习题讲解与答案

习题8.1 1?指出下列微分方程的阶数,并指出哪些方程是线性微分方程: (3) x 2 y 4y (sin x)y = 0 ⑷^P p= sin 2 r d6 解(1)1阶非线性 (2) 1阶线性 (3) 3阶线性 (4) 1阶线性 2?验证下列函数是否是所给微分方程的解 /八 、亠 sinx (1) xy y = cosx, y = x (2) (4 - x 2)y ' xy = 2x,y = 2 ? C" - x 2 (C 为任意常数) (3) y 2y : y = 0, y 二 Ce x (C 为任意常数) (4) y" — (X , + 丸2 )y ' +餌丸2 y = 0, y = C 4e" + C 2e'2 x (C 1 ? 为任意常数) (5) (x -2y)y" =2x - y, x 2 - xy ? y 2 =C (C 为任意常数) (6) (xy -x)y xy 2 yy 1 -2y = 0, y = ln( xy) xcosx — sinx sin x 亠 解⑴是,左=x 2 cosx =右 x x (2) 是,左=(4 — X 2 )-^= + x(2 +C 訥—X 2) = 2x =右 訥-x 2 (3) 是,左=Ce x -2Ce x Ce x =0 =右 (4) 是,左= G :e i x C 2 2e 2 x )-(「-g re 4 x C 2 -e 2 x ) i 2(Se 4 x C 2e?0 =右 2x — y (5) 是,左=(x - 2y) 2x - y 二右 2 ⑴ x(y ) -2yy xy = 0 2 (2) x y - xy y = 0

微积分学习方法一天学会微积分

微积分学习方法一天学 会微积分 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

先看数 Yee 22:20:30 这是实数 这是虚数,虚数就是对过程的度量 实+虚数就成了复数

这是狭义数,就是四维空间以内的 广义数,就是物理上要用到的 进入广义了,和爱的广义相对论对应 它是描述空间里的事情的,所以会有方向 (想象一个线,在空间内穿梭) 狭义的虚数和广义的张量,都是一回事这二个比较难理解,因为涉及到一个重点

方程 = 变化(数) 方程就是人们说的规则规则 = 函数(上面说的那些数)这就是方程了 还有个重点,数之外还有“自然规则” 如派,e, i 这些,这些就是人们说的自然规律再看一个图,你就明白了 你看看,这些东西,像环域群 一般也只有一些数学家搞,张量这些玩艺,也只有物理学家才用,就这么简单 你先有这概念,后来你就懂了,数学就是从点到面到空间 这句是重点,后面那些都是为了在空间里描述 打个比方 刚才是数,再说运算 到运算了 数 + 运算 = 算术 算术就是数学 你想象一下金箍棒 能长能短,这个变化,也要用数学形容,所以有 + - 一个面,能扩展能收缩用数学形容,这是 X % 这里就出来问题了 左边的好求 面积,右边的如何求 只能这样求 用很多“规矩”的形状去填 后来,发现,其实这个问题可以转化为一个简单的问题

“数学都是降维度来处理问题的” 简化后,其实就是解决一个问题 如何用直线去“接近”曲线 如右边的,它可以分成很多很小的段,这个段越小,越精确 这就是微分,就是用线去模拟曲线 线性问题,到非线性问题 你想象用一个无限接受的规矩的方块(可能无数个) 去填一个不规矩的形状,就是积分,这是线与面二个层面的关系 这种其实就是解决非线性问题 非线性问题的解决工具就是微积分,就是东西不平滑了,如何计算的问题 左边是线性,右边是非线性 其实非线性就是函数 函数 = 变化

物理中的微积分思想

物理中的微积分思想 你们不要老提我,我算什么超人,是大家同心协力的结果。我身边有300员虎将,其中100人是外国人,200人是年富力强的香港人。 高中物理中微积分思想 浙江省湖州中学物理组潘建峰 伟大的科学家牛顿 有很多伟大的成就 建立了经典物理理论 比如:牛顿三大定律 万有引力定律等;另外 在数学上也有伟大的成就 创立了微积分 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支 微积分是建立在实数、函数和极限的基础上的 微积分最重要的思想就是用"微元"与"无限逼近"

好像一个事物始终在变化你很难研究 但通过微元分割成一小块一小块 那就可以认为是常量处理 最终加起来就行 微积分学是微分学和积分学的总称 它是一种数学思想 '无限细分'就是微分 '无限求和'就是积分 无限就是极限 极限的思想是微积分的基础 它是用一种运动的思想看待问题 微积分堪称是人类智慧最伟大的成就之一 在高中物理中 微积分思想多次发挥了作用 1、解决变速直线运动位移问题 匀速直线运动 位移和速度之间的关系x=vt;但变速直线运动那么物体的位移如何求解呢? 例1、汽车以10m/s的速度行驶

到某处需要减速停车 设汽车以等减速2m/s2刹车 问从开始刹车到停车 汽车走了多少公里? 【解析】现在我们知道 根据匀减速直线运动速度位移公式就可以求得汽车走了0.025公里 但是 高中所谓的的匀变速直线运动的位移公式是怎么来的 其实就是应用了微积分思想:把物体运动的时间无限细分 在每一份时间微元内 速度的变化量很小 可以忽略这种微小变化 认为物体在做匀速直线运动 因此根据已有知识位移可求;接下来把所有时间内的位移相加 即"无限求和" 则总的位移就可以知道 现在我们明白 物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的"面积" 即

经济类微积分课后习题答案解析

一.教材和大纲(3--6月) 教材往往容易被很多同学忽略,其实教材真的很重要,除非你的基础很好,比如我今年,就只看了一遍陈文灯复习指南,600题都没有做完。 就做了些模拟题。然后就上考场。但是同学们必须知道我08年是怎么复习的。我大概在6月份之前把4本教材和教材的课后习题全部都做了。其实 我想说,很多同学都说自己看了多少书,做了多少题为什么最后考得还是不好。我希望大家能够做到,不是你做了多少题,但是我们做题不能只 做不想,不懂脑。当然做题还是要一定的量,人家政治不也说“量变引起质变”吗。 我想说的是,大家如果有资源的话尽量用起来,有那种数学强人的话,尽量让他们给你们答疑。把你们不会的,全部问清楚,这一点真的很重要。 我男朋友是数学系的,我可以说即使计算不会都问他,因为说不定他们就能说出怎么样计算更简单,更不容易出错。 二。复习指南(7--10月) 其实我觉得复习指南的话,用谁的吧,我不细说,因为每个人的情况不一样,而且基础不同吧。但是还是给个建议吧,如果你的基础还可以的话 ,个人建议用陈文灯的,如果你觉得你的基础一般的话,那还是用李永乐的吧。 我的好多学弟学妹们常问我怎么用复习指南。我个人觉得复习指南吧,一般要看2遍吧。第一遍和第二遍,有一定的笔记差距。我看的时候一般是: 首先,我想说,同学们请你不要看一个题目是怎么做的,而是要你自己去做,因为咱们已经看过一遍教材了,所以我们看书时,把答案先盖住,然后 自己做,做完后看和答案有什么差距,然后调整下自己的思维,希望你在第二次或第三次的时候能会。 第一遍:如果这个题基本不怎么会的话,就用红色笔打上大大的问号,以便第二次的时候可以重点看看。如果是计算错误的话,还是用蓝色的笔标记吧。 也许很多同学都觉得我方法都对了,计算是小问题。那我告诉你,你错了。像我09年数学考134,就是因为忽略了计算。说实话,一般来说, 130和150的区别也许就是谁细心了,实力差距个人觉得不是很大,所以希望同学们不要忽略计算问题。 第二遍:其实做题还是和第一遍一样,盖住答案,多注意下第一遍画红色的部分。蓝色笔的部分,希望大家不要再计算错了。 三。600题和模拟题(11--12月) 希望大家买的600题是那种答案和题目分开比较远那种,不要前面是题,下面就是答案,这样的书不便于同学们去发现自己的弱点。 咱们怎么用这个600题呢,首先,咱们每天规定做30题吧,但是不是连续20天都做题。这里有个建议必须说一下,希望同学们,在做600题的时候, 不要再去翻复习指南了。如果你不会,说明这就是你的弱点了,你是不是该好好地补习下这部分呢。比如说,我先做的60题,发现我自己对间断点的类型 不是很清楚。咱们不会,没有关系,我用红笔在这页的上面写上,间断点的类型。说明这是你的弱点,然后你自己在第二天再看看,做点别的练习,然后 再继续600题。 其实是模拟题。我一般都是采取考试的形式来要求自己,我自己对自己的要求比较高,我

微积分求极限的方法

求极限 方法一:直接代入法 例一:=24 例二:= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0 的问题。类似= 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六: 知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大)

例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为 ) 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

关于微积分思想的浅见

关于微积分思想的浅见 小学的课本里有《曹冲称象》这篇课文,当时只是跟着老师赞叹小曹冲是多么的聪明,却不明白其中的数学思想。 其实有的大臣已经想到了,就是把大象宰了,一块一块地称重,再加起来就是大象的重量,不过当时显然不能这么做。曹冲只不过是利用了简单的物理原理,把石块和大象做了代换。这是典型的“化整为零”再“积零为整”的微积分的思想。 以此为引,就是要说明“微积分”并不是什么高深莫测的学问,它普遍应用于日常生活和生产。可能,面对高数书上有关“微积分”的题目抓耳挠腮的同学们在生活中却经常用微积分的思想解决问题而不自知…… 大家都明白,想知道一张纸的厚度,可以去测量一本书的厚度,然后再除以这本书得到页数,即得。 想知道地图上弯弯曲曲的河流的长度,可以拿来一个圆规,张开一个小角度,用直尺测量出两只脚之间的距离,然后用圆规的一只脚戳在河流的源头处,另一只脚戳在河流上,随即两只脚交替前进,直到河流的尽头,数出一共走了多少步,再乘以两只脚之间的距离,即得。“微积分”就是“微分”+“积分”。“微”是“细微”,“微分”就是“无限细分”;“积”是“累积”即求和,而非“乘积”,“积分”就是“无限求和”。 我们知道,扇形非常像三角形,当角度很小时,尤其明显。但扇形毕

竟不是三角形,这里只是近似。可以用极限的原理证明,当角度趋近于零时,认为扇形的弧长和连接那两个端点的线段长度相等。把一个圆沿半径切成无数个细小的扇形,拿出两个小扇形,可以拼成一个小矩形,这个小矩形的长度就是圆的半径。把这些小矩形的长边贴在一起可以拼成一个大矩形。这个大矩形的面积毫无疑问就是圆的面积。大矩形的宽为圆的半径r,而长为圆周长的二分之一,即为πr。 高中时学过,将一个弹簧由平衡位置拉伸x的单位长度,需克服弹簧1kx2。为什么不是kx2呢?因为弹簧的拉力是变力,随着弹拉力做功 2 簧长度的增加而逐渐变大。这怎么求克服拉力所做的功呢?我们可以认为在一个相当小的范围?x内,弹簧的拉力是不变的,总是为k*?x,所以,在[0,?x]范围内,做的功为k*(?x)2。而在[?x, 2?x]范围内,做的功为2k*(?x)2………………如此累加下去,最后可以得出结果。我们发现刚才所作工作的就是在求F-L曲线与x轴构成的曲边梯形的面积!推而广之,所有的定积分题目都可以用图形来帮助理解,而碰到图形问题时也可以转化成定积分来求解。 高等数学是很多专业的基础课,也是考研必考科目。很多同学始终无法理解和掌握微积分的思想,往往只会计算定积分和不定积分,牵涉到函数图象和应用题就不知所措了。这篇文章只是本人粗浅的理解,无法做到让同学们豁然开朗。我想,要真正做到对于这类题目得心应手,还是应该从基础、从微积分的定义入手去学。没有搞懂定义就去做大量的习题往往不知所谓,浪费了大量的时间。 微积分的历史

相关主题
文本预览
相关文档 最新文档