当前位置:文档之家› 变截面涡轮增压器三维流场的模拟计算

变截面涡轮增压器三维流场的模拟计算

变截面涡轮增压器三维流场的模拟计算
变截面涡轮增压器三维流场的模拟计算

车用发动机与涡轮增压器匹配

1.发动机涡轮增压系统匹配及动态特性的仿真分析 涡轮增压是提高发动机动力性和改善经济性的最有效措施。高空环境条件对航空发动机提出了功率恢复的特殊要求,而增压技术是实现发动机高海拔功率恢复的重要措施。目前,国外小型航空活塞式发动机涡轮增压技术已经比较成熟,国内正在致力于这方面的研究。本文以ROTAX914发动机为研究对象,对GT25涡轮增压器与发动机的匹配、JK48可变截面涡轮增压器与发动机的匹配以及涡轮增压控制系统的动态特性进行了研究。 本论文在对发动机涡轮增压器进行选型的基础上,应用MATLAB/Simulink软件建立了GT25增压器与发动机匹配、JK48增压器与发动机匹配以及增压控制系统动态特性的仿真模型;研究了不同海拔下发动机与增压器的匹配规律。 通过研究,确定了GT25增压器与发动机的匹配规律,建立了增压器放气阀开度随发动机转速和海拔高度变化的MAP图,分析了充量系数和过量空气系数对GT25增压器与发动机匹配规律的影响。 对JK48可变截面涡轮增压器与ROTAX914发动机的匹配规律进行了仿真研究。确定了JK48增压器与发动机的匹配规律,建立了叶片转角随发动机转速和海拔高度变化的MAP图,讨论了涡轮效率、涡轮流量系数以及发动机充量系数等因素对JK48可变截面涡轮增压器与发动机匹配的影响。 对涡轮增压控制系统的动态特性进行了仿真研究;结果表明,在一定的负载转动惯量下,控制系统具有较好的动态响应特性、准确性和稳定性。研究了控制算法对增压控制系统动态特性的影响,比较了普通PID和积分分离PID算法下控制系统的动态特性。通过研究,确定了负载转动惯量对增压控制系统性能的影响规律。 研究结果可以为我国四冲程活塞式航空发动机研发过程中涡轮增压器的选型、增压器与发动机的匹配以及涡轮增压控制系统的设计等提供一定的分析依据。 2. 车用发动机与涡轮增压器匹配研究 涡轮增压技术作为提高柴油机功率、改善其燃油经济性、降低排放的最有效措施之一,已经得到了广泛的应用。涡轮增压技术是利用发动机废气推动涡轮旋转,带动同轴的叶轮旋转,从而实现对从空滤器来的新鲜空气进行增压的目的。通过将涡轮增压的高压空气压入气缸来提高气缸中的空气密度,达到增加发动机缸内空燃比的目的,使得柴油机的功率增加。涡轮增压技术是提高发动机动力性和燃油经济性的主要手段之一,采用涡轮增压技术的柴油机可比自然吸气的发动机提高40%~60%的功率,甚至更多;发动机的平均有效压力最高可达到3MPa,发动机的燃油经济性有了很大提高,目前已经在车用发动机上进行了非常广泛的应用。 本文通过对2款涡轮增压发动机的匹配研究,可以提前评估各种涡轮增压器方案的先进性,然后进行有针对性的匹配试验,从而大大减少开发过程中的试验量,使开发工作更具针对性,提高开发效率,节省成本。本文对车用发动机与涡轮增压器的匹配性能进行了台架试验研究,其主要工作和创新之处为:⑴对涡轮增压发动机气缸内活塞的运动和燃油燃烧以及放热情况,介绍了涡轮增压发动机气缸内的缸内模型、燃烧模型、放热模型、扫气模型和管道模型。⑵对两款不同涡轮增压发动机功率的进行了试验对比研究,得出了两款涡轮增压发动机在不同转速下的功率情况。⑶对两款不同涡轮增压发动机在部分关键转速下的转矩进行了模拟与试验,分析对比了两款涡轮增压发动机在不同的转速下的转矩优劣情况。⑷对两款涡轮增压发动机在部分转速下的比油耗进行了模拟与计算,得出两款涡轮增压发动机的额定点比油耗、最低比油耗、低速端比油耗。 ⑸研究了两款涡轮增压器匹配后排温对比情况。 3.发动机与涡轮增压匹配控制软件的设计与开发

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

废气涡轮增压与发动机匹配的理论计算研究

废气涡轮增压与发动机匹配的理论计算研究 王应红,郑国璋 (太原理工大学,山西太原030024) 摘要:根据废气涡轮增压的工作原理、结构特性,对增压器和发动机的空气流量和其他方面的匹配进行了计算和理论分析,提出了发动机选配增压器的基本过程和注意事项,以及重新为指定发动机设计增压器的基本步骤。关键词:废气涡轮增压;发动机;匹配 中图分类号:TK 411.8 文献标识码:A 文章编号:1000-6494(2004)01-0001-03 Study on Theoretical C alculation of Matching of Turbocharger and E ngine W ANG Y ing -hong ,ZHE NG G uo -zhang (T aiyuan University of T echnology ,T aiyuan 030024,China ) Abstract :Based on operating principle of turbocharger ,structural features ,air flow characteristic and other aspects of turbocharger and engine are calculated and analyzed theoretically.The current process was raised for the matching of turbocharger and engine.Accordingly the basic procedure was redesigned for the designated engine.K ey w ords :turbocharger ;engine ;matching 作者简介:王应红(1974-),男,山西吕梁人,硕士,主要研究方向:汽油机增压技术。 收稿日期:2003-09-12 0 前言 采用增压技术是提高车用发动机动力性能、顺态性能以及排放性能的有效方式。常规的车用发动机增压方法有机械增压、废气涡轮增压和气波增压。涡轮增压时,发动机与增压器之间仅存在气动关系,不象机械增压时二者有固定的速比,且发动机是一种往复式机械,而涡轮增压器则是叶片机械,二者的特性存在本质的差异,故匹配比较复杂。总的来说,发动机与增压器的匹配有三个方面,即发动机与压气机的匹配、发动机与涡轮的匹配和压气机与涡轮的匹配。这里我们只对前两项进行研究,对涡轮增压器的性能提出要求,具体增压器的设计以及压气机与涡轮的匹配由增压器公司来定。 下面通过一台具体机型来说明发动机与增压器选配方法和步骤。 1 增压参数的选定 为了保证发动机与增压器的良好匹配,达到预定的增压发动机各项性能指标,首先要确定增压参数,它是设计或选择增压器的依据。1.1 增压后发动机所需空气流量G c (即压气机流量) G c = N e g e αηs 3600 L 0 式中,G c 为发动机所需的空气流量,kg/s ;N e 为 发动机功率,kW ;α为过量空气系数;ηs 为扫气系数;g e 为发动机的燃油消耗率,g/(kW ?h )。为了满足最大功率和最大扭矩的要求,应在发动机的外特性工况下计算。1.2 压气机的压比 πc =(ρc ρ0 )1-1 0.286 ηn ;实际测量中常用πc =p c +p 0p 0-p cl 式中,ρc 为压气机出口的空气密度;ρ0为发动机所需的中冷后增压空气的密度;ηn 为压气机多变效率;p 0为环境压力;p c 为压气机出口压力;p cl 为压气机进口压力。1.3 压气机效率 ηc =(273+t cl )(π0.286 c -1)t c -t cl t cl 为压气机进口温度,℃;t c 为压气机出口温 度,℃。 2 发动机与压气机的匹配 a.压气机不但要达到预定的压比,而且要具有 较高的效率。压气机效率越高,在同一增压压力时空气温度越低,所得到的增压空气密度就越高,增压效果也就越好。 b.经过实验测得压气机特性曲线和发动机在各   第1期2004年2月内燃机 Internal C ombustion Engines N o.1Feb.2004

汽车涡轮增压器出现早期损坏的原因以及解决策略分析

软科学论坛——能源环境与技术应用研讨会 汽车涡轮增压器出现早期损坏的原因以及解决策略分析 【摘要】为了提高汽车使用的经济效益以及性能,在进行汽车的建造过程中已经引进了涡轮增压机,在汽车中使用涡轮增压机,通过对空气进行压缩,进而提高发动机的进气量。它主要是利用了发动机在工作中排放出来的大量废气的惯性冲力,在这种惯性冲力的推动下带动了汽车涡轮的选装,通过带动叶轮将通过空气滤的空气进行压缩,然后将其灌入气缸,提高空气的密度与数量,进而提高了空燃比,使发动机得到更高的输出功率。 【关键词】涡轮增压器;损坏原因;解决策略 前言 在汽车发动机的工作中应用涡轮增压器将能够有效的通过改善发动机进气密度的方式,提高喷油器的喷油量,进而达到提高发动机输出功率的目的,加装了增压器的发动机将在转矩的增大方面得到较大的改观。合理的运用涡轮增压器还能够改善发动机的燃烧效率,废弃排放中的大量有害物质进行合理的控制,并在一定程度上提高了燃油使用的经济性,降低了燃油的消耗量,达到了节约燃油提高发动机性能的目的。但是,在涡轮增压器使用中,早期损坏缺失经常发生的,本文将对其早期损坏的原因及解决的策略进行简要的分析。 一、汽车涡轮增压器基本原理及特点 汽车涡轮增压机的出现使当代汽车的使用性能得到了极大的提升,从一定程度上改善了汽车对燃油资源的消耗状况,使其经济效益以及实用性能得到了提升。汽车涡轮增压器的出现是符合当代社会发展能源利用理念的,通过对汽车废气的再循环使用,提高发动机进气量,进而有效的增加发动机的工作效率,这已经成为了当代汽车发展的重要方向。 汽车涡轮增压器是利用发动机运行时排出的废气惯性冲力推动单级轴流式涡轮机高速旋转,涡轮机驱动安装在同一根轴上的离心式压气机,由压气机把由空气滤清器管道过来的新鲜空气,增压而进入气缸。随着发动机的加速,排出的废气速度与涡轮转速同步加快,压气机就会压缩更多的空气进入气缸,空气的压力、密度增加就可燃烧更多的燃油,有此达到增加发动机输出功率和改善汽车使用经济性的目的。 二、汽车涡轮增压器早期损坏的原因分析 涡轮增压器通过提高汽车的进气量,为汽车发动机的工作提供更大的空气流量,使发动机内部气缸燃烧室中的燃油能够得到充分的燃烧,进而提升了发动机的工作功率。面对汽车涡轮增压器早期使用可能出现的损坏原因,以下我将对其进行科学合理的分析研究。 2.1当造成的蜗轮增压器早期损坏 ①发动机一着车就走,使增压器转子轴承在高速运转之前得不到充分润滑,造成转子浮动轴承早期损坏。 ②一起步就大油门大负荷,因轴承无油而加速磨损,甚至卡死 ③高温、高转速下发动机突然熄火停车,机油供应停止,而转子在惯性作用下还要高速旋转,这时就会造成浮动轴承因温度高又缺少机油而磨损,甚至烧蚀。 ③发动机长时间怠速运转,当发动机长时间怠速运转时,会在增压器涡轮及压气机叶轮后面产生负压,从而造成从浮动轴承流出的机油在压力差作用下向外泄漏。 2.2维修人员的不规范维护造成蜗轮增压器早期损坏。 ①使用不合格的机油 装有蜗轮增压器的发动机,必须使用优质合成机油,如果使用不合格的机油会使机油发生积碳或油泥,严重时会堵塞润滑油道,造成增压器润滑不良。 ②保养不及时造成机油氧化变质 发动机机油在使用一段时间后,机油就会氧化变质,同时机油中各种添加剂的作用也会发生衰退,使机油润滑油膜遭到破坏。造成机油氧化或变质的根本原因是机油使用时间过长或因为发动机过热、从活塞窜过的燃气过多、机油中混入不同牌号的机油、冷却水漏入机油以及没有按规定的期限及时更换机油所致。发动机机油氧化变质后就会形成油泥而附着并堆积在壳体内壁和进、回油通道中,同时沉积在涡轮端轴承内的油泥由于高温而变成非常坚硬的结焦。当结焦片状剥落后就会使涡轮端轴承和轴颈磨损。 ③机油供油不足或供油滞后 当机油压力和流量不足时会出现下列问题:供给轴颈和止推轴承的润滑油不足:用以使转子轴颈和轴承轴颈保持浮动的润滑油不足;增压器已处于高速运转时润滑油还没有供给到轴承。当发动机负荷增加时,对增压器轴承的供油量也应该相应增加。当发动机高负荷,增压器转速很高时,即使几秒钟时间的供油不足也会造成对增压器轴承的损坏。 ④使用不合格的空气滤清器或空气滤清太脏 不合格的空气滤清器,会使空气中的大颗粒灰尘首先进入涡轮增压器的进气系统都将损坏转子浮动轴承。由于空气滤清器长时间不予更换而太脏或堵塞,就会造成供气不良而导致压气机进气负压过高,使得压气机一端的内压高于外压,机油在这种压力差作用下从进气管一端流出。 三、汽车涡轮增压器早期损坏的预防对策 汽车涡轮增压器在早期使用中出现损坏往往是人为技术操作不当,或者是日常使用对车辆维护不到位等造成的。面对问题的出现,如果不对汽车涡轮增压器早期损坏问题进行预防对策的制定,就有可能导致车辆在运行驾驶中出现问题,以下我将就其预防对策进行分析。 3.1发动机发动以后,不要急于加大油门,而应该先让发动机怠速运行3到5分钟(特别是在冬天),这样使得发动机机油温度升高,加大机油的流动性,涡轮增压器也得到充分地润滑,之后再进行正常的加速行驶。 3.2选择使用汽车优质合成机油。对于配有涡轮增压器的发动机,它的工作强度会更高,具有高温、高转速、大功率、大扭矩、低排放的工作特点。发动机的内部零部件更要承受较高的温度及更大的撞击、挤压和剪切力。所以应该选用耐高温抗氧化、抗磨性好、抗剪切能力强的合成机油、半合成机油等高品质润滑油。 3.3期更换发动机机油及滤清器,保持空气滤清器清洁畅通。涡轮增压器的转轴与轴套之间配合间隙很小,如果机油里掺有杂质,就会加速转轴与轴套之间的磨损而造成涡轮增压器的过早报废。防止灰尘等杂质进入高速旋转的压气叶轮,造成转速不稳或轴套和密封件的磨损。 3.4保证涡轮增压器的密封环密封完好。因为涡轮增压器中的废气和润滑系统就靠这密封环隔开,如果密封环失效,废气就会进入发动机润滑系统,使机油温度过高而氧化,曲轴箱压力过高而窜气。另外当发动机低速运转时,假如密封环密封不好,机油就会从密封环泄漏,通过排气管排出或进入燃烧室燃烧掉,以造成润滑油的浪费。 结语 总而言之,汽车涡轮增压器的使用已经成为了汽车组成中重要的部分,为了提高汽车的动力性能,在日常维护中应该重视涡轮增压器的操作以及维护,确保其使用可靠性。面对汽车使用量的不断增加,汽车涡轮增压器的高校、环保等优点必然会得到发展利用的空间。 参考文献 [1]张强.涡轮增压器早期损坏若干原因分析.科技信息.2010年26期. 赵金生柴河林业局 50

详细讲解VGT可变截面涡轮增压器

详解VGT可变截面涡轮增压器 2010年11月27日 08:12 来源:Che168类型:转载编辑:胡正暘 随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。 『废气带动涡轮,涡轮再带动叶轮对空气进行增压,从而有效增大进气量』 涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,即使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。

『BMW的并联双涡轮技术』 虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(Turbo lag)”现象。

可变截面涡轮增压器 –绿盾分享篇

可变截面涡轮增压器–绿盾分享篇关于汽车的一些知识是很多人都不懂得,汽车尾气超标的一些问题也是很复杂的,一些外行的人根本不了解是车子尾气超标到底是什么原因,其实汽车尾气超标跟汽车的很多零部件都由关系,可变截面涡轮增压器也是原因之一,下面的聂荣主要介绍可变截面涡轮增压器的一些相关资料。 可变截面涡轮增压器的汽油发动机。涡轮增压系统的心脏是可调涡流截面的导流叶片。这些导流叶片可在低转速、低排气量的工况下关闭,从而增大发动机的进气压力。与传统涡轮增压器相比,这极大地改善了低转速时的响应时间和加速能力。采用可变涡轮截面技术的汽油发动机在所有转速范围内的效率均明显高于目前采用的标准放气阀式的涡轮增压器。相应地,在各个转速范围内的节油性能也更上一层楼。 1、用途 举例TDI系统上的Garret VNT15可变截面涡轮增压器使增压技术比旧有型号有更快的响应(尽管以前机型的增压滞后现象也比较轻微),起效范围更加宽广,同时不会造成排气气压过高的问题。在大众的TDI发动机中,增压响应被控制在0.25秒内,驾驶员根本感觉不到增压时滞的存在。 2、工作原理 TDI发动机的燃油系统也有自己的特征,现在有三种燃油喷射系统,首先是分配泵系统,由燃油泵向喷嘴顺序供油(旧机型油压为931bar,新机型压力更高),喷油时间和喷油量都由电脑控制。大多数大众TDI发动机使用博世VP 37电控分配泵,通常它安装在发动机前端,由正时皮带驱动。分配泵和喷嘴之间是高压钢油管。这一系统应用在90和100hp的直4 1.9升机型上,还有2.5升直5以及150hp2.5升V6上。在分配泵内,燃油首先通过叶片提升压力,随后旋转柱塞泵把压力进一步提升并按顺序把燃油送到每一缸喷油。每个喷嘴包含带回位弹簧的活塞,一旦燃油压力超过设定值,喷口即打开。5个喷口直径极小。回位弹簧按两

可变截面涡轮增压器项目计划书

目录 第一章项目总论 第二章项目建设单位说明 第三章背景及必要性研究分析 第四章项目市场研究 第五章建设内容 第六章项目选址分析 第七章土建工程说明 第八章工艺说明 第九章项目环境保护和绿色生产分析第十章企业安全保护 第十一章项目风险 第十二章项目节能评价 第十三章实施安排 第十四章投资估算与资金筹措 第十五章项目盈利能力分析 第十六章评价结论 第十七章项目招投标方案

第一章项目总论 一、项目概况 (一)项目名称 可变截面涡轮增压器项目 (二)项目选址 xx产业园区 场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积51312.31平方米(折合约76.93亩)。 (四)项目用地控制指标 该工程规划建筑系数70.58%,建筑容积率1.67,建设区域绿化覆盖率7.97%,固定资产投资强度166.33万元/亩。 (五)土建工程指标

项目净用地面积51312.31平方米,建筑物基底占地面积36216.23平 方米,总建筑面积85691.56平方米,其中:规划建设主体工程55348.95 平方米,项目规划绿化面积6830.52平方米。 (六)设备选型方案 项目计划购置设备共计153台(套),设备购置费6666.73万元。 (七)节能分析 1、项目年用电量1140669.95千瓦时,折合140.19吨标准煤。 2、项目年总用水量22800.94立方米,折合1.95吨标准煤。 3、“可变截面涡轮增压器项目投资建设项目”,年用电量1140669.95千瓦时,年总用水量22800.94立方米,项目年综合总耗能量(当量值)142.14吨标准煤/年。达产年综合节能量47.38吨标准煤/年,项目总节能 率21.03%,能源利用效果良好。 (八)环境保护 项目符合xx产业园区发展规划,符合xx产业园区产业结构调整规划 和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产 生明显的影响。 (九)项目总投资及资金构成 项目预计总投资18721.09万元,其中:固定资产投资12795.77万元,占项目总投资的68.35%;流动资金5925.32万元,占项目总投资的31.65%。

增压器效率

废气涡轮增压器的效率计算 增压器的效率是衡量增压器运转的重要参数之一,下面的公式为MAN B&W公司给出的增压器效率计算公式。比热值cp和绝热指数k与温度变化无关。废气的绝热指数kG和比热值cpG 受废气组成影响。

T1 = 压气机进口温度,K T3 = 废气涡轮进口温度,K m L = 空气质量流量,kg/s m G = 废气质量流量(空气和燃油),kg/s c pL = 空气比热,J/kg.K c pG = 废气比热,J/kg.K p1 = 空气进口压力,bar p2 = 增压压力,bar p3 = 透平进口压力,bar p4 = 透平出口压力,bar ?L = 空气绝热指数 ?G = 废气绝热指数 TC = 废气涡轮效率 p2/p1 = 压气机压比 p3/p4 = 废气涡轮压比 效率的定义 多家主机制造商采用MAN B&W柴油机废气涡轮增压器。通常来讲,有两种效率计算方法是比较常用的。 1、废气涡轮定义:总效率是增压器的一个最常用的热力学性能参数。该方程中涉及到压气机前后的Total pressure,透平前total pressure和total温度。由于废气涡轮dynamic pressure

的进一步用途未知,计算中不必考虑涡轮机排气壳的流速;结果是计算中使用static废气涡轮出口压力而不是total pressure。 2、主机定义:定义了主机的涡轮增压效率。与废气涡轮定义相比,p2等于气缸前空气管的压力与空冷器压力降之和,p3为气缸后废气管内压力。 应注意的是:在计算主机定义的增压器效率时,考虑到增压系统的很多损失,所以在相同的增压器热力状态下,其效率低于废气涡轮定义的增压器效率。在比较增压器效率时,应指明计算效率的定义方式。如果定义中的某个压力值或温度值未知,则不能得出增压器的效率。下表列出了两种效率定义方法计算中的主要不同点。 废气涡轮增压器常见故障的分析 废气涡轮增压器常见故障的分析 在近代柴油机的增压系统中,废气涡轮增压器是应用最广泛的一种,特别是船舶柴油机,绝大多数都采用这种增压器。 废气涡轮增压器是一种利用柴油机废气能量带动涡轮增压器,使进入气缸的空气压力增大来提高功率的机器。装有废气涡轮增压器的柴油机可以提高它的经济性,降低单位马力的重量和节约材料。 废气涡轮增压器是由许多精密零件组成的,.由于工作温度高、温差大、转速高,在运行过程中很容易发生故障,轻者使运转恶化,重者造成零件的损坏,甚至会导致整台增压器的报废。因此,在管理使用中,对于增压器的大、小故障或征兆都应认真地对待,并且要经常检查,发现问题要及时妥善地处理。 现将废气涡轮增压器的常见故障分析如下: 一、增压压力不足 柴油机在额定工况下运转时,若发现增压压力下降超过了标定进气压力的l0%以上,应立即进行必要的检查和处理。 增压压力的下降,会使气缸充气量减少,从而导致燃油燃烧恶化。大大影响柴油机功率的发挥。 若在增压压力下降的同时,增压器转速亦下降,其原因在于废气涡轮方面或机械方面;若增压压力下降的同时,增压器转速无显著变化,那么,原因应在压气机方面。具体分析如下: 1.增压器的空气滤器阻塞,使吸气损失增大,造成增压压力不足。

汽车涡轮增压器涡壳的机遇和挑战

收稿日期:2010 10 15; 修订日期:2010 11 01基金项目:陕西省教育厅产业化项目(09JC09) 作者简介:徐锦锋(1963 ),陕西岐山人,教授.研究方向:凝固技术与 新材料研究. Email:jinfengxu@x https://www.doczj.com/doc/d24805628.html, 铸造技术 F OU N DRY T ECH NO LO GY Vo l.31No.11N ov.2010 汽车涡轮增压器涡壳的机遇和挑战 徐锦锋 (西安理工大学材料科学与工程学院,陕西西安710048) 摘要:从降低能耗、减少环境污染以及节约有限资源的社会需求出发,阐述了汽车涡轮增压器技术在汽车工业发展中的迫切需求及巨大的市场潜力,指出了涡轮增压器涡壳在铸造生产过程中所面临的技术难题与挑战。关键词:涡轮增压器;涡壳;铸造工艺 中图分类号:TG255 文献标识码:A 文章编号:1000 8365(2010)11 1522 02 Opportunies and Challenges of Automobile Tubine Housing XU Jin feng (School of Material Science and Engineering,Xi an University and Technology,Xi an 710048,China) Abstract:From a view o f socia l d ema nd s,su ch as redu ction o f en erg y con su m ption a nd en viron m en tal po llution an d sa ving o f lim ited reso u rces,this paper elab ora te d im periou s dem an d s a nd hu g e m arket po ten tial for th e a u to mo tive tu rboch arg er tech no lo gy in th e d eve lopm en t of au tom otive ind u stry an d po in ted o u t ch allen ges an d tech nica l pro blem s fa ced in th e castin g o f tu bin e h ou sing .Key words:Tu rbocharger;Tubine hou sing;Foun dry techn ology 汽车工业是国民经济的支柱产业。降低能耗、减少环境污染以及节约有限的资源是当今汽车工业发展所面临的、重要而急迫解决的问题。提高发动机效率和降低废气排放污染是推动汽车发动机技术发展的核心原动力。涡轮增压器技术是提高发动机效率、降低燃油消耗、减少废气排放的有效手段。世界各国,特别是发达国家十分重视涡轮增压器的开发与应用,这无疑为我国铸造业带来新的发展机遇。然而,随着汽车工业的快速发展,涡轮增压器的工作温度可能达到1050 以上。目前市场上的涡轮增压器基本以普通球铁或高硅钼球铁为主,这类材料生产的产品耐热温度在900 左右,己不再适应现代汽车特别是轿车汽油发动机的高性能要求,必须开发更为先进的涡壳材料及相应的铸造工艺以适应涡轮增压器技术的发展需要。目前,我国铸造产业正面临着前所未有的机遇和挑战。 1 涡轮增压器技术发展带来的机遇 随着汽车尾气排放法规的实施,发达国家要求汽车尾气排放达到欧 、欧V 标准,并不断对汽车发动机进行技术创新。涡轮增压器的应用正好迎合了上述需要。据有关资料显示,2010年全球汽车产量将达到7000万辆以上,其中轿车产量约为3200万辆,加上 维修市场的需求,预计全球涡轮增压器的需求量在8000万台以上。而今,全球的生产能力仅有5000万 台左右,市场缺额巨大。随着各国环境政策实施力度的加大,今后这个缺口将会进一步增大。 目前,我国己有批量投放市场的汽油发动机轿车,如奥迪A61.8T 、Passat 1.8T 、Bora 1.8T 等,通用别克的增压器汽油机轿车也已投放市场。2009年,我国的汽车产量为1319万辆,已超过美国成为全球汽车产量第一大国。2010年,汽车产量预计达1700万辆,其中轿车830万辆,继续领跑全球汽车行业。按照国务院重型发动机100%、中型车80%、轻型车60%、微型车25%、轿车30%比例配套增压器的要求测算,再加上售后维修市场的需要,我国的涡轮增压器的需求量在1200万台左右。若以每年30%~40%的速度递增,未来几年内,我国涡轮增压器的需求市场潜力巨大。上述可知,伴随着涡轮增压器市场需求的日益膨胀,作为涡轮增压器的主体部件!!!涡壳铸件的需求量将随之同步增长,并且具有高科技含量、高附加值和高品质3大特征,必将为铸造行业带来新的活力和发展机遇。 2 涡轮增压器涡壳生产面临的挑战 2.1 蜗壳材质的研发 随着涡轮增压技术的发展,汽油发动机要求涡轮增压器的转速越来越高,废气进气量加大,这必然导致增压器温度的大幅上升,可能达到1150 甚至更高。目前市场上的涡轮增压器基本以普通球铁或高硅钼球 ? 1522?

可变截面涡轮增压工作原理

从原理上看,柴油机的VGT技术和保时捷的VTG并没有本质的区别,基本的原理和结构都是相似的。下面,我们就通过保时捷的VTG技术来了解一下可变截面涡轮增压器的工作原理。 图中涡轮外围的红色叶片就是导流叶片 一般的涡轮并没有导流叶片的结构

VGT技术的核心部分就是可调涡流截面的导流叶片,从图上我们可以看到,涡轮的外侧增加了一环可由电子系统控制角度的导流叶片,导流叶片的相对位置是固定的,但是叶片角度可以调整,在系统工作时,废气会顺着导流叶片送至涡轮叶片上,通过调整叶片角度,控制流过涡轮叶片的气体的流量和流速,从而控制涡轮的转速。当发动机低转速排气压力较低的时候,导流叶片打开的角度较小。根据流体力学原理,此时导入涡轮处的空气流速就会加快,增大涡轮处的压强,从而可以更容易推动涡轮转动,从而有效减轻涡轮迟滞的现象,也改善了发动机低转速时的响应时间和加速能力。而在随着转速的提升和排气压力的增加,叶片也逐渐增大打开的角度,在全负荷状态下,叶片则保持全开的状态,减小了排气背压,从而达到一般大涡轮的增压效果。此外,由于改变叶片角度能够对涡轮的转速进行有效控制,这也就实现对涡轮的过载保护,因此使用了VGT技术的涡轮增压器都不需要设置排气泄压阀。 需要指出的是,VGT可变截面涡轮增压器只能通过改变排气入口的横切面积改变涡轮的特性,但是涡轮的尺寸大小并不会发生变化。如果从涡轮A/R值去理解的话,可变截面涡轮的原理会更加直观。 也有的厂商将这项技术成为VNT,比如沃尔沃和奥迪,它们在本质上是一样的 A/R值是涡轮增压器的一项重要指标,用以表达涡轮的特性,在改装市场的涡轮增压器销售册上也常有标明。A表示Aera区域,指的是涡轮排气侧入口处最窄的横切面积(也就是可变截面涡轮技术中的“截面”),R(Radius)则是代表半径意思,指的是入口处最窄的横切面积的中心点到涡轮本体中心点的距离,而两者的比例就是A/R值。相对而言,压气端叶轮受A/R值的影响并不大,不过A/R值却对排气端涡轮有着十分重要的意义。

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书 第一章概述 1.1、工程简介 上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。 1.1.1、采用的主要规范及技术标准 ①、《工程建设标准强制性条文》建标【2000】202号 ②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011 ③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015 ④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007 ⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 ⑥、建设部部颁标准《城市道路设计规范》CJJ37-90 技术标准: 1、道路等级:主干路 2、设计车速:主线60km/h。 3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。 5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m 6、桥梁结构设计安全等级:一级 7、路面类型:沥青混凝土路面。 1.1.2、应用的计算软件 Midas CIVIL 1.1.3、主要参数及荷载取值 1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载: 结构部分:155KN/m; 装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m 3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。 4)管道每米局部偏差对摩擦的影响系数:0.0015 k=; μ=; 5)预应力钢筋与管道壁的摩擦系数:0.17 ζ=; 6)钢筋松弛系数,Ⅱ级(低松弛),0.3 7)锚具变形、钢筋回缩和接缝压缩值:6mm l?=(单端); 8)混凝土加载龄期:7天; 9)收缩徐变效应计算至3650天 10)端横梁支座不均匀沉降为采用5.6mm,次中横梁支座不均匀沉降为采

电控可变喷嘴涡轮增压天然气发动机试验研究

2004年代用燃料汽车国际学术会议(ICAFV’2004) 论文编号:0418 电控可变喷嘴涡轮增压天然气发动机试验研究 郝利君 王卫东 张付军 黄英 北京理工大学机械与车辆工程学院,北京,100081 摘要:将一台4G22E 汽油机改造为天然气发动机,采用电控多点燃气喷射技术、电控点火技术及可变喷嘴涡轮增压技术。试验结果表明,采用可变喷嘴涡轮增压技术可在较宽的转速范围内提高发动机的充气效率,优化增压器在全工况范围内与发动机的匹配,大幅度提高发动机的动力性与经济性。增压后天然气发动机的最大功率与原汽油机相当,低速转矩特性明显改善,同时发动机使用经济性也得到提高。 关键词:电子控制; 多点喷射; CNG 发动机;可变喷嘴涡轮增压 Experimental Study of Electronically Controlled CNG Engine with VNT Hao Lijun Wang Weidong Zhang Fujun Huang Ying School of Mechanical & Vehicular Engineering, Beijing Institute of Technology, Beijing 100081 Abstract: A CNG engine was developed on the base of a 4G22E gasoline engine. On this CNG engine the electronically controlled multi-point gas injection system, high-energy ignition apparatus and VNT were adopted. The experimental results showed that VNT can increase the volumetric efficiency within a broad speed range, optimize the matching of the engine and turbocharger and improve the engine’s dynamic and economic performance. The maximum power output of the supercharged CNG engine is equivalent to that of the original gasoline engine, the torque characteristics at lower speed is improved, and the economic performance is also improved. Key words: Electronic control ;Multi-point injection ;CNG Engine ;VNT 1 引言 推广使用天然气汽车是缓解石油危机、降低汽车有害物质排放及改善能源消费结构的有效措施。而汽车发动机改燃天然气后,发动机的最大功率和最大转矩都有所降低,与同排量的汽油机相比降低的幅度一般在15%左右,因而对汽车的加速性能和最高车速都有显著的影响。因此,采取切实可行的技术措施改善天然气发动机的燃烧过程、提高其性能指标是天然气发动机面临的主要问题。 本文将4G22E 汽油机改造为天然气发动机,通过合理匹配增压系统,并采用电控多点燃气顺序喷射技术及电控点火技术,优化了天然气发动机的燃烧过程,改善了发动机的动力性与经济性。 2 天然气发动机结构改装方案 2.1 天然气供气系统 488天然气发动机供气系统主要由高压气瓶、天然气气路关断电磁阀、减压阀、天然气喷射阀组成。系统的布置如图1所示。 图1 天然气供给系统 断电磁阀 阀

VGT&VNT

变的是截面详解VGT可变截面涡轮增压器 2010-11-29 11:01 来源:Che168 随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。 『废气带动涡轮,涡轮再带动叶轮对空气进行增压,从而有效增大进气量』 涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,即使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。

『BMW的并联双涡轮技术』 虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(Turbo lag)”现象。

可变截面涡轮增压系统VGT简介

柴油车技术突围——揭秘VGT技术 VGT是英文Variable geometry turbocharger的缩写,中文说法是“可变截面涡轮增压系统”。这个名称很多人都看到过,但到底这个“可变截面”对于涡轮增压、乃至发动机有何实际意义呢? 涡轮迟滞是涡轮增压发动机最需要解决的问题 在此之前,我们要简单了解一下涡轮增压发动机的原理和特性。增压发动机区别于普通自然吸气发动机,它是通过增压器进行强制进气的,这样可以大大提升进入气缸内的空气密度,从而达到小排量大功率的目的。涡轮增压发动机的增压器由排气能量驱动,很显然这需要一定的排气能量。当发动机转速较低时,排气能量往往比较小,此时有可能无法驱动增压器。当增压器不工作时,涡轮增压发动机的动力甚至会小于一台同排量的自然吸气发动机,这就是我们常说的涡轮迟滞。这是涡轮增压发动机的一大顽疾,几乎所有工程师都在致力于解决这个问题。 涡轮迟滞与增压能量之间的平衡成为一对矛盾体 涡轮迟滞与增压涡轮的尺寸有关。增压涡轮越大,涡轮就越难以被驱动,涡轮迟滞就越明显,反之如果增压涡轮很小,迟滞就会大幅度缓解。然而与此同时,涡轮尺寸又与增压能量相关,小尺寸的涡轮虽然可以缓解涡轮迟滞,但在需要增压器工作时它能提供的增压值不大,不利于提升发动机的动力。因此涡轮尺寸、涡轮迟滞与增压值之间存在着一定的平衡关系。大多数常规发动机都只能采用折中的办法来设计,这样很难做到既彻底避免涡轮迟滞,同时又可以获得较大升功率。 VGT是解决这个矛盾最有效的方案 VGT就是起这个作用的。其奥秘在于它的增压器可以改变截面积,这就相当于改变了增压涡轮的大小。在转速较低时,增压涡轮会采用较小的截面积,即使转速很低的状态下涡轮也可以顺利启动,大大缓解了涡轮迟滞。在高转速状态下,增压涡轮会采用较大的截面积,这样可以大幅度提升增压值,从而提升发动机的最大功率和扭矩。华泰圣达菲2.0L发动机的“升功率”是国内同级别柴油SUV中最高的,它的动力表现已经达到或超过众多2.5升甚至2.8升的柴油SUV,VGT在这里同样功不可没。 VGT所带来的实际效果 平顺 由于没有涡轮迟滞,带VGT的车型在整个加速段没有动力陡增的时候,因此动力输出平顺,这对于舒适性和安全性都是极其重要的。我们在驾驶华泰圣达菲2.0L时,低速扭矩依然充沛,很难体会到增压器是何时介入的,整个驾驶过程如同自然吸气发动机一样,这就是VGT起作用的结果。 低油耗 普通涡轮增压发动机在低速状态下由于没有涡轮增压器介入,此时的混合气浓度并不能满足发动机的要求,燃烧效率低。有了VGT以后,发动机无论高低转速都在最佳工况下运行,从而大幅度降低油耗,特别是在城市道路状况下使用的油耗。

相关主题
文本预览
相关文档 最新文档