当前位置:文档之家› 桥台钻孔灌注桩计算书

桥台钻孔灌注桩计算书

桥台钻孔灌注桩计算书
桥台钻孔灌注桩计算书

基桩穿过不同土层厚度(m)

注:1、盖梁容重25.0kN/m3,台身容重25.0,系梁容重25.0,桩基容重25.0。结构浮容重10.0。

注:1、盖梁恒载已计入台帽(990.4kN)、背墙(439.5kN)和桥头搭板(1238.0kN)重量。

注:1、“车列走向”为0指无汽车,-1指汽车从左向右行驶,1指从右向左行驶。

2、“总轴重”指加载长度范围内(一联或双孔或单孔)车辆轮轴的总重。

3、汽车“左、右支反力”未计入汽车冲击力的作用。

注:1、制动力“双孔加载”由一辆重车30%控制,“左孔加载”由一辆重车30%控制,“右孔加载”由一辆重车30%控制。

2、表中汽车对应的“竖直力”、“弯矩”已计入汽车冲击力的作用。

3、左右支座的支撑线到台帽中心的距离分别是0.10米、0.37米。

4、“竖直力”向下为正,“水平力”指向河心为正,“弯矩”指向河心为正。下同。

注:1、表中荷载分配系数视盖梁为双悬臂多跨连续梁计算得到。

2、车辆荷载作用于盖梁(上部与盖梁视为整体)分析计算柱的横向分配系数得到柱顶内力。

3、单独盖梁计算时车辆荷载作用传递给上部梁板,再传递给盖梁得到的柱顶反力。

4、汽车布载两列及以上时横向分配系数值已经计入车列数和横向折减系数。

1、汽车双孔加载:左反力为143.5kN,右反力为274.6kN,合计支反力为418.1kN。

2、人群双孔加载:左反力为58.8kN,右反力为280.7kN,合计支反力为42.4kN。

3、左摩阻系数为0.060,右摩阻系数0.060。

4、人群支反力已乘以人行道总宽度8.00米。

台顶水平力表(表5)

注:1、摩阻力由“汽车+人群+上部恒载”乘以“摩阻系数”计算得到。

2、摩阻力用户选用“判断组合”,因此表中“水平力”取“温度力+制动力”与“摩阻力”小的值计算得到。

3、“1柱水平力”指单根柱配筋计算受到的水平力。

4、人群荷载(kN/m)已乘以人行道总宽度8.00。

5、表中“1柱制动”按照整个桥台制动力平分给每个台柱后再提高20%。

注:1、合计表中数据用于裂缝、桩长、位移计算,内力值为代数和。

2、“恒+挂”内力合计时“恒载+挂车”的值已除以1.25。

注:组合表中数据用于强度计算,即钢筋面积的计算,内力值已计入荷载安全系数。

注:1、L0为杆件的计算长度,“钢筋面积”对应“抗弯-组合”,“裂缝值”对应“抗裂-合计”。

2、主筋等级为Ⅱ级钢筋,主筋直径为22mm,保护层为6.0cm。

3、箍筋等级为Ⅰ级钢筋,箍筋直径为8mm,箍筋间距为20cm。混凝土标号为25号。

4、表中裂缝值按16根钢筋计算得到。

5、“抗裂-合计1”按公路规范计算裂缝;“抗裂-合计2”按铁路规范计算裂缝,其中K1、K2、K3分别为0.8、1.499、1.0。

6、表中杆件的计算长度L0等于计算截面与墩顶距离乘上杆件稳定系数。即L0=1.2*2.0。

注:1、合计表中数据用于裂缝、桩长、位移计算,内力值为代数和。

2、“恒+挂”内力合计时“恒载+挂车”的值已除以1.25。

注:组合表中数据用于强度计算,即钢筋面积的计算,内力值已计入荷载安全系数。

注:1、L0为杆件的计算长度,“钢筋面积”对应“抗弯-组合”,“裂缝值”对应“抗裂-合计”。

2、主筋等级为Ⅱ级钢筋,主筋直径为22mm,保护层为6.0cm。

3、箍筋等级为Ⅰ级钢筋,箍筋直径为8mm,箍筋间距为20cm。混凝土标号为25号。

4、表中裂缝值按16根钢筋计算得到。

5、“抗裂-合计1”按公路规范计算裂缝;“抗裂-合计2”按铁路规范计算裂缝,其中K1、K2、K3分别为0.8、1.499、1.0。

6、表中杆件的计算长度L0等于计算截面与墩顶距离乘上杆件稳定系数。即L0=1.2*2.0。

注:1、合计表中数据用于裂缝、桩长、位移计算,内力值为代数和。

2、“恒+挂”内力合计时“恒载+挂车”的值已除以1.25。

注:组合表中数据用于强度计算,即钢筋面积的计算,内力值已计入荷载安全系数。

桩冲刷截面配筋表(表19)

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

桥台计算书

桥台计算书 设计:葛翔 复核: GX.Kate 审核:xiangxiang

目录 1 计算依据与基础资料 (1) 1.1 标准及规范 (1) 1.1.1 标准 (1) 1.1.2 规范 (1) 1.1.3 主要材料 (1) 1.2 计算资料 (2) 1.2.1 结构尺寸 (2) 1.2.2 墙后填土参数 (2) (2) 2 荷载计算 (4) 2.1 桥台及上部荷载计算.................................. 2.1.1 桥上活载反力 (5) 2.1.2 不考虑浮力时自重恒载计算 (6) 2.2 台背土压力计算 (7) 2.2.1 台后填土自重引起的主动土压力 (7) 2.2.2 台后活载引起的主动土压力 (8)

2.3 作用力汇总 (9) 3 偏心距验算 (10) 4 地基承载力验算 (10) 5抗滑移稳定性验算 (11) 6抗倾覆稳定性验算 (11) 7 验伸缩缝的选择 (12) U型桥台计算 1 计算依据与基础资料 1.1 标准及规范 1.1.1 标准 ?上部构造形式:预制后张法预应力混凝土简支空心板 ?下部构造形式:重力式U型桥台 ?设计荷载:城市-A级 ?结构重要性系数: 1.1 1.1.2 规范 ?《城市桥梁设计规范》(CJJ 11-2011) ?《公路桥梁设计通用规范》JTG D60-2015(简称《通规》)

?《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2012 (简称《预规》) ?《公路桥涵地基与基础设计规范》(JTG D63-2007) 1.1.3 主要材料 1)混凝土:桥台台帽、背墙采用C30混凝土,侧墙C25混凝土,台身、扩大基础C25片石混凝土,容重均采用24 kN /m 3; 3)钢筋:采用HRB400,sk 400MPa f =,5S E 2.010MPa =?; 采用HPB300,sk 300MPa f =,5S E 2.110MPa =?。 1.2 计算资料 1.2.1 结构尺寸

栈桥桩柱式桥台承载能力计算

栈桥桩柱式桥台承载能力计算 1 基本资料 1.1地质水文资料 台后填土:填土容重318m kN =γ、内摩擦角?=30?、粘聚力0=c 。 桩身计算范围内有三层不同土层,其物理力学指标见下表: 桩身计算范围各土层主要参数表 1.2 承台结构 承台台帽为L 形结构,由四根桩基组成的单排桩支承。台帽长度m B 13=,桥台帽梁截面为m m h b 0.13.2?=?,桩间距为m m m .346.33++,桩径m d 2.1=,台后填土高度m H 0.5=,台帽背墙高m h 89.21=,台背竖直。 1.3 承台结构材料 混凝土强度等级为C25,钢筋为HPB,混凝土弹性模量2 7108.2m kN E c ?=, MPa f cd 9.11=,MPa f sd 210=。 1.4 桥台荷载 桥跨上部结构为跨度m 9贝雷梁,上部结构的恒载,桥跨活载产生的弯矩与台后填土压力产生的玩具方向相反,其值越小对结构约为有利,因此在进行桥台结构内力计算时忽略上部结构恒载和活载对桥台产生的弯矩,只考虑有上部结构恒载与活载产生的竖向力。 1.4.1由上部结构传来作用于桩顶的荷载: ) (24.6454 75 .13612.1219kN N =+= 1.4.2 台背填土破坏棱体内活载等效厚度 台后填土对桩柱式桥台产生的主动土压力需要考虑活载作用在台背填土破坏棱体内的荷载,将其换算成等效土层厚度。

0G h Bl γ = ∑ 式中:0l ——为台背填土破坏棱体长度 B ——台帽长度 当台背竖直时:θtan 0H l = 653.0)tan )(tan tan (cot tan tan =-++ -=αωω?ωθ 其中:?=+?+?=++=4501530αδ?ω 故 )(265.3653.05t a n 0m H l =?==θ 在破坏棱体内,可能作用有履带吊车荷载、一列挂—80荷载,两种荷载不组合,分两种情况进行计算,取其较大值。 (1)当破坏棱体内作用有履带吊车荷载时 )(78.1015265.39 2800kN G =?= (2)当破坏棱体内作用有挂—80荷载时 )(5002250kN G =?= (只两排车轮作用在破坏棱体内) 故 )(78.1015kN G = 所以 )(33.118 265.31378.10150m r Bl G h =??= = ∑ 2 地面处桩身截面荷载计算 2.1 土压力系数 填土表面与水平面的夹角?=0β,桥台背墙与垂直面的夹角?=0α 台背或背墙与填土的夹角230215δφφ==?=? 2 2 0.312 a μ= = =

钻孔灌注桩计算书

桩基础计算 一.钻孔灌注桩单桩竖向承载力计算 1.桩身参数 ZH1 桩身直径d=600mm 桩身周长u=n d=1.884m,桩端面积Ap= n d2=0.2826m2 岩土力学参数 取-20kpa。 2.单桩承载力特征值 根据《建筑桩基技术规范》(JGJ 94-2008)5.3.5公式(5.3.5) Q uk=q pk ? Ap+U ?刀q sik ? Li =1400x0.2826+1.884x(-20x3+75x7+80x4) =1874.58kpa 单桩竖向承载力特征值Ra= Q uk/2=937.29kpa,取Ra=920kpa ZH2 桩身直径d=600mm,扩底后直径D=1000mm 桩身周长u=n d=1.884m,桩端面积Ap= n D2=0.785m2 取-20kpa。 2.单桩承载力特征值 根据《建筑桩基技术规范》(JGJ 94-2008) 5.3.5公式(5.3.5) Q uk=q pk ? Ap+u?刀q sik ? Li =1400x0.785+1.884x(-20x3+75x7+80x4) =2577.94kpa 单桩竖向承载力特征值Ra= Q uk/2=1288.97kpa,取Ra=1250kpa

二.桩身强度验算 1 ?设计资料 截面形状:圆形 截面尺寸:直径 d = 600 mm 已知桩身混凝土强度等级求单桩竖向力设计值基桩类型:灌注桩工作条件系数:£ = 0.70 2 混凝土:C25,f c = 11.90N/mm 设计依据:《建筑地基基础设计规范》 2 ?计算结果 (GB 50007-2011) 桩身横截面积 2 2 A d 600 A ps = n = 3.14 X = 282743 mm H 4 4 单桩竖向力设计值: Ra < A ps f c' c = 282743 1X.90 0(70 = 2355.25K N 故桩身可采用构造配筋。 由《建筑桩基技术规范》(JGJ 94-2008) 4.1.4条,灌注桩正截面配筋率取0.5%,桩身 配筋计算:As=0.5%x3.14x300x300=1413m 2,实配 6 C 18 三.桩数选择 根据《建筑桩基技术规范》(JGJ 94-2008)公式(5.1.1-1 ) 1) 对于ZH1,考虑覆土及承台自 重选用单桩能够承受的F K最大值为 F K=Ra x n- G K=1250x1- (20x1.2x1.2x3+26x1.2x1.2x0.8 ) =803.65KN >634KN,满足 对于ZH2,考虑覆土及承台自重选用单桩能够承受的F K最大值为 F K=Ra x n- G K=1250x1- (20x1.2x1.2x3+26x1.2x1.2x0.8 ) =1051.28KN > 962KN,满足 2) 本工程荷载效应标准组合N最大值为1382KN,根据《建 筑桩基技术规范》(JGJ 94-2008) 5.1.1 及5.1.2 条,初步选用ZH1 其中 F k=1382KN , G=20x1.2x3x3+26x1.2x3x1=309.6KN, M xk=-212KN.m, Yi=0.9m, Xi=0 , Ra=920kpa Ni=( F k + G k)/n ± (M xk X Yi)/ 刀Yi 2 ± (M y k x Xi)/ 刀Xi 2 ( 5.1.1-2) Ni w 1.2Ra ( 5.2.1-2)故n >( F k+G k)/{1.2Ra-(M xk X Yi)/ 刀Yi 2} =(1382+309.6)/{1.2x920+212x0.9/(0.9 x2)}=1.38, 取2根ZH1能够满足要求

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

桥墩桩基础设计计算书

桥墩桩基础设计计算书 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

基础工程课程设计一.设计题目:00 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长,计算跨径,桥面宽13m (10+2×),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN;

墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*=150KN (2)活载 一跨活载反力:N5=,在顺桥向引起的弯矩:M1= kN·m; 两跨活载反力:N6=+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩; 风力:H2= kN,对承台顶力矩 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×。承台平面尺寸:长×宽=7×,厚度初定,承台底标高。拟采用4根钻孔灌注桩,设计直径,成孔直径,设计要求桩底沉渣厚度小于300mm。 5、其它参数 结构重要性系数γso=,荷载组合系数φ=,恒载分项系数γG=,活载分项系数γQ= 6、设计荷载 (1)桩、承台尺寸与材料 承台尺寸:××初步拟定采用四根桩,设计直径1m,成孔直径。桩身及承台

桥台计算书

桥台计算书 Prepared on 22 November 2020

桥台计算书 设计:葛翔 复核: 审核:xiangxiang

目录

1 1 2 U型桥台计算 1 计算依据与基础资料 标准及规范 标准 上部构造形式:预制后张法预应力混凝土简支空心板 下部构造形式:重力式U型桥台 设计荷载:城市-A级 结构重要性系数: 规范 《城市桥梁设计规范》(CJJ 11-2011) 《公路桥梁设计通用规范》JTG D60-2015(简称《通规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2012(简称《预规》)

《公路桥涵地基与基础设计规范》(JTG D63-2007) 主要材料 1)混凝土:桥台台帽、背墙采用C30混凝土,侧墙C25混凝土,台身、扩大基础C25片石混凝土,容重均采用24 kN /m 3; 3)钢筋:采用HRB400,sk 400MPa f =,5S E 2.010MPa =?; 采用HPB300,sk 300MPa f =,5S E 2.110MPa =?。 cm )

假设台背铅直,基础墙趾扩散角=tan-1(50/100)=<混凝土最大刚性角40o满足要求,台后填土与水平面夹角β=0。。 墙背填土容重γs=19KN/m3, 计算内摩擦角Φ=40o。 桥台c25混凝土容重γk=24KN/m3, 基底摩擦系数μ=, 地基容许承载力[σ]=2500Kpa。 人群荷载q=3kN/m2, 上部构造反力--恒载标准值p1=, 上部构造反力--活载标准值p2=。 2 荷载计算 桥台及上部结构的荷载计算 桥上部反力 表上部构造荷载 计算桥台自重与台内填土重力及其对基础底中心的偏心弯矩,首先计算各部分重力及其对基础底前趾点“A”弯矩;

桩柱式桥台计算

无锡至张家港高速公路 桩柱式桥台台帽位移计算书 中交第二公路勘察设计研究院 年月日

一、基础资料 台后填土内摩擦角φ=30°,台帽长B =17.54m (计算宽度b 1=17.24m ),桩间距为6.1m , 桩径d =1.5m ,耳墙宽0.3m ,台后填土高H=5.0m 。填土容重r =18.0 km/m 3,台帽背墙高为h1=1.2+1.83=3.03m ,桥台帽梁截面尺寸为b ×h =1.8×1.2m 。桥跨上部构造为25m 小箱梁,上构恒载、桥跨活载产生的弯矩与台后土压力产生的弯矩方向相反,其值越小对结果越为不利,桥台位移计算时未考虑上述荷载产生的弯矩(最不利计算)。 搭板及台后活载产生的弯矩需计算,方法为由汽车荷载换算成等代均布土层厚度: h =r bl G 0∑ 式中,0l 为破坏棱体长度,b 为台帽长, 当台背竖直时,0l =Htg θ,H=5.0m 。 由tg θ=-tg ω+))((αωω?tg tg tg ctg -+=0.653,其中045=++=αδ?ω 得 0l =5×0.653=3.265m 在破坏棱体长度范围内并排放三辆重车,车后轮重为2×140=280,三辆车并排折减系数为0.78,得∑G =3×280×0.78=655.2KN 搭板产生的重力∑G =0.35×3.265×14.25×25=407.1KN 所以 得:活载h =655.2/(17.24×3.265×18)=0.647m 搭板h =407.1/(17.24×3.265×18)/2=0.201m 计算时,把活载h 和搭板h 合计到p 1、p 2即考虑了搭板和台后活载引起对桥台的主动土压力。 二、计算 桩径d =1.5m (台后填土高H=5.0m ) 土压力系数: 台后填土内摩擦夹角φ=30° 填土表面与水平面的夹角β=0°(台后填土水平) 桥台背墙与垂直面的夹角α=0°(背墙竖直) 台背或背墙与填土的夹角 δ= φ/2 =15°

水中钻孔及平台施工方案

界首市东环线路桥建设工程03标段 水中钻孔桩及钢平台 专项施工方案 (编号:T8JS009) 编制: 审核: 审批: 中铁八局集团有限公司 界首市东部新农村道路建设工程3标项目经理部 二○一一年十二月十四日 目录

目录 ---------------------------------------------------------------------------------------------------------------------- 1 一、编制说明------------------------------------------------------------------------------------------------------------ 3 1、编制依据 ----------------------------------------------------------------------------------------------------------------------------- 3 2、编制原则 ----------------------------------------------------------------------------------------------------------------------------- 4 3、编制范围 ----------------------------------------------------------------------------------------------------------------------------- 4 二、工程概况------------------------------------------------------------------------------------------------------------ 4 1、总体介绍 ----------------------------------------------------------------------------------------------------------------------------- 4 2、本方案施工介绍 -------------------------------------------------------------------------------------------------------------------- 5 三、方案设计重点 ----------------------------------------------------------------------------------------------------- 5 四、总体施工方案及流程 -------------------------------------------------------------------------------------------- 6 1、施工方案选择 ----------------------------------------------------------------------------------------------------------------------- 6 2、总体施工方案 ----------------------------------------------------------------------------------------------------------------------- 6 3、总体施工流程 ----------------------------------------------------------------------------------------------------------------------- 6 五、主要施工方法及技术措施 -------------------------------------------------------------------------------------- 7 1、水中钻孔钢平台搭设-------------------------------------------------------------------------------------------------------------- 7 2、水中钻孔桩基施工 ----------------------------------------------------------------------------------------------------------------- 8 3、钢围堰平台搭设 -------------------------------------------------------------------------------------------------------------------- 9 4、安全文明环保施工 ---------------------------------------------------------------------------------------------------------------- 10 六、主要工程数量表 ------------------------------------------------------------------------------------------------- 12 七、冬季施工安排 ---------------------------------------------------------------------------------------------------- 14 1、冬季施工技术要求 ---------------------------------------------------------------------------------------------------------------- 14 2、冬季施工措施 ---------------------------------------------------------------------------------------------------------------------- 14 八、施工保证措施 ---------------------------------------------------------------------------------------------------- 15 1、施工组织保证 ---------------------------------------------------------------------------------------------------------------------- 15 2、施工质量保证措施 ---------------------------------------------------------------------------------------------------------------- 16 3、安全生产保证措施 ---------------------------------------------------------------------------------------------------------------- 18 4、应急预案 ---------------------------------------------------------------------------------------------------------------------------- 20

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

课程设计计算书

XX工程学院 土木工程学院 桥梁工程课程设计任务书 姓名 学号 班级 指导教师

目录 第一章任务书 (3) 1.1目的与要求....................................。。。. (3) 1.2设计题目与技术标准 (3) 1.3设计内容 (3) 1.4归档书写要求 (4) 1.5设计规范与参考资料 (4) 第二章方案介绍............。.. (5) 2.1方案一:60+105+60M的变截面箱型连续梁 (5) 2.2方案二:56.25+110+58.75M斜拉桥 (9) 第三章方案比选 (12) 3.1方案优缺点比选 (12) 3.2结论 (12) 第四章设计总结 (13)

第五章参考文献 (13) 第一章任务书 一、目的与要求 桥梁工程课程设计是土木工程专业道桥方向《桥梁工程》专业课教学环节的重 要组成部分,其目的在于通过桥梁工程课程设计的基本训练,深化掌握本课程的实用 理论与设计计算方法;理解桥梁设计的程序、方法和计算内容;熟悉有关标准规范、 规程在工程设计中的应用及其重要性;能查阅有关设计手册、标准图、参考书,并进 行认真分析研究,为今后独立完成桥梁工程设计打下初步基础。 在课程设计的实践过程中,能使学生巩固和扩大专业知识,掌握本学科的主要 知识,进一步培养学生综合运用所学知识分析和解决实际问题的能力,从而提高学生 的动手能力和综合素质。学生在教师的指导下,综合应用所学结构力学、结构设计原理、桥梁工程等课程知识,按时按量独立完成所规定的设计工作。具体要求如下: 1.根据标准图、技术规范与经验公式,正确拟定各部结构尺寸,合理选择 材料、标号。 2.计算结构在各种荷载与其他因素作用下的内力组合效应,并进行配筋计 算与设计。 3.正确理解《公路桥涵设计规范》有关条文,并在设计中合理运用。 4.加强计算、绘图、文件编制等基本技能的训练。 二、设计题目与技术标准 1.设计题目 预应力混凝土变截面连续箱型梁桥设计 2.技术标准: ⑴桥面净空:按桥面标高+12m ⑵设计荷载:城市主干道A,人群荷载4.0KN/m2 ⑶桥面铺装:表层为4cm厚沥青混凝土,下为8cm厚防水混凝土 ⑷桥面横坡:双向1.5% 三、设计内容 ⑴上部结构横断面布置草图; ⑵荷载横向分布系数计算; ⑶箱梁内力计算与内力组合;

水上钻孔平台计算书

. .. . XX市轨道交通1号线一期高架土建工程GTJ1110标段 GS23号墩钻孔平台计算书 编制: 受控状态: 复核: 审核: 批准: 有效状态: 中铁XX集团第二工程XX轨道GTJ1110项目经理部 二0一二年三月

目录 1 编制依据 (2) 2 工程概况 (2) 3 钻孔桩平台方案综述 (4) 4 材料及机械设备 (4) 4.1 机械设备性能指标 (4) 4.2 材料物理及力学性能 (10) 5、结构检算 (11) 5.1 面板计算 (11) 5.2、纵梁检算 (12) 5.3、横梁检算 (15) 5.4、钢管桩承载力检算(长度确定) (17) 5.5、钢管桩稳定性检算 (20) 5.6、钢护筒及钻孔桩施工 (20) 6、计算结果汇总表 (21)

GS23号墩钻孔平台计算书 1 编制依据 (1)中铁大桥勘测设计研究院《高桥西至石路头停车场区间桥梁下部结构<变更设计A版>》图纸 (2)省工程勘察院二0一0年十月《高桥西站至石路头停车场区间岩土工程勘察报告<详堪>》图纸 (3)《客货共线铁路桥涵工程施工技术指南》(TZ203-2008) (4)《铁路桥涵工程施工质量验收标准》(J286-2004) (5)《钢结构设计规》(GB50017-2003) (6)《铁路桥涵钢筋砼和预应力砼结构设计规》(TB10002.3-2005 J462-2005)(7)《路桥施工计算手册》 (8)《简明施工计算手册》(第三版) (9)MIDAS2006计算软件 2 工程概况 轨道交通1号线一期工程西起XX市西部的高桥镇,沿甬梁公路、望春路和中路到天一广场,我标段围为石路头停车场出入段至梁祝站的四段区间(高桥西站

桩基础的设计计算

1 第四章桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节将主要介绍“m”法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法,“m”法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律 1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,

2 使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力zx σ,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 z zx Cx =σ (4-1) 式中: zx σ——横向土抗力,kN/m 2; C ——地基系数,kN/m 3; z x ——深度Z 处桩的横向位移,m 。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念 地基系数C 表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m 3或MN/m 3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数C 值是通过对试桩在不同类别土质及不同深度进行实测z x 及zx σ后反算得到。大量的试验表明,地基系数C 值不仅与土的类别及其性质有关,而且也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用的C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

桥梁抗震计算实例分析

桥梁抗震计算实例分析 发表时间:2019-10-24T16:10:19.713Z 来源:《科学与技术》2019年第11期作者:俞文翔[导读] 对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。(苏州同尚工程设计咨询有限公司, 江苏苏州215000)摘要:桥梁是交通生命线工程中重要组成部分,地震作为我国主要的自然灾害类型,一旦发生就可能造成极大的破坏,道路桥梁是抗震救 灾的重要通道,必须具备较强的抗震性能。我国地震时常发生,震害强烈,破坏力大。因此,对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。我国安全防灾等相关部门要不断加强公路桥梁质量规范和设计,增进抗震措施的理论发展和实践技术,来保障人民财产在地震灾害中不受较大的损失。关键词:桥梁抗震加强防震措施Anti-seismic calculation and strategy of bridges Yu Wenxiang Abstract:Bridges are an important part of traffic lifeline engineering. Earthquakes, as the main type of natural disasters in China, may cause great damage once they occur. Road and bridge are important passages for earthquake relief and must have strong seismic performance. Earthquakes often occur in China, with strong damage and great destructive force. Therefore, for highway and bridge construction in China, it is necessary to strengthen seismic measures to reduce the losses caused by earthquakes. The relevant departments of safety and disaster prevention in China should constantly strengthen the quality specification and design of highway and bridge, enhance the theoretical development and practical technology of anti-seismic measures, so as to protect people's property from greater losses in earthquake disasters. Keywords: Bridge seismic resistance Strengthen measures of seismic resistance 0 引言 自2008年汶川大地震以来,我国政府高度重视各领域各建筑的抗震防震措施。以在桥梁设计方面,苏州地区抗震设防烈度也由原来的VI度区变成VII度区,所以相应的桥梁的细部抗震设计构造也相应的加强。 1 工程概况 太仓市太浏快速路(陆新路~G346)新建工程路线全长约5.72km。路线西起现状江南路与陆新路交叉口西侧约500m处,向东经陆新路、太仓火车站站前大道、沪通铁路、M1线、新浏线、浏河西部工业区规四路、规划苏张泾路、规三路,终点与G346相接。拟建的石头塘桥跨径为3×16m,上部结构采用钢筋混凝土现浇板、预应力混凝土空心板梁,下部结构采用桩柱式桥台、桩柱式桥墩,基础均采用钻孔灌注桩基础。 2 技术标准 道路等级:一级公路兼顾城市快速路功能。桥梁宽度:同道路。 荷载等级: 公路-I级。 通航要求:无。 抗震设防标准:地震基本烈度为VII度,场地地震动动峰值加速度0.1g,抗震设防类别为B类。结构安全等级:一级。 环境类型:除桩基采用II类其余均采用Ⅰ类。桥梁设计基准期:100年,桥梁结构设计使用年限,大中桥:100年,小桥:50年。 3 桥梁中的抗震设计原理 3.1、静力法 静力法把地震加速度看作是桥梁结构破坏的唯一因素,忽略了结构本身动力特性对结构反应的影响应用存在较大的局限性。事实上只有绝对刚性的物体才能认为在振动过程中各个部分与地震运动具有相同的振动所以只对刚度很大的结构例如重力桥墩、桥台等结构应用静力法近似计算。 3.2、反应谱法 目前我国的公路及铁路桥梁均主要采用反应谱法。反应谱法的思路是对桥梁结构进行动力特性分析(固对各主振动应用谱曲线作某强震记录的最大频率,主振型)地震反应计算最后一般通过统计理论对各主振型最大反应值进行组合,近似求得结构的整体最大反应值。 3.3、动态时程分析法 相比上述2种理论方法而言,动态时程分析法形成较早,通过计算机程序来精准地求解结构反应时程。动态时程分析法具有较强的技术性与复杂性,以构建模型的方式呈现出较高的精准性。综上所述:石头塘桥属于中桥采用B类抗震设计方法,所以由【5】中的6.1.3条桥梁抗震分析方法采用反应谱法。 4 抗震计算实例 4.1、地震动参数汇总如下: 地震动峰值加速度0.15g,IV类场地,特征周期0.65s。桥梁抗震设防分类为乙类,桥梁抗震设计方法为B类,E1地震作用重要性系数为0.35。 4.2、计算模型 石头塘桥立面图如下图所示:

相关主题
文本预览
相关文档 最新文档