当前位置:文档之家› 地下空洞检测方法1

地下空洞检测方法1

地下空洞检测方法1
地下空洞检测方法1

一、地下空洞、地下管线,路面裂缝探查

方法:利用探地雷达检测

仪器:SIR雷达

检测原理:如图1所示探地雷达由发射电路、发射天线、控制面板、接收天线、接受电路、笔记本电脑及光缆等组成。探地雷达的两块板式天线紧贴目的体表面,发射天线发射的电磁波遇反射层后产生反射回波信号。由接收天线接收并直接将该信号数字化。然后由笔记本电脑收集并记录,每一测点视时窗大小仅需几秒或十几秒即可完成采集任务,可以方便地实现连续采集和连续记录,易于图像解释。探地雷达图像解释的基础是研究电磁波的传播特性,因此主要是通过找寻反射界面来判断得出目的体的几何形状和物理特征介质的电性质差异和物性差异成为衡量探地雷达适用与否的主要标准,介质间的物性差异越大,二者间的界面越易于分辨。

图1

仪器技术参数如下:

检测过程:根据实际情况采用0.5m至1m不等的观测点距,采用不同的天线中心频率探测道路不同深度的空洞情况。

二、已建建筑沉降监测

在本测区内,应设5个以上基准点,相互之间距离不超过60m,以便相互校准,基准点要设置在距建筑物一定距离以外的稳定地方,且有良好的通视条件。沉降采用闭合线路二等水准测量方法进行,工作基点用作直接测定观测点的起始点或终点,利用DS1水准仪进行沉降点的沉降观测。观测点的布设:为了能够反映出建筑物的准确沉降情况,应以建筑物的大小、荷重及基础构造等因素来确定观测点的位置,沉降观测点纵、横向对称,且均匀地

分布在建筑物的周 围及内部。一般建筑物承重柱、转角处、沉降缝的两侧、纵横墙交 接处或每隔 10~20m 的承重墙上设置观测点。

三、已建建筑倾斜监测

方法:经纬仪法

仪器:经纬仪

原理:在需观测墙面上设上,下两个测点 A 、B ,其高差为H 。在该墙面垂线方向设立一个稳定的点作为测站。并选择一个稳定的后视点开始量测时测出A 、B 两点对后视点的夹角OB OA αα, (该值为初始值)及测站至A 、B 两点之间的距离B A d d ,。图 2为 A 点计算简图。

变形前建筑物 A 点为实线位置,变形后移至虚线位置,第 i 次量测相对第1次(初始 值)的角度变化值为A ?,,最后倾斜度为:

四、地下水位检测

仪器:LEVEL

检测原理:根据压力与水深成正比关系的静水压力原理,运用压敏元件作传感器的水位汁。当传感器固定在水下某一测点时,该测点以上水柱压力高度加上该点高程,即可间接地测出水位。

仪器参数:

尺寸 直径22毫米,长度154毫米 重量 179克 外壳材

质 氮化镐 压力传感器材质 陶瓷 采样频率 0.5秒到99小时 内存 2×40000个数据

电池寿命8到10年

温度范围-20到80摄氏度

精度±0.05摄氏度

分辨率0.003摄氏度

温度补偿范围-10到40摄氏度

深度范围5,10,20,30和100米五种可选

精度±0.05%

全量程分辨率 0.001%FS(5米,10米) 0.0006%FS(20米,3米,100米)测点布置原则:

道路沉降检测系统

SNPs检测方法比较

一、定义 单核苷酸多态性( single nucleotide olymorphisms ,SNPs),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA 序列多态性。 二、SNPs的研究意义 遗传标记 具有已知性、可遗传性、可检测性,用于疾病基因的定位、克隆和鉴定。 基因多态与疾病相关性 研究SNPs 本身对机体的影响,尤其是疾病的易感性、个性化医疗。 三、SNPs检测方法的分类 1、测序方法:常规测序,Pyrosequencing(焦磷酸测序),微测序(SNaPshot) 2、基于杂交的方法:Taqman 探针法,Microarray 芯片法, 3、引物延伸:MALDI-Tof,dHPLC(变性高效液相色谱技术) 4、以构象为基础的方法:RFLP,SSCP,DGGE 5、溶解曲线:HRM(高分辨率溶解曲线分析技术) 四、各方法概述与比较 测序方法 1、测序方法------ 一般测序和焦磷酸测序 步骤: 序列比对-- 引物设计-- DNA 提取-- PCR - 割胶纯化-- 直接测序或装克隆测序。 优点: SNP 分析金标准,能发现已知SNP,也能发现未知SNP。 缺点: 每个样本的每个位点均需要经PCR 扩增,跑胶,然后切胶纯化,再测序。步骤多而分散,成本较高,工作量大,周期长,价格昂贵,不适合大样本多位点检测。 2、测序方法------微测序方法(SNaPshot) 微测序流程: 1).设计PCR 扩增含SNPs 位点的一段DNA 2).对PCR 产物进行纯化(去除引物和dNTP) 3).引物延伸 4).延伸产物检测(放射性同位素标记法、发光检测法、凝胶为基础的荧光检测法、质谱分析法、变性高压液相色谱法等) 优势: 类似普通测序,但10 个位点PCR 产物同时引物延伸,通量增加。 劣势: 前处理等同普通测序:每个样品的每个位通过点都需要PCR预先扩增,跑胶,割胶,DNA 纯化。不同是10 个位点可以同时测序,提高了测序效率,但对延伸引物要求极高,如每个引物有4-6 个碱基差异,不能有互补区段,还要相同条件延伸,除厂家已经验证的少数位点外,很难自己设计针对新位点的检测。多个分散步骤,费钱费时,易出错。 3、测序方法------费用成本组成: ?基因组DNA提取费用

检测平面度的方法介绍

检测平面度的方法介绍

一、平面度的定义 平面度是指基片具有的宏观凹凸高度相对理想平面的偏差。 平面的平面度公差符号、基本表示方法,如图1所示。 图1 二、平面度误差的检测方法 平面度误差是指被测实际表面相对其理想表面的变动量,理想平面的位置应符合最小条件,平面度误差属于形位误差中的形状误差。 平面度误差的测量方法: 直接测量法 间接测量法 利用太友科技数据采集仪连接百分表法 1、直接测量法 通过测量可直接获得平面上各点坐标值或能直接评定平面度误差值的方法。具体如下: 平晶干涉法 测微表测量法 光轴法、液面法等。 1)平晶干涉法 干涉法测量平面度误差,是把平晶放在它所能覆盖的整个被测平面上,用平晶工作面体现理想平面,根据测量时出现的干涉条纹形状和数目,由计算所得的结果作为平面度误差值,如图所示。

该方法只适合测量精研小平面及小光学元件。 2)测微表测量法 用3个可调支承将被测件支撑在标准平板上,用测微仪指示。调整可调支承,用三点法或四点法(对角线法)进行测量。然后用测微仪读出被测表上各点的最大与最小读数差作为平面度误差值的测量结果。该测量方法适用于车间较低精度、中等尺寸的工件。 3)光轴法 光轴法测量平面度误差是利用准直类仪器2、以它的光轴经转向棱镜3扫描的平面作为测量基准,将瞄准靶1放置在实际被测平面4上,按选定的布点,测出各测点相对于该测量基准的偏离量,再经数据处理评定平面误差值。

2、间接测量法 特点:测量精度高,但数据处理麻烦。因被测平面需测若干个截面,而各截面内的偏差值在测量时不是由同一基准产生,故须经复杂的数据后,才能获得各测量截面相对统一基准的坐标值。 适用于中大平面的测量。 测量方法:水平仪法、自准仪法、互检法 1)水平仪法 原理:以自然水平面作为测量基础。测量时,先把被测表面调到基本水平,然后把水平仪放在桥板上,再把桥板置于被测表面上,按照一定的布线逐渐测量,同时记录各测点的读数,根据测得的读数通过数据处理,即可得平面度误差值。 分类:依布线方法不同又分为水平面法和对角线法。 2)水平面法 采用网格布点,基准平面为过被测表面上的某给定点且与水平面平行的几何平面:测量时应采用同一桥板,各测点的同一坐标值用累积法求得,计算比较简单。测量时选择不同的起始点和不同的测量线,其数据处理的方法、结果不同。存在一个最佳结果。 3)对角线法 采用对角线布点。 过渡基准平面是:过被测表面的一条对角线,且平行于被测表面的另一条对角线的平面。测量时常须用三块长度不同的板桥。数据处理较麻烦。 4)自准仪法

细菌鉴定及检测方法

细菌鉴定及检测方法 一、启动条件 1、目的样出现坏包,若批次相同,取表现性状相同的任意一包进行细菌初步鉴 定。若批次不同则分别进行细菌初步鉴定。 2、随机样出现坏包,必须进行细菌初步鉴定。 二、胀包 1、记录批次。 2、及时用72%的酒精对样品的外表进行消毒,尽量不损坏封合待以后检查。在 超净台内以无菌操作剪开包装,再避开横竖封处剪开一个圆形或三角形。3、对样品进行微生物划线培养。 3.1采用普通营养琼脂培养基做细菌的划线培养36±1℃、48小时。 3.2分别吸取10毫升样品到两个无菌的小试管中,,分别在80和100℃的水 浴中加热10分钟,冷却用营养琼脂分别做芽孢(36±1℃、72小时) 和耐热芽孢(55±1℃、72小时)的划线培养。 3.3采用普通营养琼脂培养基或快速检测培养基做嗜冷菌/低温菌的划线培 养(4—6℃ 10天或21±0.5℃ 25小时)。 3.4 必须用高盐察氏或虎红琼脂培养基做霉菌和酵母菌的划线培养 (25—28℃ 5--7天) 4、对样品做感官检测。 5、用PH计检测样品的PH值。 6、将样品倒掉,进行包装密封性检查,并进行记录。 7、记录菌落特征。 8、选区不同形态的单一菌落进行坚定。 8.1 革兰氏阴性菌和阳性菌的鉴定: 8.1.1涂片、革兰氏染色、镜检。或结晶紫染色、镜检、氢氧化钾拉 丝试验。 8.1.2革兰氏染色、结晶紫染色方法见《微生物检测》 8.1.3氢氧化钾拉丝试验 在微生物载物片上滴一滴3%氢氧化钾,用接种针从培养皿上的

菌落中挑取微生物,放在氢氧化钾溶液中用力搅拌。7—10秒后,抬 起针头,观察针头和玻片之间是否有丝状物,如果15—20 秒后二者 之间无丝状物,停止搅拌。 判定:无丝状物阳性;有丝状物阴性。 8.2 过氧化氢酶试验(或过氧化氢酶试纸)(产气试验): 试剂:10%过氧化氢溶液 步骤:在微生物载物片上滴一滴10%过氧化氢,用接种针从培养皿上的菌落中挑取微生物,放在过氧化氢溶液中看是否有气体产生。 判定:产气阳性;不产气阴性。 8.3氧化酶试验 试剂:含1%四甲基双噻二胺和99%的乙醇溶液。 步骤:用上述试剂将一张滤纸浸透(或直接采用氧化酶试纸条),然后进行细菌培养物的涂片试验。 判定:30秒内使显色物质变为深蓝色阳性,不变色阴性。 三、酸包 1、发现酸包后,及时将料液快速转入无菌瓶中。 2、记录批次 3、其它项目检测同胀包。

地下空洞探测解决技术方案

地下空洞探测解决方案 发 布 于 2 1 5 - 1 - 7 1 3 : 3 4 1.地下空洞的探测目的 通过车载式雷达探测系统或便携式探地雷达,定期对道路重点区域进行地毯式普查探测,提前发现隐伏在地下的危险空洞隐患,提前预警,在灾害发生前及时采取措施处治除险,防患于未然,避免地下空洞事故的发生。

2. 地下空洞探测依据的标准规范 (1)《城市工程地球物理探测规范》(CJJ7-2007); (2)《公路工程物探规程》(JTG/T C22-2009); (3)《地质灾害防治工程监理规范》(Dz/10222-2006); (4)《卫星定位城市测量规范》(CJJT73-2010); (5)其它现行的相关规程、规范及标准。 3. 地下空洞灾害现状

近年来,随着城市建设的快速发展,各城市城区频繁发生地下空洞灾害事故,造成了重大的生命财产损失和严重的社会影响。灾害事故的调查统计表明,地下空洞主要发生在如下重点区域: (1)管线(特别是带水管线)密集区、暗渠集中区,老化管线、渗漏管线集中区; (2)深基坑施工地区及其周围影响区域。管线(特别是带水管线)密集区、暗渠集中区,老化管线、渗漏管线集中区; (3)地铁轨道交通工程施工沿线及其周围影响地区; (4)地下溶洞发育地区。 由于地下管线大多位于城市道路下方区域,并且道路交通动荷载直接加剧了坍塌灾害的发育发展,因此,绝大多数的地下空洞灾害事故都发生在上述重点区域的道路范围内。 4.地下空洞探测的原理和技术 4.1 探测技术 对于引起坍塌灾害事故的道路下方隐伏的空洞进行探测作业,由于交通繁忙,环境干扰大,常用的工程物探方法,如高密度电法、浅层地震法、瞬变电磁法等难于施展,难以避免城市地上和地下空间的各种干扰因素,应用效果较差,成本高,速度慢,难以大范围应用。 探地雷达具有现场实施方便、抗外部环境干扰、作业快速便捷、探测效率高,分辨率高、实施成本低廉等优势,成为道路塌陷灾害普查探测的首选技术手段和唯一现实可行的方法,同时探地雷达也是唯一在国内外城市地下空洞普查探测的

各突变检测方法比较

1、RNA酶A切割法(RNase A cleavage) 在一定条件下,氨基源双链核酸分子RNA:RNA或RNA:DNA中的错配碱基可被RNaseA切割,切割产物可通过变性凝胶电泳分离。当RNA探针上错配的碱基为嘌呤时,RNaseA在错配处的切割效率很低,甚至不切割,而当错配碱基为嘧啶时,则其切割效率较高。故如果仅分析被检DNA的一个条链,突变检出率只有30%,如同时分析正义和反义二条链,检出率可达70%。该法需要制备RNA探针,增加了操作的复杂性,但可用于1-2kb 的大片段进行检测,并能确定突变位点。于这些优越性,它仍被作为一种经典方法用于对未知突变进行分析。 电泳法(不能确定突变位点,都要通过测序等解决) 2、变性梯度凝胶电泳(DGGE) 双链DNA 分子在一般的聚丙烯酰胺凝胶电泳时,其迁移行为决定于其分子大小和电荷。不同长度的DNA 片段能够被区分开,但同样长度的DNA 片段在胶中的迁移行为一样,因此不能被区分。DGGE/TGGE 技术在一般的聚丙烯酰胺凝胶基础上,加入了变性剂(尿素和甲酰胺)梯度,从而能够把同样长度但序列不同的DNA 片段区分开来。一个特定的DNA 片段有其特有的序列组成,其序列组成决定了其解链区域(meltingdomain, MD)和解链行为(melting behavior) 。一个几百个碱基对的DNA 片段一般有几个解链区域,每个解链区域有一段连续的碱基对组成。当变性剂浓度逐渐增加达到其最低的解链区域浓度时,该区域这一段连续的碱基对发生解链。当浓度度再升高依次达到各其他解链区域浓度时,这些区域也依次发生解链。直到变性剂浓度达到最高的解链区域浓度后,最高的解链区域也发生解链,从而双链DNA 完全解链。如果不同DNA 片段的序列差异发生在最高的解链区域时,这些片段就不能被区分开来。在DNA 片段的一端加入一段富含GC 的DNA 片段(GC 夹子,一般30-50 个碱基对)可以解决这个问题。含有GC 夹子的DNA 片段最高的解链区域在GC 夹子这一段序列处,它的解链浓度很高,可以防止DNA 片段在DGGE 胶中完全解链。当加了GC 夹子后,DNA 片段中基本上每个碱基处的序列差异都能被区分开。 3、PCR-SSCP法单链构象多态性 单链构象多态性(single-strand conformation polymorphism, SSCP)是一种分离核酸的技术,可以分离相同长度但序列不同的核酸(性质类似于DGGE和TGGE,但方法不同)。 实验步骤 利用PCR从提取出的DNA中扩增16S rRNA基因。 利用λ-外切核酸酶消化掉一条链(其中一个PCR引物被磷酸化,这条链将被去除)。非变性聚丙烯酰胺凝胶电泳(PAGE)。 应用:单链构象多态性可用于预筛选克隆文库。 可对其中的某一个条带进行测序,并与数据库中已知序列比对。 原理:单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使是一个碱基的不同,也会形成不同的二级结构并引起在非变性电泳条件不同的电泳迁移率。 4、杂合双链分析法(HA) 由突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一个凸起,在非变性胶中

形位公差的测量方法

在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

地铁区间隧道地下空洞的探测及处理

地铁区间隧道地下空洞的探测及处理 【摘要】城市地下由于地质及长期人类活动经常会形成部分地下空洞,地下空洞的存在可能会对地铁施工产生较大的安全隐患。本文主要介绍了采取地质雷达结合地面钻孔及隧道内超前钻孔进行地质预报对地下空洞进行探测的方法。并在探明地下空洞的位置、范围及充填状况后,采取对应的注水泥砂浆或回填混凝土处理的施工方法。有效的解决了地下空洞对工程施工及后期运营的影响。 一、地下空洞的成因及危害 城市地下空洞的形成原因较为复杂,在灰岩地段主要是由于地下水的侵蚀作用形成的岩溶空洞。在其它围岩地段主要是由于地层起伏较大加上后期的人类工程行为的多次改造处理而产生。地下工程施工引起的地层失水,在地面硬壳层与以下地层间也易形成地下空洞。此外,陈旧的地下管井、人防工事等早期废弃构筑物也是形成地下空洞的原因之一。 地铁隧道埋设在地下30m以内的中浅层空间,多属于浅埋,具备浅埋隧道的地质特点。部分空洞位于隧道的高程位置,与隧道的交叉关系分为与隧道断面交叉,在隧道断面以外(隧道底面以下)两种情况,因地质资料只能反应局部的情况,地下空洞的详细空间形状不详,也可能存在地下洞穴延展到隧道以上的情况。空洞多半为半填充、无填充状态,充填物为粉质粘土,洞穴周边裂隙发育,地下水活动频繁,是过水通道。 地下空洞的存在对地铁施工的危害巨大,施工中引起的地层损失极易引起地面下沉或坍塌,并容易发生坍塌冒顶现象,易瞬间发生重大事故,近期出现的地铁坍塌事故都或多或少的与地下空洞有关。现有的地质勘察一般较难发现,只能在工程实施过程中采取补充钻探、超前钻孔及加强工程技术措施,减小其灾害程度。 二、地下空洞的探测 地下空洞根据其充填物的状态分为水囊、气囊、球形风化的削弱带或孤石、杂物等,因其充填状态复杂,其力学性能与土力学的基本原则相去甚远,难以探测。 在部分工程实践中,曾以地质雷达进行探测,但通过钻孔检测与其进行对比,发现地质雷达对5m深度范围内的水囊、气囊可基本探明地下空洞的位置及范围,对5m以下和其它类型的地下空洞基本不具备参考价值。目前主要的技术手段仍主要是通过地质钻孔,根据探测取出的充填物的性状,根据经验来判断。

检测鉴定方案

检测鉴定方案 辛集市书香园小区4#楼 检测鉴定方案 一、工程概况: 辛集市书香园小区4#楼位于辛集市教育大道东侧,辛集市一中北邻。该楼为六层砖混结构,一层为储藏间,二至六层为住宅。工程于2006年4月份开工建设,2007年11月份竣工验收,建筑面积平方米。 该工程由辛集市博远房地产开发有限公司开发,河北天艺建筑设计有限公司设计,石家庄中天监理公司监理,辛集市天久住宅建设有限责任公司第七施工处施工。 现该4#楼已入住后多户住宅发现墙体裂缝,为了解该楼建筑工程质量状况,辛集市博远房地产开发有限公司委托河北省建筑工程质量检测中心对该楼工程质量现状进行检测鉴定。 二、依据标准 1、委托书 2、《民用建筑可靠性鉴定标准》(GB50292-1999) 3、《建筑结构检测技术标准》(GB50344-2004) 4、《砌体工程现场检测技术标准》(GB/T50315-2000) 5、《建筑结构荷载规范》(GB50009-2001) 6、《砌体结构设计规范》(GB50003-2001)

7、《建筑抗震设计规范》(GB50011-2001) 8、相关技术资料 三、检测内容 1、基础检测 对该建筑物基础各项工程做法进行检测,纵墙(○17~○18×○A轴处)与横量墙(○A~○B×①轴处)分别开挖一处基础测坑。为便于检测,测坑上部开挖尺寸宜控制在1000mm×1000mm左右,经放坡后测坑底部尺寸应控制在600mm×600mm左右,测坑开挖深度为基础灰土层下皮100mm,测坑内部需将余土清理干净,使基础垫层及大放脚轮廓鲜明,表面无积土。测坑开挖需避开雨水管附近,如测坑周围有堆积物不便开挖,经现场检测人员同意可调换适当位置进行,并做好记录。 检测基础工程实际做法,对其标高、尺寸、材料、损伤等逐一进行检测,检查结果绘制成图并详细记录。 检测工具:洋镐、大锤、铁锹、盒尺、钢尺、水平尺、数字测距仪、数码相机、记录簿等。 检测完毕后及时将测坑进行回填,回填时应分层逐一夯实,恢复表面散水及地面。 2、砌体砂浆强度检测 砂浆强度检测 对该建筑物砌体用砂浆强度进行实地检测,每层随机抽

频谱监测系统测试方案

频谱监测系统测试方案 一、测试目的 验证系统需求中描述的功能模块是否操作正常,各组成部分是否能完好地结合在一起,已集成在一起的产品是否符合系统设计说明书的要求。 二、测试点 根据频谱监测系统功能设计,对所有描述的功能模块功能逐一进行测试,主要测试点如下: 1.频谱波形数据的实时采集,小于等于500毫秒 2.越限频谱变化自动存储 3.越限进行语音报警; 4.历史数据查询频谱波形再现; 5.导出历史频谱为图片,并打上时间戳和导出的系统名称 6.远程控制频谱仪配置 7.正常使用中进行频谱参数设置而不造成监测中断; 8.可支持多品牌不同型号频谱仪,可支持不同数据接口:RS232和网口 9.可单频谱监测也可多频谱同时监测 10.可单独作为监控系统也可嵌入至网管系统实现全链路集中管控;

三、测试要求 在测试前,充分地做好如下工作: 按照本文测试方案中的要求,准备好测试用服务器及其需要软硬件配置。基于本次测试目的,具体要求如下: 1、按开发完成的功能顺序依次执行。 2、对于每个测试点,在测试之前,遵循以下测试方法: ?熟悉每个测试点的基本功能以及操作方法。 ?所有测试点符合测试案例要求。 3、测试过程中,对每个测试案例的测试点进行认真测试。 4、测试完成后,用户给出测试意见和结果。

四、功能测试案例 1.测试点:频谱波形数据的实时采集,小于等于500毫秒 案例编号JSDQZ-Spectrum-01 系统频谱监测系统功能名频谱波形数据实时采集编写人奚晓轶编写日期2016.3.9 测试类型 功能测试 人机界面测试 安全性访问和控制 性能评价测试测试目的验证频谱波形数据的实时采集功能,小于等于500毫秒 预置条件或 输入数据描述 频谱仪有输入信号并和频谱监测系统连接正常。 测试过程序号步骤检测要点预期输出实际输出 1 运行频谱监测系统频谱迹线实时刷新频谱迹线实时刷新实时刷新 2 观察界面sweep time Sweep time小于等于 500毫秒 刷新时间最大值500毫秒450毫秒刷新一次 测 试 结 果 功能测试通过; 人机界面符合,测试通过; 刷新迹线时间为450毫秒,小于500毫秒,性能评价测试通过; 说明Sweep (401pts)是频谱仪进行FFT计算后输出401个点,并构成迹线的一个重要参数,频谱监测系统会根据频谱仪的sweep设置实时刷新迹线。即频谱监测系统刷新迹线的间隔是根据频谱仪设置的。 测试人奚晓轶测试日期2016.3.9 Sweep 450ms(401pts)

表面形貌测量方法

机械探针式测量方法 机械探针式测量方法是开发较早、研究最充分的一种表面轮廓测量方法。它利用机械探针接触被测表面,当探针沿被测表面移动时,被测表面的微观凹凸不平使探针上下移动,其移动量由与探针组合在一起的位移传感器测量,所测数据经适当的处理就得到了被测表面的轮廓。探针式轮廓测量是一种接触式测量,探针要在一定的压力下接触被测表面,并且为了获得较好的测量精度和较高的横向分辨率,探针半径一般都很小,这样被测表面单位面积上承受的接触压力很大。如果被测表面较为松软,探针往往会划伤被测表面,因此,探针法一般不宜用于测量铜、铝等软金属表面或涂有光刻胶等薄膜的表面。 光学探针式测量方法 光学探针式测量方法原理上类似于机械探针式测量方法,只不过探针是聚集光束。根据采用的光学原理不同,光学探针可分为几何光学原理型和物理光学原理型两种。几何光学探针利用像面共轭特性来检测表面形貌,有共焦显微镜和离焦检测两种方法:物理光学探针利用干涉原理通过测量程差来检测表面形貌,有外差干涉和微分干涉两种方法。 外差干涉光学探针利用双光束外差干涉原理来测量被测表面的形貌。两支相干光的一束作为测量光束经显微物镜聚集在被测表面上,另一束则作为参考光束保持光程不变。通过某种方法使两支相干光的频率产生差异,从而使两束相干光的相差受时间调制。当光电探测器检测随时间变化的干涉条纹时,探测器输出电信号中的低频成分的位相就反映了干涉条纹的位相差。利用位相计测出低频信号的位相,就可高精度地测出干涉条纹的位相差,从而得到有关表面形貌的信息。微分干涉光学探针将光束分成两束相干光束并在被测表面上聚焦成两个相距很近的光斑,被测表面在这两个光斑之间的高度差决定了两束相干光的位相差,利用各种方法测出位相差,就可能获得表面形貌的信息。由于微分干涉探针采用共光路光学系统,因此具有良好的抗干扰特性,且不需要标准参考平面。但是由于微分干涉法实际测量的是表面斜率,表面形貌是通过斜率积分获得的,因而这种方法会累积误差. 干涉显微测量方法 干涉显微测量方法利用光波干涉原理测量表面轮廓。与探针式测量方法不同的是:它不是单个聚焦光斑式的扫描测量,而是多采样点同时测量。干涉显微测量方法根据干涉光路的结构可分为双光路和共光路两种类型。双光路型干涉显微轮廓仪根据分光方式的不同还可分为Michelson、Mirau 和Linnik 三种类型。 Mirau 干涉显微轮廓仪的原理:来自光学系统前端光路的光束经显微物镜后透过参考板,然后由分光板上的半反半透膜分成两束,一束透过分光板投射到被测面上,反射后经分光板和参考板回到显微镜。另一束被分光板反射到参考板上表面中心区域,反射后回到分光板并再次被反射,然后透过参考板回到显微镜。两束光在显微物镜视场中会合并发生干涉。 Michelson 干涉显微轮廓仪的原理:来自光学系统前端光路的光束经显微物镜后被分束镜分成两束,一束被参考面反射,另一束被被测面反射,两束光再次经 过分束镜后会合并发生干涉。从干涉分光方式和光路结构看,Michelson 干涉显微光路类似于传统的Michelson 干涉仪,不同的是传统的Michelson 干涉仪(包括传统的Fezeau、Twyman2Green ,Mach2Zehnder 干涉仪在内) 是一种宏观测量,它们测量的是表面形状或表面形状误差,而Michelson 干涉显微轮廓仪是一种显微放大测量,它测量的是微观区域内表面的

检测鉴定报告范本

报告编号:××××共8页第1 页工程名称名称要与现有学校名称一致,如与原始资料不符要在括号内注明(原某某学校)工程地点现在名称 委托单位现在名称 鉴定时间×年×月×日至×月×日检验类别委托 鉴定项目安全及抗震鉴定 仪器设备检测所使用设备名称 鉴定依据详见附页 鉴定结论及处理意见 1.鉴定结论 1)有无影响结构安全性缺陷。 2)检测材料强度值是否满足《建筑抗震鉴定标准》规定。 3)抗震构造措施是否满足要求,如不满足,需说明哪里不满足什么标准或规范的要求。 4)安全性等级和试修性评估等级,并注明等级含义。(例:该工程的安全性等级为C su,(安全性不符合标准要求,显著影响整体承载),适修性评估等级为:B'r/ B r (稍难修,改造后的功能尚可达到现行设计标准要求,适修性尚好,宜予修复或改造)。) 2.加固建议 根据鉴定结论,需要加固的项目给出加固建议,如需拆除,则此条改为拆除;如满足各项要求,则无需此条。 (本页以下无正文) 单位名称(盖章) 年月日

报告编号:××××共8页第2 页 1.工程概况 包括建成年份,建筑面积,结构形式,层数,楼板形式,基础形式,基本尺寸;原勘察设计单位,施工单位,监理单位,质检部门,产权所有人等,如果没有资料可查,应注明。 写明鉴定原由。(例:为了保证河北省中小学校舍安全工程顺利实施,按照国务院关于中小学校舍安全工程的统一部署及《全国中小学校舍安全工程实施方案》和《全国中小学校舍安全工程技术指南》的要求,依据《河北省中小学校舍鉴定实施细则》和《河北省中小学校舍安全排查实施细则》,×单位接受委托于×年×月×日~×月×日对以上工程进行了建筑物抗震鉴定与安全性鉴定。) 注明当地设防烈度。 图1该项目正立面图(建筑实体照片) 2.抗震鉴定依据 2.1 该工程设计文件、设计变更及地质勘查报告; 2.2《建筑抗震鉴定标准》(GB 50023-2009); 2.3《民用建筑可靠性鉴定标准》(GB 50292-1999); 2.4《建筑工程抗震设防分类标准》(GB 50223-2008); 2.5《建筑抗震设计规范》(GB 50011-2001)(2008版); 2.6《建筑结构检测技术标准》(GB/T 50344-2004)。 3.鉴定内容、要求及方法 3.1鉴定内容及要求 此次抗震鉴定包括下列内容及要求: 3.1.1搜集该工程的勘察报告、施工和竣工验收的相关原始资料;当资料不全时,应根据鉴定的需要进行补充实测。 3.1.2调查该工程现状与原始资料相符合的程度、施工质量和维护状况,普查相关的非抗震缺陷,工程现状调查又包括如下内容:1)该建筑的使用状况与原设计或竣工时有无不同;2)该建筑存在的缺陷是否仍属于“现状良好”的范围,并从结构受力的角度,检查结构的使用与原设计有无明显的变化;3)检测结构材料的实际强度等级。

地下空洞检测方法1

一、地下空洞、地下管线,路面裂缝探查 方法:利用探地雷达检测 仪器:SIR雷达 检测原理:如图1所示探地雷达由发射电路、发射天线、控制面板、接收天线、接受电路、笔记本电脑及光缆等组成。探地雷达的两块板式天线紧贴目的体表面,发射天线发射的电磁波遇反射层后产生反射回波信号。由接收天线接收并直接将该信号数字化。然后由笔记本电脑收集并记录,每一测点视时窗大小仅需几秒或十几秒即可完成采集任务,可以方便地实现连续采集和连续记录,易于图像解释。探地雷达图像解释的基础是研究电磁波的传播特性,因此主要是通过找寻反射界面来判断得出目的体的几何形状和物理特征介质的电性质差异和物性差异成为衡量探地雷达适用与否的主要标准,介质间的物性差异越大,二者间的界面越易于分辨。 图1 仪器技术参数如下:

检测过程:根据实际情况采用0.5m至1m不等的观测点距,采用不同的天线中心频率探测道路不同深度的空洞情况。 二、已建建筑沉降监测 在本测区内,应设5个以上基准点,相互之间距离不超过60m,以便相互校准,基准点要设置在距建筑物一定距离以外的稳定地方,且有良好的通视条件。沉降采用闭合线路二等水准测量方法进行,工作基点用作直接测定观测点的起始点或终点,利用DS1水准仪进行沉降点的沉降观测。观测点的布设:为了能够反映出建筑物的准确沉降情况,应以建筑物的大小、荷重及基础构造等因素来确定观测点的位置,沉降观测点纵、横向对称,且均匀地分布在建筑物的周围及内部。一般建筑物承重柱、转角处、沉降缝的两侧、纵横墙交接处或每隔 10~20m的承重墙上设置观测点。 三、已建建筑倾斜监测 方法:经纬仪法

仪器:经纬仪 原理:在需观测墙面上设上,下两个测点 A 、B ,其高差为H 。在该墙面垂线方向设立一个稳定的点作为测站。并选择一个稳定的后视点开始量测时测出A 、B 两点对后视点的夹角OB OA αα, (该值为初始值)及测站至A 、B 两点之间的距离B A d d ,。图 2为 A 点计算简图。 变形前建筑物 A 点为实线位置,变形后移至虚线位置,第 i 次量测相对第1次(初始 值)的角度变化值为A ?,,最后倾斜度为: 四、地下水位检测 仪器:LEVEL 检测原理:根据压力与水深成正比关系的静水压力原理,运用压敏元件作传感器的水位汁。当传感器固定在水下某一测点时,该测点以上水柱压力高度加上该点高程,即可间接地测出水位。 仪器参数: 尺寸 直径22毫米,长度154毫米 重量 179克 外壳材 质 氮化镐 压力传感器材 质 陶瓷 采样频 率 0.5秒到99小时 内存 2×40000个数据 电池寿命 8到10年

面料品质检测方法标准1

涤 纶 一、检测内容 耐洗牢度 耐磨擦牢度 日晒牢度 扭曲率 缩水率 车缝拉力 外观布面检验 起毛起球 二、检测方法 1、 耐洗色牢度 a 、 取15cm x 15cm 面料,正面四周折边,车缝在纯棉白色里布上; b 、 常温40°C 、50:1机洗15分钟后,清洗干净后晾干。 2、 耐磨擦色牢度 a 、 取面料经向10cm ,纬向25cm ; b 、 干磨:把剪好的面料平放在干、湿磨机上固定,磨擦次数调整在20 次,取白色平纹里布(常用棉织09里布,较薄)5cmX5cm 左右大小布 块,套在被磨擦的圆柱模具上,要求外圈模具略高于里布磨擦处,若外 圈模具低于里布磨擦处,将会影响到测试结果的准确性; c 、 湿磨:把白色平纹里布浸湿,在磨擦机右侧两根圆管间(专门用于布料 挤水)把水份挤出, 其它程序同干磨。 3、 日晒牢度 a 、 取面料30cm X 30cm ,用双层较厚的面料对半车缝; b 、 强太阳光直晒8~10小时。 4、 扭曲率 取面料60cm X 60cm ,正中经纬向垂直,画明线50cm X 50cm 后两 片缝合,以常温40°C 、50:1机洗15分钟后,清洗干净且烫平后, 测量其扭曲率;(以3次的扭曲率平均值作为计算结果) 计算公式:F= ×100 5、 缩水率 a 、 热缩:面料延经纬向垂直剪成30cm X 30cm ,用蒸汽闷烫三分钟,冷却 后测量其缩率; b 、 冷缩:取面料80cm X 80cm ,正中经纬向垂直,画明线50cm X 50cm 后车缝,以常温40°C 、50:1机洗15分钟后,清洗干净且烫平后,测 A 扭后端点的距离(横CM ) B 缝线处垂直量至底边缝线处(直CM )

安全性鉴定方法及步骤

框架结构安全性检测鉴定方法及步骤 一、检测鉴定依据 1.《民用建筑可靠性鉴定标准》GB 50292-1999 2.《建筑结构荷载规范》GBJ 9—87 3.《回弹法检测混凝土抗压强度技术规程》(J GJ/T 23-92) 4.《混凝土结构设计规范》GBJ 10—89 5.《危险房屋鉴定标准》JGJ 125—99 6.《混凝土结构加固技术规范》(C ECS 25:90) 7.《钻芯法检测混凝土强度技术规程》(C ECS 03:88) 8.原工程相关资料:包括工程设计图纸、设计变更、施工记录、 地质勘查报告、使用功能及荷载变更、历次加固方案和修复 处理方案、改造的相关资料等 二、鉴定内容 1、调查及检测 ①结构基本情况勘察检查结构的布置形式、结构及其支承构造、构件及其连接构造、结构的细部尺寸及相关的几何参数。 ②结构使用条件核实:检查结构上的作用、建筑物的内外环境及使用历史。 ③地基及基础的检查:当无地基基础的相关资料时,应检查场地类别、地基土情况、地基稳定性及地基变形等情况,主要通过局部开挖,调查现有基础工作状态,观测其整体及局部变形(沉降)情况及其在上部结构中的反应。如有问题,需作进一步检测。 ④材料性能检测分析检测主体承重结构材料的强度:混凝土结构检测梁板、柱子的混凝土强度、混凝土碳化深度,检测保护层厚度、钢筋分布情况等。

混凝土强度检测可采用拔出法、回弹法、取芯法及回弹超声综合法等,钢筋分布及混凝土保护层厚度用扫描仪扫描检测。 混凝土强度检测采用随机抽取的办法,抽检构件数量约为总体构件数量的30%(指主要构件),位置可根据现场条件适当选取,钢筋分布检测选取有代表性的构件及重要的构件进行。 ⑤承重结构情况检查检查结构的体系,房屋的整体性连接、房屋局部易损部位的构造、检查框架梁、板、柱子的裂缝及承重砖墙的裂缝变形等。 2、理论计算分析 根据现场检测所得到的主体承重结构材料强度,结合原工程图纸和调查情况,进行整体结构计算,分析结构构件的承载能力等是否满足相关设计规范的要求。计算分析时,结构构件材料按原设计(或设计变更)和现场实测指标两种情况综合考虑取用,几何参数按设计图纸(或设计变更)并结合现有建筑的实际情况取用。 3、建筑结构安全性鉴定 安全性鉴定按照现行标准要求(《民用建筑可靠性鉴定标准》GB 50292-1999),分构件、子单元、鉴定单元三个层次进行,每一个层次又分为四个安全性和三个使用性等级,按照标准规定的检查项目和步骤,结合现场调查和原设计有关资料以及计算结果,逐层进行。最后,综合分析得出整个建筑的安全性评价。 4、结论及建议 根据鉴定结果,对结构的整体安全度作出评价。 当鉴定结果不符合标准要求时,结合建筑物的实际情况及结构的使用功能要求等提出加固处理方案,并通过经济技术比较,推荐最优的加固方案。

频谱监测系统测试方案讲解学习

频谱监测系统测试方 案

频谱监测系统测试方案 一、测试目的 验证系统需求中描述的功能模块是否操作正常,各组成部分是否能完好地结合在一起,已集成在一起的产品是否符合系统设计说明书的要求。 二、测试点 根据频谱监测系统功能设计,对所有描述的功能模块功能逐一进行测试,主要测试点如下: 1.频谱波形数据的实时采集,小于等于500毫秒 2.越限频谱变化自动存储 3.越限进行语音报警; 4.历史数据查询频谱波形再现; 5.导出历史频谱为图片,并打上时间戳和导出的系统名称 6.远程控制频谱仪配置 7.正常使用中进行频谱参数设置而不造成监测中断; 8.可支持多品牌不同型号频谱仪,可支持不同数据接口:RS232和网口 9.可单频谱监测也可多频谱同时监测 10.可单独作为监控系统也可嵌入至网管系统实现全链路集中管控;

三、测试要求 在测试前,充分地做好如下工作: 按照本文测试方案中的要求,准备好测试用服务器及其需要软硬件配置。 基于本次测试目的,具体要求如下: 1、按开发完成的功能顺序依次执行。 2、对于每个测试点,在测试之前,遵循以下测试方法: ?熟悉每个测试点的基本功能以及操作方法。 ?所有测试点符合测试案例要求。 3、测试过程中,对每个测试案例的测试点进行认真测试。 4、测试完成后,用户给出测试意见和结果。

四、功能测试案例 1.测试点:频谱波形数据的实时采集,小于等于500毫秒 案例编号JSDQZ-Spectrum-01 系统频谱监测系统功能名频谱波形数据实时采集编写人奚晓轶编写日期2016.3.9 测试类型 功能测试 人机界面测试 安全性访问和控制 性能评价测试测试目的验证频谱波形数据的实时采集功能,小于等于500毫秒 预置条件或 输入数据描述 频谱仪有输入信号并和频谱监测系统连接正常。 测试过程序号步骤检测要点预期输出实际输出 1 运行频谱监测系统频谱迹线实时刷新频谱迹线实时刷新实时刷新 2 观察界面sweep time Sweep time小于等于 500毫秒 刷新时间最大值500毫秒450毫秒刷新一次 测 试 结 果 功能测试通过; 人机界面符合,测试通过; 刷新迹线时间为450毫秒,小于500毫秒,性能评价测试通过; 说明Sweep (401pts)是频谱仪进行FFT计算后输出401个点,并构成迹线的一个重要参数,频谱监测系统会根据频谱仪的sweep设置实时刷新迹线。即频谱监测系统刷新迹线的间隔是根据频谱仪设置的。 测试人奚晓轶测试日期2016.3.9 Sweep 450ms(401pts)

种猪测定方法比较

种猪测定方法比较 一、加拿大 (一)场内测定方案注:① SIP 是加拿大的国家猪改良程序,是对猪的一个综合的测定和遗传评定程序。 1、申请:希望登记加入加拿大SIP的群应该与地区负责该省方案管理中心联系。一旦直接负责管理该方案的代理认为申请者满足登记的要求,在场测定就可以开始。 2、基本要求:以下为最低要求,可以根据各自地区中心的考虑增加: (1)申请者拥有或维持一个有可识别祖代的猪育种群。最少个体数目可由各自的地区中心设定,但一般建议每个要参加评定的品种至少有20头母猪。 (2)群中所有种畜必须通过刺号、耳缺号或耳牌永久地和清楚地识别。如果一种物理刺号不合适(如对一些有颜色的个体),仍需提供可供SIP使用的有效刺号。不可登记个体应使用商品群代码分配刺号。纯种及商品群代码都要从CLRC②获得,以保证其在加拿大内独一无二的标志。(CLRC是加拿大畜禽记录公司。)(3)育种者必须保持该群完整的和最新的育种和管理纪录。该记录最少要包含如下信息:待测猪所在窝的父亲和母亲的品种和刺号;所有断奶猪的出生日期、父亲和母亲、品种、刺号和性别。 (4)育种者必须提供可接受的圈栏、称重和处理设备以有效地收集测定数据,并在猪称重和测膘时协助技术员。SIP场内测定方案根据所收集数据可分成两种测定类型。母猪生产力及称重和测膘程序如下所述。 3、母猪生产力:母猪生产力数据的收集不受监督。数据可直接从群记录提供以进入相应的数据库,有关省代理应决定最合适的程序。SIP的地区管理者应确保用以收集体重信息的磅秤准确和正确使用。完整和最新的育种和管理记录也应随时可供检查。母猪生产力的数据可从母猪群管理的商业软件包传送。但是,用户必须保证所收集的数据满足SIP要求。当刺号不完整,SIP与商业软件之间的界面可提供一些转换或拒绝不符合要求的数据。可与地区中心联系以核实界面要求。 4、称重与测膘:称重与测膘程序为一受监督的性能记录和评定程序。公猪和母猪的活重为75—115kg 之间时,由委任的技术员称重和用超声波探测背膘厚。

面轮廓度误差检测方法介绍

面轮廓度误差检测方法介绍

摘要:所谓轮廓度是指被测实际轮廓相对于理想轮廓的变动情况。这一概念用于描述曲面或曲线形状的准确度。其中轮廓度包括面轮廓度与线轮廓度,本文主要针对面轮廓度的知识及误差检测方法等内容进行介绍. 面轮廓度 ●面轮廓度:是限制实际曲面对理想曲面变动量的一项指标,它是对曲面的形 状精度要求。 ●面轮廓度公差:是实际被测要素(轮廓面线要素)对理想轮廓面的允许变动。 ●面轮廓度误差:描述曲面尺寸准确度的主要指标为轮廓度误差,它是指被测 实际轮廓相对于理想轮廓的变动情况。 面轮廓度公差标注方法 1)无基准要求 公差带是直径为公差值t、球心位于被测要素理论正确形状上的一系列圆球的两包络面所限定的区域。

2)有基准要求 公差带是直径为公差值t、球心位于由基准平面确定的被测要素理论正确几何形状上的一系列圆球的两包络面所限定的区域。 面轮廓度误差检测方法介绍 1、传统误差检测方法 传统的面轮廓度测量误差的测量方法包括仿形装置测量、截面轮廓样板测量、光学跟踪轮廓测量仪测量以及三坐标测量装置测量等。前3种测量方法要求做出理论轮廓样板后才能测量。由于理论轮廓样板制作非常困难,因此该测量方法适合于一种零件大批量生产过程中的检验。而采用三坐标测量装置进行测量时无需轮廓样板,只需要零件的CAD数学模型(零件的三维设计图形),因此该测量方法可应用于任何场合且测量数据可靠。 目前,用来采集物体表面三维坐标的测量设备和方法多种多样,其原理也各不相同。根据测量测头是否和零件表面接触可分为接触式与非接触式两类。 接触测量法以三坐标测量机测量为典型代表。三坐标测量机的测量精度高,对环境(如:温度、湿度、防振等)要求也高。由于测量时测头在工件上要逐点测量,所以测量速度较慢。另外还要求被测零件的材质不能太软、尺寸不宜过大且不易变形。

检测鉴定方法及方法确认程序

1. 工作目的 明确检测/鉴定活动中方法的选择、制定、确认要求,保证数据准确可靠。 2. 适用范围 适用于检测/鉴定活动中方法的选择、确认全过程。 3. 工作职责 3.1技术质量管理部负责对引用的标准规范每半年核查一次。 3.2 检测所、土工实验室、分站保证方法的正确有效实施。 4. 工作程序 4.1 方法选择范围及有效性确认 4.1.1 方法选择范围 4.1.1.1 国家检测/鉴定标准; 4.1.1.2 行业检测/鉴定标准; 4.1.1.3 地方检测/鉴定标准。 4.1.1.4 需要时,可以采用国际标准,但仅限特定委托方的委托检测/鉴定。 4.1.2 如委托人要求本站执行标准范围以外的方法时,应选择: 4.1.2.1 知名技术组织公布的方法; 4.1.2.2 科学专业文献公布的方法; 4.1.2.3 科学技术杂志公布的方法。 4.1.3 本站暂时不采用非标方法、自制方法。 4.1.4 标准的有效性核查 4.1.4.1 各检测所、土工实验室、分站负责应积极主动收集技术标准,收集到的技术标准应登记编号并存档。 4.1.4.2 在用的技术标准应每半年核查一次有效性,并形成《标准跟踪核查记录》,以保证方法的有效性。

4.1.4.3 如新技术标准较旧技术标准对资源配置有较大的变化时相关部门技术主任应组织对新标准开展宣贯,宣贯执行《人员培训和考核管理程序》。 4.1.4.4 技术主任负责组织更新标准的证实,形成《检测/鉴定方法证实记录》。 4.2 方法的选择 4.2.1 各检测所、土工实验室、分站对本站开展的项目,按照4.1条款的要求选择并指定开展时使用的方法,并对新标准进行方法证实。 4.2.2样品管理员在与客户洽谈时应明确选择各检测所土工实验室分站定的方法,如客户指定的方法不包含在其范围内应与检测所长、土工实验室主任、分站联系确认,当客户所提出的方法不适合或已过期时,应及时通知客户。 4.2.3 化学领域检测室应关注检测方法中提供的限制说明、浓度范围和样品基体,选择的检验方法应确保在限量点附近给出可靠的结果。 4.2.4对首次采用的检测/鉴定方法进行技术能力的验证,如检出限、回收率、准确度、精密度和测量不确定度等。如果在证实过程中发现标准方法中未能详述但影响检验结果的环节,应将详细操作步骤编制成作业指导书,作为标准方法的补充。当检验标准发生变更涉及到检验方法原理、仪器设施、操作方法时,需要通过技术验证重新证明正确运用新标准的能力。 4.3 作业文件的制定和使用 4.3.1 当仪器设备操作、规程规范较复杂时,包括化学检测用器皿的清洗、储存和隔离等,各检测所长和土工实验室主任组织制定作业文件,对规程规范加以细化补充,以确保应用一致性。 4.3.2 作业文件按照《文件控制程序》审批并发放使用。 4.3.3 规程规范、作业文件或其它指导性文件应发放到检测所和土工实验室,并应方便检测/鉴定人员获取和查阅使用。 4.4 方法的证实过程 4.4.1 方法证实范围 4.4.1.1 超出预期范围使用的标准方法; 4.4.1.2 扩充、修改或变更的标准方法;

相关主题
文本预览
相关文档 最新文档