当前位置:文档之家› 2020年中考数学压轴题大集合(含答案)

2020年中考数学压轴题大集合(含答案)

2020年中考数学压轴题大集合(含答案)
2020年中考数学压轴题大集合(含答案)

中考数学压轴题大集合

一、函数与几何综合的压轴题

1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;

(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,

如图②,求△AE ′C 的面积S 关于k 的函数解析式.

[解] (1)(本小题介绍二种方法,供参考)

方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴

,EO DO EO BO AB DB CD DB ''''

==

又∵DO ′+BO ′=DB ∴

1EO EO AB DC

''

+= ∵AB =6,DC =3,∴EO ′=2

又∵DO EO DB AB ''=,∴2

316

EO DO DB AB ''=?=?=

∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ②

联立①②得02x y =??=-?

∴E 点坐标(0,-2),即E 点在y 轴上

(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)

图①

图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-??

++=-??=-?

解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考)

由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。

同(1)可得:

1E F E F

AB DC

''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?=

,∴1

3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112

2223

DC DB DC DF DC DB ?-?=?

=1

3

DC DB ?=DB=3+k S=3+k 为所求函数解析式

方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11

32322

BD E F k k '=

?=+?=+ ∴S =3+k 为所求函数解析式.

证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2

同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221

3992

AE C ABCD S S AB CD BD k '?=

=?+?=+梯形 ∴S =3+k 为所求函数解析式.

2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点.

(1)求点A 的坐标;

(2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明;

(3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若

4

21h

S S =,抛物线 y =ax 2+bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式.

[解](1)解:由已知AM =2,OM =1,

在Rt △AOM 中,AO =

122=-OM AM ,

∴点A 的坐标为A (0,1)

(2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y =x +1 令y =0则x =-1 ∴B (—1,0),

AB =

2112222=+=+AO BO 在△ABM 中,AB =2,AM =2,BM =2

222224)2()2(BM AM AB ==+=+

∴△ABM 是直角三角形,∠BAM =90° ∴直线AB 是⊙M 的切线

(3)解法一:由⑵得∠BAC =90°,AB =2,AC =22, ∴BC =

10)22()2(2222=+=+AC AB

∵∠BAC =90° ∴△ABC 的外接圆的直径为BC ,

∴π

ππ2

5)210()2(221=?=?=BC S 而πππ2)222()2(

2

22=?=?=AC S

421h S S =Θ,5,4225

=∴=h h 即 ππ 设经过点B (—1,0)、M (1,0)的抛物线的解析式为: y =a (+1)(x -1),(a≠0)即y =ax 2-a ,∴-a =±5,∴a =±5 ∴抛物线的解析式为y =5x 2-5或y =-5x 2+5 解法二:(接上) 求得∴h =5

由已知所求抛物线经过点B (—1,0)、M (1、0),则抛物线的对称

轴是y 轴,由题意得抛物线的顶点坐标为(0,±5)

∴抛物线的解析式为y =a (x -0)2±5

又B (-1,0)、M (1,0)在抛物线上,∴a±5=0, a =±5

∴抛物线的解析式为 y =5x 2-5或y =-5x 2+5 解法三:(接上)求得∴h =5

因为抛物线的方程为y =ax 2+bx +c (a≠0)

由已知得???

??-===?????==?????????

±=-=+-=++5

055c 0b 5544002c b a a a

b a

c c b a c b a 或 =- 解得

∴抛物线的解析式为 y =5x 2-5或y =-5x 2+5.

3.如图,在直角坐标系中,以点P (1,-1)为圆心,2为半径作圆,交x 轴于A 、B 两点,抛物线)0(2

>++=a c bx ax y 过点A 、B ,且顶点C 在⊙P 上. (1)求⊙P 上劣弧⌒

AB 的长;

(2)求抛物线的解析式;

(3)在抛物线上是否存在一点D ,使线段OC 与PD

在,请说明理由. [解] (1)如图,连结PB ,过P 作PM ⊥x 轴,垂足为M.

在Rt △PMB 中,PB=2,PM=1, ∴∠MPB =

60°,∴∠APB =120° ⌒

AB 的长=

3

42180120π

π=

???? (

2)在Rt △PMB 中,PB=2,PM=1,则MB =MA =3. 又OM=1,∴A (1-3,0),B (1+3,0), 由抛物线及圆的对称性得知点C 在直线PM 上,

则C(1,-3).

点A 、B 、C 在抛物线上,则

???

????++=-+-+-=++++=c b a c b a c b a 3)31()31(0)31()31(022 解之得?????-=-==2

21

c b a ∴抛物线解析式为222--=x x y

(3)假设存在点D ,使OC 与PD 互相平分,则四边形OPCD 为平行四边形,且PC ∥OD.

又PC ∥y 轴,∴点D 在y 轴上,∴OD =2,即D (0,-2).

又点D (0,-2)在抛物线222

--=x x y 上,故存在点D (0,-2), 使线段OC 与PD 互相平分.

4.(2004湖北襄樊)如图,在平面直角坐标系内,Rt △ABC 的直角顶点C (0在y 轴的正半轴上,A 、B 是x 轴上是两点,且OA ∶OB =3∶1,以OA 、OB 为直径的圆分别交AC 于点E ,交BC 于点F .直线EF 交OC 于点Q . (1)求过A 、B 、C 三点的抛物线的解析式;

(2)请猜想:直线EF 与两圆有怎样的位置关系?并证明你的猜想.

(3)在△AOC 中,设点M 是AC 边上的一个动点,过M 作MN ∥AB 交OC 于点N .试问:在x 轴上是否存在点P ,使得△PMN 是一个以MN 为一直角边的等腰直角三角形?若存在,求出P 点坐标;若不存在,请说明理由.

∴A(-3,0),B(1,0).

设抛物线的解析式为2.

y ax bx c

=++

930,

0,

a b c

a b c

c

?-+=

?

++=

?

?

=

?

解之,得

3

a

b

c

?

=-

?

?

?

=

?

?

?=

?

?

∴经过A、B、C三点的抛物线的解析式为2

y x

=+

(2)EF与⊙O1、⊙O2都相切.

证明:连结O1E、OE、OF.

∵∠ECF=∠AEO=∠BFO=90°,

∴四边形EOFC为矩形.

∴QE=QO.

∴∠1=∠2.

∵∠3=∠4,∠2+∠4=90°,

∴EF与⊙O1相切.

同理:EF理⊙O2相切.

(3)作MP⊥OA于P,设MN=a,由题意可得MP=MN=a.

∵MN∥OA,

∴△CMN∽△CAO.

∴.

MN CN

AO CO

=

3

a

=

解之,得

3

.

2

a=

此时,四边形OPMN是正方形.

∴MN OP

==

∴(P

考虑到四边形PMNO此时为正方形,

∴点P在原点时仍可满足△PNN是以MN为一直角边的等腰直角三角形.

故x轴上存在点P使得△PMN是一个以MN为一直角边的等腰直角三角形且

3

(,0)

2

P-或(0,0).

P

由方程组

y=ax 2—6ax +1

y=2

1

x +1 得:ax 2—(6a +

2

1

)x =0

5.如图,已知点A(0,1)、C(4,3)、E(

415,8

23

),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的—个动点,点D 在y 轴,抛物线y =ax 2+b x +1以P 为顶点. (1)说明点A 、C 、E 在一条条直线上;

(2)能否判断抛物线y =ax 2+b x +1的开口方向?请说明理由;

(3)设抛物线y =ax 2+b x +1与x 轴有交点F 、G(F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点.这时能确定a 、b 的值吗?若能,请求出a 、b 的值;若不能,请确定a 、b 的取值范围. (本题图形仅供分析参考用)

[解] (1)由题意,A(0,1)、C(4,3)确定的解析式为:y=2

1

x 将点E 的坐标E(415,823)代入y=21x +1中,左边=8

23,右边=

21×415+1=8

23

, ∵左边=右边,∴点E 在直线y=

2

1

x +1上,即点A 、C 、E 在一条直线上. (2)解法一:由于动点P 在矩形ABCD 内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下 解法二:∵抛物线

y=ax 2+b x +c

的顶点P 的纵坐标为a

b a 442

—,且P 在矩形ABCD 内部,∴

1<a b a 442—<3,由1<1—a b 42得—a

b 42>0,∴a <0,∴抛物线的开口向下.

(3)连接GA 、FA ,∵S △GAO —S △FAO =3 ∴

21GO ·AO —2

1

FO ·AO=3 ∵OA=1,∴GO —FO=6. 设F (x 1,0)、G (x 2,0),则x 1、x 2为方程ax 2+b x +c=0的两个根,且x 1<x 2,又∵a <0,∴x 1·x 2=

a

1

<0,∴x 1<0<x 2, ∴GO= x 2,FO= —x 1,∴x 2—(—x 1)=6, 即x 2+x 1=6,∵x 2+x 1= —

a b ∴—a

b

=6, ∴b= —6a ,

∴抛物线解析式为:y=ax 2—6ax +1, 其顶点P 的坐标为(3,1—9a ), ∵顶点P 在矩形ABCD 内部, ∴1<1—9a <3, ∴—9

2

<a <0.

∴x =0或x =

a a 21

6

=6+a

21. 当x =0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交点,则

有:0<6+

a 21≤415,解得:—92

≤a <—121 综合得:—

92<a <—121 ∵b= —6a ,∴21<b <3

4

6.(2004湖南长沙)已知两点O(0,0)、B(0,2),⊙A 过点B 且与x 轴分别相交于点O 、C ,

⊙A 被y 轴分成段两圆弧,其弧长之比为3∶1,直线l 与⊙A 切于点O ,抛物线的顶点在直线l 上运动.

(1)求⊙A 的半径;

(2)若抛物线经过O 、C 两点,求抛物线的解析式;

(3)过l 上一点P 的直线与⊙A 交于C 、E 两点,且PC =CE ,求点E 的坐标;

(4)若抛物线与x 轴分别相交于C 、F 两点,其顶点P 的横坐标为m ,求△PEC 的面积关于m 的函数解析式. [解] (1)由弧长之比为3∶1,可得∠BAO =90o

再由AB =AO =r ,且OB =2,得r = 2 (2)⊙A 的切线l 过原点,可设l 为y =kx

任取l 上一点(b ,kb ),由l 与y 轴夹角为45o可得: b =-kb 或b =kb ,得k =-1或k =1, ∴直线l 的解析式为y =-x 或y =x 又由r

C(2,0)或C(-2,0)

由此可设抛物线解析式为y =ax (x -2)或y =ax (x +2) 再把顶点坐标代入l 的解析式中得a =1 ∴抛物线为y =x 2-2x 或y =x 2+2x ……6分

(3)当l 的解析式为y =-x 时,由P 在l 上,可设P(m ,-m)(m >0) 过P 作PP′⊥x 轴于P′,∴OP′=|m|,PP′=|-m|,∴OP =2m 2, 又由切割线定理可得:OP 2=PC·PE,且PC =CE ,得PC =PE =m =PP′7分 ∴C 与P′为同一点,即PE ⊥x 轴于C ,∴m =-2,E(-2,2)…8分 同理,当l 的解析式为y =x 时,m =-2,E(-2,2)

(4)若C(2,0),此时l 为y =-x ,∵P 与点O 、点C 不重合,∴m≠0且m≠2, 当m <0时,FC =2(2-m),高为|y p |即为-m , ∴S =

22(2)()

22

m m m m --=-

同理当0<m <2时,S =-m 2+2m ;当m >2时,S =m 2-2m ;

∴S =22

2(02)2(02)m m m m m m m ?-<>?-+<

2(20)

2(20)

m m m m m m m ?+<->?---<

7.如图,直线4+=kx y 与函数)0,0(>>=m x x

y 的图像交于A 、B 两点,且与x 、y 轴分 别交于C 、D 两点.

(1)若COD ?的面积是AOB ?的面积的2倍,求k 与

m 之间的函数关系式;

(2)在(1)的条件下,是否存在k 和m ,使得以AB 为直径的圆经过点)0,2(P .若存在,求出k 和m 的值;若不存在,请说明理由. [解](1)设),(11y x A ,),(22y x B (其中2121,y y x x ><),

由AOB COD S S ??=2,得)(2BOD AOD COD S S S ???-= ∴

2

1·OC ·2=OD (21·OD ·-1y 21

·OD ·2y ),(21y OC =又4=OC ,∴8)(221=-y y ,即84)(21221=-+y y y y ,

由x m

y =可得y m x =,代入4+=kx y 可得042=--km y y ∴421=+y y ,km y y -=?21, ∴8416=+km ,即m

k 2

-

=. 又方程①的判别式08416>=+=?km ,

∴所求的函数关系式为m

k 2-=)0(>m . (2)假设存在k ,m ,使得以AB 为直径的圆经过点)0,2(P .

则BP AP ⊥,过A 、B 分别作x 轴的垂线,垂足分别为M 、N . ∵MAP ∠与BPN ∠都与APM ∠互余,∴MAP ∠ BPN ∠=.

∴Rt MAP ?∽Rt NPB ?,∴NB

MP

PN AM =

. ∴212122y x x y -=-,∴0)2)(2(2121=+--y y x x , ∴0)2)(2(212

1=+--y y y m y m , 即0)(4)(222121212=+++-y y y y y y m m ②

由(1)知421=+y y ,221=?y y ,代入②得01282=+-m m ,

∴2=m 或6,又m k 2-=,∴???-==12k m 或??

??

?-==316k m , ∴存在k ,m ,使得以AB 为直径的圆经过点)0,2(P ,且???-==12k m 或??

??

?-==316k m . (l

x

8.已知抛物线2

(5)5(0)y mx m x m =--->与x 轴交于两点1(,0)A x 、

2(,0)B x 12()x x <,与y 轴交于点C ,且AB =6.

(1)求抛物线和直线BC 的解析式.

(2)在给定的直角坐标系中,画抛物线和直线BC . (3)若P e 过A 、B 、C 三点,求P e 的半径.

(4)抛物线上是否存在点M ,过点M 作MN x ⊥轴于点N ,使MBN ?被直线BC 分成面

积比为13:的两部分?若存在,请求出点M 的坐标;若不存在,请说明理由.

[解](1)由题意得:121255

,m x x x x m m

--+=

?=2

21212520

()436,36,m x x x x m m -??+-=+

= ???

解得125

1,.7

m m ==-

经检验m =1,∴抛物线的解析式为:2

4y x x =+或:由2

(5)50mx m x ---=得,1x =或5x m

-=

0,m Q >

5

16, 1.m m

-∴-

=∴= ∴抛物线的解析式为24 5.y x x =+-

由2

450x x +-=得125, 1.x x =-=

∴A (-5,0),B (1,0),C (0,-5). 设直线BC 的解析式为,y kx b =+

则5,5,

0. 5.b b k b k =-=-??∴?

?

+==??

∴直线BC 的解析式为5 5.y x =- (2)图象自画.

(3)法一:在Rt AOC D 中,5,45.OA OC OAC ==∴∠=?Q

90BPC ∴∠=?.

又BC == ∴P e

的半径2

PB =

=

法二:

由题意,圆心P 在AB 的中垂线上,即在抛物线2

45y x x =+-的对称轴直线2x =-上,设

P (-2,-h )(h >0),

连结PB 、PC ,则2

2

2

2

2

2(12),(5)2PB h PC h =++=-+,

由22

PB PC =,即2

2

2

2

(12)(5)2h h ++=-+,解得h =2.

(2,2),P P ∴--∴e 的半径PB ==.

法三:

延长CP 交P e 于点F .

CF Q 为P e 的直径,90.CAF COB ∴∠=∠=? 又,.ABC AFC ACF OCB ∠=∠∴D ~D

,.CF AC AC BC

CF BC OC OC

?∴

=∴=

又AC ==5,CO BC ==∞

CF ∴=

=

P ∴e

(4)设MN 交直线BC 于点E ,点M 的坐标为2

(,45),t t t +-则点E 的坐标为(,55).t t -

若13,MEB ENB S S =D D ::则13.ME EN =::

24

34,45(55).3

EN MN t t t ∴=∴+-=-::

解得11t =(不合题意舍去),25,3t =

540,.39M ??

∴ ???

若31,MEB ENB S S =D D ::则31.ME EN =::

214,454(55).EN MN t t t ∴=∴+-=-::

解得31t =(不合题意舍去),415,t =()15,280.M ∴

∴存在点M ,点M 的坐标为540,39??

???

或(15,280).

9. 如图,⊙M 与x 轴交于A 、B 两点,其坐标分别为)03(,-A 、)01(,B ,直径CD ⊥x 轴于N ,直线CE 切⊙M 于点C ,直线FG 切⊙M 于点F ,交CE 于G ,已知点G 的横坐标为3.

(1) 若抛物线m x x y +--=22经过A 、B 、D 三点,求m 的值及点D 的坐标.

(2) 求直线DF 的解析式.

(3) 是否存在过点G 的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.

[解] (1) ∵抛物线过A 、B 两点,

∴1

1)3(-=?-m

,m =3.

∴抛物线为322+--=x x y .

又抛物线过点D ,由圆的对称性知点D 为抛物线的顶点.

∴D 点坐标为)41(,-.

(2) 由题意知:AB =4.

∵CD ⊥x 轴,∴NA =NB =2. ∴ON =1. 由相交弦定理得:NA ·NB =ND ·NC , ∴NC ×4=2×2. ∴NC =1. ∴C 点坐标为)11(--,.

设直线DF 交CE 于P ,连结CF ,则∠CFP =90°. ∴∠2+∠3=∠1+∠4=90°. ∵GC 、GF 是切线, ∴GC =GF . ∴∠3=∠4.

∴∠1=∠2.

∴GF =GP . ∴GC =GP . 可得CP =8. ∴P 点坐标为)17(-,

设直线DF 的解析式为b kx y += 则???-=+=+-174b k b k 解得???????=-=8

278

5

b k

∴直线DF 的解析式为:8

27

85+-=x y

(3) 假设存在过点G 的直线为11b x k y +=, 则1311-=+b k ,∴1311--=k b .

由方程组???+--=--=3

2132

11x x y k x k y 得034)2(112=--++k x k x

(第27题图)

由题意得421=--k ,∴61-=k . 当61-=k 时,040<-=?, ∴方程无实数根,方程组无实数解. ∴满足条件的直线不存在.

10.已知二次函数2

12

y x bx c =

++的图象经过点A (-3,6)

,并与x 轴交于点B (-1,0)和点C ,顶点为P.

(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象; (2)设D 为线段OC 上的一点,满足∠DPC =∠BAC ,求点D 的坐标;

(3)在x 轴上是否存在一点M ,使以M 为圆心的圆与AC 、PC 所在的直线及y 轴都相切?如果存在,请求出点M 的坐标;若不存在,请说明理由.

[解] (1)解:∵二次函数21

2

y x bx c =++的图象过点A (-3,6),B (-1,0)

得9

362102

b c b c ?-+=????-+=?? 解得132b c =-???=-??

∴这个二次函数的解析式为:21322

y x x =

-- 由解析式可求P (1,-2),C (3,0)

画出二次函数的图像

(2)解法一:易证:∠ACB =∠PCD =45°

又已知:∠DPC =∠BAC ∴△DPC ∽△BAC

DC PC

BC AC

=

易求4AC PC BC === ∴43DC =

∴45333OD =-= ∴5,03D ?? ???

解法二:过A 作AE ⊥x 轴,垂足为E.

设抛物线的对称轴交x 轴于F. 亦可证△AEB ∽△PFD 、

PE EB

PF FD

=

. 易求:AE =6,EB =2,PF =2 ∴23FD =

∴25133OD =+= ∴5,03D ?? ???

(3)存在.

(1°)过M 作MH ⊥AC ,MG ⊥PC 垂足分别为H 、G ,设AC 交y 轴于S ,CP 的延长线交y 轴于T

∵△SCT 是等腰直角三角形,M 是△SCT 的内切圆圆心, ∴MG =MH =

OM

又∵MC

=且OM +MC

=OC

3,3OM

OM +==得 ∴()

3,0M

(2°)在x 轴的负半轴上,存在一点M

′ 同理OM′+OC =M′C ,

OM OC ''+=

得3OM '=

∴M ′()

3,0- 即在x 轴上存在满足条件的两个点.

11.在平面直角坐标系中,A (-1,0),B (3,0).

(1)若抛物线过A ,B 两点,且与y 轴交于点(0,-3),求此抛物线的顶点坐标; (2)如图,小敏发现所有过A ,B 两点的抛物线如果与y 轴负半轴交于点C ,M 为抛物线的顶点,那么△ACM 与△ACB 的面积比不变,请你求出这个比值;

(3)若对称轴是AB 的中垂线l 的抛物线与x 轴交于点E ,F ,与y 轴交于点C ,过C 作CP ∥x 轴交l 于点P ,M 为此抛物线的顶点.若四边形PEMF 是有一个内角为60°的菱形,求次抛物线的解析式. [解] (1)322--=x x y ,顶点坐标为(1,-4).

(2)由题意,设y =a (x +1)(x -3),即y =ax 2-2ax -3a ,

∴ A (-1,0),B (3,0),C (0,-3a ),M (1,-4a

∴ S △ACB =

2

1×4×a 3-=6a , 而a >0, ∴ S △ACB =6A 、 作MD ⊥x 轴于D ,

又S △ACM =S △ACO +S OCMD -S △AMD =

21·1·3a +21(3a +4a )-2

1·2·4a =a , ∴ S △ACM :S △ACB =1:6.

(3)①当抛物线开口向上时,设y =a (x -1)2+k ,即y =ax 2-2ax +a +k , 有菱形可知k a +=k ,a +k >0,k <0, ∴ k =2

a -

, ∴ y =ax 2-2ax +

2

a

, ∴ 2=EF . 记l 与x 轴交点为D ,

若∠PEM =60°,则∠FEM =30°,MD =DE·tan30°=

6

6, ∴ k =-

66,a =3

6

, ∴ 抛物线的解析式为6

6

6326312+-=

x x y . 若∠PEM =120°,则∠FEM =60°,MD =DE·tan60°=

2

6

, ∴ k =-

2

6

,a =6, ∴ 抛物线的解析式为2

66262+

-=

x x y . ②当抛物线开口向下时,同理可得

666326312-+-

=x x y ,2

66262

-+-=x x y . 12.已知:O 是坐标原点,P (m ,n )(m >0)是函数y = k

x

(k >0)上的点,过点P 作直线PA ⊥OP

于P ,直线PA 与x 轴的正半轴交于点A (a ,0)(a >m ). 设△OPA 的面积为s ,且s =1+n 44

.

(1)当n =1时,求点A 的坐标; (2)若OP =AP ,求k 的值;

(3 ) 设n 是小于20的整数,且k ≠n 4

2

,求OP 2的最小值.

[解] 过点P 作PQ ⊥x 轴于Q ,则PQ =n ,OQ =m

(1) 当n =1时, s =5

4

∴ a =2s n =52

(2) 解1: ∵ OP =AP PA ⊥OP ∴△OPA 是等腰直角三角形 ∴ m =n =a

2

∴ 1+n 44=1

2

·an

即n 4-4n 2+4=0 ∴ k 2-4k +4=0 ∴ k =2

解2:∵ OP =AP PA ⊥OP

∴△OPA 是等腰直角三角形 ∴ m =n

设△OPQ 的面积为s 1 则:s 1=s

2

∴ 12·mn =12(1+n 44

) 即:n 4-4n 2+4=0 ∴ k 2-4k +4=0 ∴ k =2

(3) 解1:∵ PA ⊥OP , PQ ⊥OA

∴ △OPQ ∽△OAP 设:△OPQ 的面积为s 1,则 s 1s =PO 2AO 2

即:12k 1+n 44 =n 2

+k 2

n

2

4 (1+n 44

)2

n 2

化简得:2n 4+2k 2-k n 4-4k =0

(k -2)(2k -n 4)=0 ∴k =2或k =n 4

2

(舍去)

∴当n 是小于20的整数时,k =2.

∵ OP 2

=n 2

+m 2

=n 2

+k 2n

2

又m >0,k =2,

∴ n 是大于0且小于20的整数 当n =1时,OP 2=5 当n =2时,OP 2=5

当n =3时,OP 2=32+432=9+49=85

9

当n 是大于3且小于20的整数时,

即当n =4、5、6、…、19时,OP 2得值分别是: 42+442、52+452、62+462、…、192+4192

∵192+

4192>182+4182>…>3

2+432

>5 ∴ OP 2的最小值是5.

解2:

∵ OP 2=n 2+m 2=n 2+

k 2n 2

=n 2+

22n 2

=(n -2

n )2 +4

当n =2

n

时,即当n =2时,OP 2最小;

又∵n 是整数,而当n =1时,OP 2=5;n =2时,OP 2=5 ∴ OP 2的最小值是5.

解3:∵ PA ⊥OP , PQ ⊥OA ∴ △OPQ ∽△P AQ

PQ QA =OQ

PQ

n a -m =m

n

化简得:2n 4+2k 2-k n 4-4k =0

(k -2)(2k -n 4)=0 ∴k =2或k =n 4

2(舍去)

解4:∵ PA ⊥OP , PQ ⊥OA ∴ △OPQ ∽△P AQ s 1s -s 1=OQ 2

PQ 2

化简得:2n 4+2k 2-k n 4-4k =0

(k -2)(2k -n 4)=0 ∴k =2或k =n 4

2

(舍去)

解5:∵ PA ⊥OP , PQ ⊥OA ∴ △OPQ ∽△OAP ∴ OP OA =OQ OP

∴ OP 2=OQ ·OA

化简得:2n 4+2k 2-k n 4-4k =0

(k -2)(2k -n 4)=0 ∴k =2或k =n 4

2

(舍去)

13.如图,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0),B (18,6),C (8,6),四边形OABC 是梯形,点P 、Q 同时从原点出发,分别坐匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,当这两点有一点到达自己的终点时,另一点也停止运动。

(1)求出直线OC 的解析式及经过O 、A 、C 三点的抛物线的解析式。

(2)试在⑴中的抛物线上找一点D ,使得以O 、A 、D 为顶点的三角形与△AOC 全等,请直接写出点D 的坐标。

(3)设从出发起,运动了t 秒。如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围。

(4)设从出发起,运动了t 秒。当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ 能否把梯形的面积也

分成相等的两部分,如有可能,请求出t 的值;

如不可能,请说明理由。

[解] (1)∵O 、C 两点的坐标分别为O ()0,0,

C ()6,8

设OC 的解析式为b kx y +=,将两点

坐标代入得: 43=

k ,0=b ,∴x y 4

3

= ∵A ,O 是x 轴上两点,故可设抛物线的解析式为()()180--=x x a y 再将C ()6,8代入得:40

3

-

=a ∴x x y 20

274032+-

= (2)D ()6,10

(3)当Q 在OC 上运动时,可设Q ??? ??m m 43,,依题意有:()2

2

2243t m m =??

? ??+

∴t m 58=

,∴Q ??

?

??t t 56,58,()50≤≤t

当Q 在CB 上时,Q 点所走过的路程为t 2,∵OC =10,∴CQ =102-t ∴Q 点的横坐标为228102-=+-t t ,∴Q ()6,22-t ,()105≤

(4)∵梯形OABC 的周长为44,当Q 点OC 上时,P 运动的路程为t ,则Q 运动的路程为

()t -22

△OPQ 中,OP 边上的高为:()()5

32221,5

3

22?-=

?-?t t t OPQ S 梯形OABC 的面积=()846101821=?+,依题意有:()2

1

84532221?=?-t t

整理得:0140222

=+-t t ∵△=01404222

()t t +--?1022621=36≠84×2

1 ∴这样的t 值不存在

综上所述,不存在这样的t 值,使得P ,Q 两点同时平分梯形的周长和面积 14.已知:如图,抛物线m x x y +-=

3

32312与x 轴交于A 、B 两点,与y 轴交于C 点,∠ACB =90°,

(1)求m 的值及抛物线顶点坐标;

(2)过A 、B 、C 的三点的⊙M 交y 轴于另一点D ,连结DM 并延长交⊙M 于点E ,过E 点的⊙M 的切线分别交x 轴、y 轴于点F 、G ,求直线FG 的解析式;

(3)在(2)条件下,设P 为?CBD 上的动点(P 不与C 、D 重合),连结PA 交y 轴于点H ,

问是否存在一个常数k ,始终满足AH·AP =k ,如果存在,请写出求解过程;如果不存在,

请说明理由.

[解] (1)由抛物线可知,点C 的坐标为(0,m ),

且m <0.

设A (x 1,0),B (x 2,0).则有x 1·x 2=3m

又OC 是Rt △ABC 的斜边上的高,∴△AOC ∽△COB ∴

OB

OC

OC OA =

2

1x m

m x -=--,即x 1·x 2=-m 2 ∴-m 2=3m ,解得 m =0 或m =-3 而m <0,故只能取m =-3 这时,4)3(3

133323122--=--=

x x x y 故抛物线的顶点坐标为(3,-4)

(2)解法一:由已知可得:M (3,0),A (-3,0),B (33,0), C (0,-3),D (0, 3)

∵抛物线的对称轴是x =3,也是⊙M 的对称轴,连结CE ∵DE 是⊙M 的直径,

∴∠DCE =90°,∴直线x =3,垂直平分CE , ∴E 点的坐标为(23,-3)

3

3

==OD OM OC OA ,∠AOC =∠DOM =90°, ∴∠ACO =∠MDO =30°,∴AC ∥DE ∵AC ⊥CB ,∴CB ⊥DE

又FG ⊥DE , ∴FG ∥CB

由B (33,0)、C (0,-3)两点的坐标易求直线CB 的解析式为:

y =

x 3

3

-3 可设直线FG 的解析式为y =

x 3

3

+n ,把(23,-3)代入求得n =-5 故直线FG 的解析式为y =

x 3

3

-5 解法二:令y =0,解

x x 3

32312--3=0得 x 1=-3,x 2=33

即A (-3,0),B (33,0)

根据圆的对称性,易知::⊙M 半径为23, M (3,0) 在Rt △BOC 中,∠BOC =90°,OB =33,,OC =3 ∴∠CBO =30°,同理,∠ODM =30°。

而∠BME =∠DMO ,∠DOM =90°,∴DE ⊥BC ∵DE ⊥FG , ∴BC ∥FG ∴∠EFM =∠CBO =30°

在Rt △EFM 中,∠MEF =90°,ME =23,∠FEM =30°,

∴MF =43,∴OF =OM +MF =53, ∴F 点的坐标为(53,0)

在Rt △OFG 中,OG =OF·tan30°=53×3

3

=5 ∴G 点的坐标为(0,-5) ∴直线 FG 的解析式为y =

x 3

3

-5 (3)解法一:

存在常数k =12,满足AH·AP =12 连结CP

由垂径定理可知?

?

=AC AD , ∴∠P =∠ACH

(或利用∠P =∠ABC =∠ACO ) 又∵∠CAH =∠PAC , ∴△ACH ∽△APC ∴

AC

AP

AH AC =

即AC 2=AH·AP 在Rt △AOC 中,AC 2=AO 2+OC 2=(3)2+32=12 (或利用

AC 2=AO·AB =

3×43=12

∴AH·AP =12 解法二:

存在常数k =12,满足AH·AP =12 设AH =x ,AP =y 由相交弦定理得HD·HC =AH·HP 即)()33)(33(2x y x x x -=-+--

化简得:xy =12 即 AH·AP =12

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

深圳十年中考数学压轴题汇总

压轴、 200621.如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C OCA ∽△OBC . (1)(3分)求线段OC 的长. 解: (2)(3分)求该抛物线的函数关系式. 解:

(3)(4分)在x轴上是否存在点P,使△BCP为等腰三角形若存在,求出所有符合 条件的P点的坐标;若不存在,请说明理由. 解: 200622.(10分)如图10-1,在平面直角坐标系xoy中,点M在x轴的正半轴上,⊙M交x轴于A B 、两点,且C为AE的中点,AE交y轴于G 、两点,交y轴于C D 点,若点A的坐标为(-2,0),AE8 (1)(3分)求点C的坐标 解: 图10-1

(2)(3分)连结MG BC 、,求证:MG ∥BC 证明: (3)(4分) 如图10-2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PF OF 化规律. 解: 200722.如图6,在平面直角坐标系中,正方形AOCB 的边长为1,点D 在x 轴的正半轴上,且OD OB ,BD 交OC 于点E .

(1)求BEC ∠的度数. (2)求点E的坐标. (3)求过B O D ,,三点的抛物线的解析式.(计算结果要求分母有理化.参考 2525 5 55 = =; 1 ==; == 分母有理化)

200723.如图7,在平面直角坐标系中,抛物线2164y x =-与直线12 y x =相交于A B ,两点. (1)求线段AB 的长. (2)若一个扇形的周长等于(1)中线段AB 的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少 (3)如图8,线段AB 的垂直平分线分别交x 轴、y 轴于C D ,两点,垂足为点M ,分别求出OM OC OD ,,的长,并验证等式 222 111 OC OD OM +=是否成立. (4)如图9,在Rt ABC △中,90ACB =∠,CD AB ⊥,垂足为D ,设BC a =,AC b =, AB c =.CD b =,试说明: 222111 +=. D

中考数学压轴题十大类型经典题目75665

中考数学压轴题十大类型 目录 第一讲中考压轴题十大类型之动点问题 1 第二讲中考压轴题十大类型之函数类问题7 第三讲中考压轴题十大类型之面积问题13 第四讲中考压轴题十大类型之三角形存在性问题19 第五讲中考压轴题十大类型之四边形存在性问题25 第六讲中考压轴题十大类型之线段之间的关系31 第七讲中考压轴题十大类型之定值问题38 第八讲中考压轴题十大类型之几何三大变换问题44 第九讲中考压轴题十大类型之实践操作、问题探究50 第十讲中考压轴题十大类型之圆56 第十一讲中考压轴题综合训练一62 第十二讲中考压轴题综合训练二68

第一讲 中考压轴题十大类型之动点问题 一、知识提要 基本方法: ______________________________________________________; ______________________________________________________; ______________________________________________________. 二、精讲精练 1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E , AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =9 2 s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出15 4 y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

上海历年中考数学压轴题复习[试题附答案解析]

历年中考数学压轴题复习 2001年市数学中考 27.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2. (1)如图8,P 为AD 上的一点,满足∠BPC =∠A . 图8 ①求证;△ABP ∽△DPC ②求AP 的长. (2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么 ①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当CE =1时,写出AP 的长(不必写出解题过程). 27.(1)①证明: ∵ ∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴ ∠ ABP =∠DPC .∵ 在梯形ABCD 中,AD ∥BC ,AB =CD ,∴ ∠A =∠D .∴ △ABP ∽△DPC . ②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得 DC PD AP AB = ,即252x x -=,解得x 1=1,x 2=4,则AP 的长为1或4. (2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴ DQ AP PD AB =.即y x x += -252,得22 5 212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.

(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.) 市2002年中等学校高中阶段招生文化考试 27.操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q. 图5图6图7 探究:设A、P两点间的距离为x. (1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到结论; (2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域; (3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由. (图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用) 五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分) 27.

最新全国各地中考数学解答题压轴题解析2

全国各地中考数学解答题压轴题解析2

2011年全国各地中考数学解答题压轴题解析(2) 1.(湖南长沙10分)如图,在平面直角坐标系中,已知 点A(0,2),点P是x轴上一动点,以线段AP为一边, 在其一侧作等边三角线APQ。当点P运动到原点O处时, 记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 【答案】解:(1)过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=3,OC=AC=1。即B( 3 1,)。 (2)不失一般性,当点P在x轴上运动(P不与O重合)时, ∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB, 在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。 ∴∠ABQ=∠AOP=90°总成立。 ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, ∴AO与BQ不平行。

①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=3。 由(2)可知,△APO≌△AQB ,∴OP=BQ=3, ∴此时P 的坐标为(3 0-, )。 ②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=23, 由(2)可知,△APO≌△AQB ,∴OP=BQ=23, ∴此时P 的坐标为(23 0, )。 综上所述,P 的坐标为(3 0-, )或(23 0,)。 【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。 【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。 (2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。 (3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。 2.(湖南永州10分)探究问题:

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

2017年挑战中考数学压轴题(全套)

第一部分函数图象中点的存在性问题 §1.1 因动点产生的相似三角形问题§1.2 因动点产生的等腰三角形问题§1.3 因动点产生的直角三角形问题§1.4 因动点产生的平行四边形问题§1.5 因动点产生的面积问题§1.6因动点产生的相切问题§1.7因动点产生的线段和差问题 第二部分图形运动中的函数关系问题 §2.1 由比例线段产生的函数关系问题 第三部分图形运动中的计算说理问题 §3.1 代数计算及通过代数计算进行说理问题 §3.2 几何证明及通过几何计算进行说理问题 第四部分图形的平移、翻折与旋转 §4.1 图形的平移§4.2 图形的翻折§4.3 图形的旋转§4.4三角形§4.5 四边形§4.6 圆§4.7函数的图象及性质§1.1 因动点产生的相似三角形问题 课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两 边表示出来,按照对应边成比例,分AB DE AC DF =和 AB DF AC DE =两种情况列方程. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好. 如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢? 我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减. 图1 图1 图2 例 1 湖南省衡阳市中考第28题 二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示); (2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值; (3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?

南昌中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交 于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2 x y =?? =-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

2014中考数学压轴题及答案40例

2014中考数学压轴题精选精析(21-30例) 21.(2011?湖南邵阳)如图(十一)所示,在平面直角坐标系Oxy 中,已知点A (-94 ,0),点C (0,3),点B 是x 轴上一点(位于点A 的右侧),以AB 为直径的圆恰好经过.... 点C . (1)求∠ACB 的度数; (2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式; (3)线段BC 上是否存在点D ,使△BOD 为等腰三角形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由. 【解题思路】:(1) ∵以AB 为直径的圆恰好经过....点C ∴∠ACB =0 90 (2) ∵△AOC ∽△ABC ∴OB AO OC ?=2 ∵A (-94,0),点C (0,3),∴4 9=AO 3=OC ∴OB 4 932= ∴ 4=OB ∴B(4,0) 把 A 、B 、C 三点坐标代入得 3127312++-=x x y (3) 1)OD=OB , D 在OB 的中垂线上,过D 作DH ⊥OB,垂足是H 则H 是OB 中点。DH=OC 21 OB OH 2 1= ∴D )23,2( 2) BD=BO 过D 作DG ⊥OB,垂足是G ∴OG:OB=CD:CB DG:OC=1:5 ∴ OG:4=1:5 DG:3=1:5 ∴OG= 54 DG=53 ∴D(54,53)

【点评】:本题考察了相似、勾股定理、抛物线的解析式求解等知识,运用平行于三角形一边的直线截其他两边所得的三角形与原三角形相似构建比例式,求解点到坐标轴的距离,进而得出相应的坐标。难度中等 24、(2011?湖北荆州)如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y= 14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1. (1)求B点坐标; (2)求证:ME是⊙P的切线; (3)设直线AC与抛物线对称轴交于N,Q点是此轴称轴上不与N点重合的一动点, ①求△ACQ周长的最小值; ②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式. 考点:二次函数综合题. 分析:(1)如图甲,连接PE、PB,设PC=n,由正方形CDEF的面积为1,可得CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,由PB=PE,根据勾股定理即可求得n的值,继而求得B的坐标; (2)由(1)知A(0,2),C(2,0),即可求得抛物线的解析式,然后求得FM的长,则可得△PEF∽△EMF,则可证得∠PEM=90°,即ME是⊙P的切线; (3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,△ACQ周长的最小值为AC+A′C的长,利用勾股定理即可求得△ACQ周长的最小值; ②分别当Q点在F点上方时,当Q点在线段FN上时,当Q点在N点下方时去分析即可求

相关主题
文本预览
相关文档 最新文档