当前位置:文档之家› 几种规则磁性体磁场△ 、劝的空间分布

几种规则磁性体磁场△ 、劝的空间分布

几种规则磁性体磁场△ 、劝的空间分布
几种规则磁性体磁场△ 、劝的空间分布

电与磁知识点(大全)经典

电与磁知识点(大全)经典 一、电与磁选择题 1.如图是关于电磁现象的四个实验,下列说法正确的是() A. 图甲是研究发电机工作原理的实验装置 B. 图乙实验说明通电导体周围存在磁场 C. 图丙是探究磁铁磁性强弱的实验装置 D. 图丁是探究电磁感应现象的实验装置【答案】D 【解析】【解答】解:A、图中有电池,是电动机原理图,故A错误; B、图中有学生电源,这是磁场对电流的作用实验,结论是通电导体在磁场中受力,故B 错误; C、是奥斯特实验,说明通电导线周围存在磁场,故C错误; D、图中没有电池,是电磁感应现象实验,故D正确. 故选:D. 【分析】根据对电与磁几个重要实验装置图的认识来判断: (1)发电机原理图描述了线圈给外界的用电器供电;电动机原理图描述了电源给线圈供电; (2)电磁感应现象装置图没有电池;磁场对电流的作用装置图有电池. 2.以下探究实验装置中,不能完成探究内容的是() A. 磁极间相互作用规律 B. 通电直导线周围存在磁场 C. 磁性强弱与电流大小的关系 D. 产生感应电流的条件

【答案】C 【解析】【解答】解:A、如图,据小磁针偏转的情况可以判断磁极间的作用规律,A选项能探究,故不符合题意; B、如图,该实验装置是奥斯特实验装置图,可探究通电导线周围存在着磁场,B选项能探究,但不符合题意; C、如图,该实验电路中电流大小不能改变,所以不能研究电磁铁磁性的强弱与电流大小的关系.故符合题意; D、如图,此时电路是闭合,导体在磁场中做切割磁感线运动时,能产生感应电流,D能探究,故不符合题意. 故选C. 【分析】(1)磁极间的作用规律是:同名磁极相互排斥,异名磁极相互吸引; (2)据奥斯特实验可知,通电导线周围存在着磁场; (3)电磁铁磁性的强弱与电流的大小和线圈的匝数有关; (4)闭合电路的部分导体在磁场中做切割磁感线运动时,电路中就会产生感应电流,该现象叫电磁感应现象. 3.导线a是闭合电路的一部分,a在磁场中按图中v的方向运动时,能产生感应电滋的是()(a在A、B选项中与磁感线平行,在C、D选项中垂直于纸面) A. A B. B C. C D. D 【答案】 D 【解析】【解答】在电磁感应现象中,金属棒要切割磁感线需要两个条件:①金属棒与磁感线方向之间的夹角不能为0;②金属棒的运动方向与磁感线之间的夹角不能为0. A.导线a与磁感线的夹角为0,且运动方向与磁感线夹角为0,不能产生电流,故A不合题意; B.导线a与磁感线的夹角为0,但运动方向与磁感线夹角不为0,也不能产生电流,故B 不合题意; C.导线a与磁感线的夹角不为0,但运动方向与磁感线夹角为0,也不能产生电流,故C 不合题意; D.导线a与磁感线的夹角不为0,且运动方向与磁感线夹角不为0,能产生电流,故D符合题意。

载流圆线圈周围磁场分布

载流圆线圈周围磁场分布 孟雨 孟雨物理工程学院11级物理学类三班 Email:1240123245@https://www.doczj.com/doc/d211745049.html, 摘要:本文第一次在直角坐标系中直接从磁感应强度的计算公式毕奥-萨伐尔定律出发,精确求解了圆电流空间任一点磁场分布。并通过数值模拟,给出了圆电流周围磁场的空间分布情况。 关键词:载流圆线圈、椭圆积分、磁感应强度、数值模拟 0.引言 圆电流的磁场分布是电磁学中一个重要而典型的问题,不少学者进行求解此方面问题时一般采用矢势方法,而即使采用最为基本的毕奥-萨伐尔定律求解时,求解的也是简化后的磁场在固定平面内的分布,而非整个三维空间内的分布。究其原因,在于积分的复杂性。即使求解磁场在平面内的分布,也涉及复杂的椭圆积分,因此对于磁场在三维空间任意处的分布,很多学者避而不答。本文仅采用最为基本的毕奥-萨伐尔定律,通过一系列变量替换直接在直角系给出了磁场分布的级数形式解。 本文与已发文章《闭合载流导线周围磁感应强度的空间分布》5【】(物理学刊27期)、《一个重要公式在电磁学中的应用》6【】(物理学刊29期)同属姊妹篇。第一篇文章提出了解决 该问题的一般方法,并推广到任意形状的闭合载流线圈,同时作为例子计算了过垂直载流圆线圈环面中心直线上的磁感应强度。第二篇文章是对第一篇文章的进一步探索,运用椭圆积分精确求解了载流圆线圈在其所在整个平面的强度分布情况。本文是前两篇文章的更深一步探索,最终精确求解了载流圆线圈在空间任意处的分布情况。通过这三篇文章,希望给大家带来的不仅仅是问题的答案,更为重要的是将作者一步步探索问题的过程呈献给大家,希望能给大家未来的学习和研究带来帮助。 1.载流圆线圈磁感应强度 这里直接引用文章【5】、【6】中的结果:

磁体与磁场_教案

磁体与磁场 【教学目标】 1.通过观察铁屑在磁体周围的分布情况,知道常见磁体周围的磁场分布。 2.通过活动,知道磁感线可以形象地描述磁场,知道磁感线的方向是怎样规定的。 3.会画常见磁体的磁感线。 4.知道地球周围有磁场,知道地磁场的N、S极所处的位置。 【教学重难点】 1.探究磁体周围的磁场。 2.学会从铁屑在磁体周围的分布抽象出磁感线来描述磁场的方法。 【教学过程】 活动一:认识磁体 磁体有什么性质?如何鉴别一个物体是否是磁体? 1.磁体的什么部位磁性最强?磁极间的作用规律是什么? 2.一根原来没有磁性的钢针与磁体摩擦后具有了磁性,这种现象叫做什么? 3.磁体间是通过什么发生作用的?磁场有方向吗?如果有,磁场中某一点的磁场方向是如何规定的? 活动二:用小磁针探究磁体周围的磁场 【观察】 1.将玻璃板平分别放在不同磁体上,再将铁屑均匀地撒在玻璃板上,轻敲玻璃,观察铁屑的分布情况,把你所看到的铁屑分布形状在下面对应的磁体上画出。 2.在玻璃板上放些小磁针,观察小磁针的指向分布情况,比较铁屑与小磁针的指向分布情况可知:小磁针的指向分布与所在位置铁屑分布的切线方向是(一致/不一致)的。

【思考交流】 1.铁屑在磁场中的分布为何很有规律? 铁屑在磁体周围分布很有规律说明磁体周围的磁场具有一定的规律性,铁屑在磁场中被成一个个小磁针,从而在磁场中地排列起来。 2.铁屑在不同磁体周围分布形状不同,说明了什么? 铁屑在不同磁体周围分布形状不同,说明不同磁体的磁场分布(是/不是)相同的。 【自我完善】从铁屑有磁场中的排列情况可以看出,铁屑的分布好似许多条曲线,从你画出的曲线可以形象地反映磁场的分布情况,如果还能从你的曲线上反映出小磁针受磁场作用时其N极所指的方向,那就更好了,你认为在你的图上作怎样的补充和完善就可以呢? 信息快递:我们可以在根据铁屑分布情况画出的曲线上,再按小磁针N极所指的方向,在该处曲线标上箭头,就可以形象地描述磁场了,这样的曲线物理学上叫做磁感线。但应当注意,磁感线是用来描述磁场的一些假想的曲线,实际上并不存在。 【理论应用】根据条形磁体、蹄形磁体周围的铁屑分布情况,在下面画出他们周围的磁感线,再跟课本图对照。 【深入观察】 1.认真观察条形磁体、蹄形磁体周围的铁屑分布情况,可以发现:磁场越强的地方(两极),磁感线分布越(密/疏);磁场越弱的地方,磁感线分布越(密/疏)。 2.磁体外面磁感线的方向总是从磁体的极出发回到磁体的极。磁感线上某点的切线方向表示该点的磁场方向。 活动三:读一读课本的“地球的磁场”并完成填空。 1.水平放置、能自由转动的小磁针之所以在地表面指向南北,是因为它受到作用的缘故。 2.叫做地磁场,地磁场的北极在地理极附近,地磁场的南极在地理极附近。 3.地磁场的两极和地理两极(是/不是)重合的,我国宋代学者是最早发现这一事实(磁偏角)的人。

磁场知识点总结

磁场知识点总结 一、磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.3.地磁场 地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 4.地磁体周围的磁场分布:与条形磁铁周围的磁场分布情况相似。 5.指南针:放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。6.磁偏角 地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。 说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。 ③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。 1、规定: 在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。 2、确定磁场方向的方法是: 将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N 极的指向即为该点的磁场方向。 磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线 为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线. 1.疏密表示磁场的强弱. 2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向. 3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。 4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·

磁性体性质的解释推断

确定磁性体性质的解释推断方法 对测区内磁异常解释前,应认真研究分析区内磁异常的平面和剖面特征,并进行适当的分类编号,然后再对各类磁异常逐一解释推断。 判断引起磁异常磁性体的性质,首先要研究磁异常是由地表出露的地质体所引起,还是由隐伏磁性体所引起;其次要认真研究隐伏磁性体的性质,判断其直接和间接找矿意义;再次,对复杂异常和低缓异常要进行更深入的解释推断。 (一)确定磁异常是否由地表磁性地质体引起的方法 大多采用对比分析的方法,即将磁测平面图和地质平面图进行对比,磁测剖面图和地质剖面图进行对比分析。着重分析研究以下两个方面: 1、分析异常的形态特征和异常分布与地质体的对应关系 磁异常受地形的控制很明显,异常高低与地形起伏基本对应,南北测线时,正地形南坡和高点出现正值和峰值,北坡和沟谷出现负值和负极值,这时磁异常可能是出露或浅部磁性地层引起。若磁异常受地形影响不明显,则异常可能是深部磁性体引起。 异常形态为锯齿状,强度高,梯度变化大,一般是出露地表或浅层磁性地质体的反映。若异常形态圆滑,强度较低,梯度变化较小,则可能是深部磁性体反映。 异常与出露的岩层无论在平面和剖面图上密切相关,相互对应,反映异常可能由该岩层所引起。若异常分布横向上穿越几个不同的岩层,则可能异常由隐伏磁性体引起。 2、分析地表岩石的磁性大小与实测异常关系 当异常主体范围内出露磁性地质体范围较大(直径大于30m),地形较平坦时,则磁性体能引起的最大磁异常可由下式近似计算: ⊿Tmax≈2πJz·sinI0 (1) 式中 ⊿Tmax—磁性地质体能引起的最大磁异常 Jz—磁性地质体总磁化强度J的垂直分量 I0—测区地磁场倾角 将实测⊿Tmax结果与上式据实测岩(矿)石物性资料计算结果对比,若两者相近或计算结果大于实测值,则可认为异常可能由出露岩(矿)石引起。若实测结果大于计算结果,则可能存在隐伏磁性体或磁性体深部磁性增强情况。由于地表岩矿磁性可能受风化作用影响减弱,故应结合上述磁异常特征和位置分析方法认真分析判断。

环形电流在空间一点产生的磁场强度

环形电流在空间一点产生的磁场强度 专业:工程力学 姓名:陈恩涛 学号:1153427 摘要:利用毕奥——萨法尔定律通过计算磁场的情况,得到环电流在整个空间的磁场分布表达式,其中运用了数学软件matlab 辅助求解! 关键词:环形电流 磁场 矢量叠加 毕奥——萨法尔定律 引言:了解书本上环形电流中心轴线上的磁场分布情况后,为了更深入了解环形电流在空间的磁场分布情况,现运用毕奥——萨法尔定律对其求解,再根据矢量叠加原理,将其最终结果在直角坐标系中的三个坐标轴上的分量分离了出来,且验证了空间分布公式在特殊情况下也适用! 计算过程; 1. 建立坐标系:设环半径为R ,以环 心0为原点,环形电流所在平面为 x0y 平面,以环中心轴为z 轴建立如图坐标系,则圆环的表达式为: 222x y R += 在空间内任意选取一点p(x,y,z),在环 上任取一点11A(x ,y ,0),则在A 点处的电流元Idl 满足关系式: Idl IR(isin jcos )d βββ=-+ (1) 而P,A 两点的矢径为: x z y p(x,y,z) R β 11A(x ,y ,0)

r (x R c o s )i (y R s i n ββ=-+-+ (2) 将(1)(2)式代入毕奥——萨法尔定律: 03Idl r dB 4r μπ?= (3) 得P 点的磁感应强度为: 00332222IR Idl r zi cos z jsin (R x cos ysin )k B d 4r 4(R y z 2yR sin )μμβββββππβ?++--==++-?? (4) 则令: 20x 302222IR zi cos B d 4(R y z 2yR sin )πμββπβ=++-? 20y 302222IR z jsin B d 4(R y z 2yR sin )πμββπβ=++-? (5) 20z 302222IR (R x cos ysin )k B d 4(R y z 2yR sin )πμβββπβ--= ++-? 这就是环形电流在空间产生的磁场在空间的分布分量情况! 特别地 当p(x,y,z)在环的中心轴线上即z 轴上时,其坐标为p(0,0,z),代入 (5)组式,得到: 20x 30222IR zi cos B d 4(R z )πμββπ=+? 20y 30222IR z jsin B d 4(R z )πμββπ=+? 20z 30222IR Rk B d 4(R z )πμβπ= +? 利用matlab 分别输入以下程序并得相应结果: (其中0U 表示0μ,A 表示β)

中考物理试题分类汇编专题29磁体与磁场含解析(附2套中考模拟卷)

专题29 磁体与磁场 一.选择题(共14小题) 1.(2018?湘西州)下列物体能被磁铁吸引的是() A.橡皮擦B.塑料三角板C.木炭 D.铁钉 【分析】具有吸引铁、钴、镍等物质的性质的物体叫磁体。 【解答】解:磁铁是具有磁性的物体,只能吸引铁、钴、镍等金属材料,不能吸引其它金属及橡皮、塑料和木材。 故选:D。 2.(2018?桂林)小关在探究磁现象的活动中能够实现的是() A.用小磁针吸起铜块或铝块 B.用放大镜能看到磁铁周围的磁感线 C.用磁铁吸起铜导线制成的通有电流的轻质螺线管 D.把小磁针放在磁铁周围的任何位置,静止后小磁针的北极都指向地理北极 【分析】①物体能够吸引铁、钴、镍的性质叫磁性,具有磁性的物体叫做磁体。磁体周围存在着磁场,磁场对放入磁场中的磁体有力的作用,为了描述磁场的性质而引入了有方向的曲线,称为磁感线; ②通电导体周围存在磁场。 【解答】解:A、小磁针具有磁性,只能吸引铁、钴、镍等金属,不能吸引铜或铝。故A不可能实现; B、磁感线实际不存在,所以用放大镜也不能看到磁铁周围的磁感线。故B不可能实现; C、铜导线制成的轻质螺线管通过电流时,周围会产生磁场。所以用磁铁能够吸起铜导线制成的通有电流的轻质螺线管。故C可能实现; D、磁体周围存在磁场,把小磁针放在磁铁周围的任何位置,静止后小磁针的北极都指向此磁铁的S极。故D不可能实现。 故选:C。 3.(2018?自贡)自贡一学生利用手中的条形磁体做了以下实验,其中结论正确的是() A.同名磁极互吸引 B.条形磁体能够吸引小铁钉 C.将条形磁体用细线悬挂起来,当它在水平面静止时北极会指向地理南方 D.条形磁体与小磁针之间隔了一层薄玻璃后就没有相互作用了 【分析】(1)根据磁极间的相互作用规律;

磁场知识点汇总

磁场知识点汇总 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

磁场知识点汇总 一、 磁场 二、 ⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。 三、 ⒉磁场(磁感应强度)的方向规定为磁场中小磁针N 极的受力方向(磁感线的切 线方向)。 四、 ⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。 五、 磁感线 六、 ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 七、 ⒉磁感线是闭合曲线?? ?→→极 极磁体的内部极 极磁体的外部N S S N 八、 ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方 向。 九、 ⒋任何两条磁感线都不会相交,也不能相切。 十、 安培定则是用来确定电流方向与磁场方向关系的法则 十一、 弯曲的四指代表???)()(环形电流或通电螺线管电流的方向 直线电流磁感线的环绕方向 十二、 安培分子电流假说揭示了磁现象的电本质,即磁体的磁场和电流的磁场一 样,都是由电荷的运动产生的。 十三、 几种常见磁场 十四、 ⒈直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱 十五、 ⒉通电螺线管的磁场:管外磁感线分布与条形磁铁类似,管内为匀强磁 场。 十六、 ⒊地磁场(与条形磁铁磁场类似)

十七、 ⑴地磁场N 极在地球南极附近,S 极在地球北极附近。 十八、 地磁场B 的水平分量总是从地球南极指向北极,而竖直分量南北相反,在 南半球垂直地面向上,在北半球垂直地面向下 十九、 ⑵在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平 向北。 二十、 二十一、 磁感应强度:⑴定义式LI F B = (定义B 时,B I ⊥)⑵B 为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则。 二十二、 磁通量 二十三、 ⒈定义一:φ=BS ,S 是与磁场方向垂直的面积,即φ=B ⊥S ,如果平面与磁 场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积⊥S 二十四、 ⒉定义二:表示穿过某一面积磁感线条数 二十五、 磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或 穿出。 二十六、 当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф1-ф2(ф1为正向磁感线条数,ф2为反向磁感线条数。) 二十七、 安培力大小 二十八、 ⒈公式BLI F =sin θ(θ为B 与I 夹角)[]BLI F ,0∈ 二十九、 ⒉通电导线与磁场方向垂直时,安培力最大BIL F = 三十、 ⒊通电导线平行于磁场方向时,安培力0=F 三十一、 ⒋B 对放入的通电导线来说是外磁场的磁感应强度 三十二、 ⒌式中的L 为导线垂直于磁场方向的有效长度。例如,半径为r 的半圆形 导线与磁场B 垂直放置,导线的的等效长度为2r ,安培力BIr F 2=。

【免费下载】实验2 磁性体磁场正演

《应用地磁学》课程实验报告 《应用地磁学》实验报告 姓名: 学号: 指导教师: 实验地点: 实验日期:

《应用地磁学》课程实验报告 实验二:磁性体磁场正演 一、实验目的: 1、通过球体、水平圆柱体磁场的正演计算,掌握简单规则磁性体正演磁场的计算方法; 2、通过计算认识球体与水平圆柱体磁场的一般分布规律,了解影响磁性体磁场的主要因素(如磁性体的形体、物性参数、走向或计算剖面的选择等),培养学生实际动手能力与分析问题的能力。 二、实验内容 用Matlab语言或C语言编程实现球体和水平圆柱体的磁场(包括 Za、Ha、Δt)的正演计算。 三、实验要求 假设地磁场方向与磁性体磁化强度方向一致且均匀磁化的情况下,当地磁场T=50000nT,磁倾角I=60°,球体与水平圆柱体中心埋深R=30m,半径 r=10m,磁化率k=0.2(SI),计算(观测)剖面磁化强度水平投影夹角 A′=0°时: 1、正演计算球体的磁场(Za、Hax、Hay、ΔT),画出对应的平面等值线图、曲面图及主剖面异常图; 2、正演计算水平圆柱体的磁场(Za、Ha、ΔT),画出主剖面异常结果图; 3、通过改变球体与水平圆柱体的几何参数、磁化强度方向(I)、计算剖面的方位角(A′),观察主剖面磁场Za的变化,分析磁化方向与计算剖面对磁性体磁场特征的影响。 四、实验原理 球体与水平圆柱体磁场(Za、Ha、ΔT)的计算公式是以磁化强度倾角I、有效磁化倾角is和剖面与磁化强度水平投影夹角A′来表达。 1、球体磁场的正演公式:

《应用地磁学》课程实验报告 [[[???????????????'-'---++='+-'--++='+-'--?++=]sin cos 3cos cos 3sin )2( )(4]cos cos 3sin 3sin cos )2( )(4]sin cos 3sin 3cos cos )2( )(42222/522202222/522202222/52220A I Ry A I Rx I y x R R y x m Z A I xy I Ry A I R x y R y x m H A I xy I Rx A I R y x R y x m H a ay ax πμπμπμ()]sin 2sin 32sin cos 3cos 2sin 3sin cos )2(cos cos )2(sin )2[(42222222 222222222/52 220A I yR A I xy A I xR A I R x y A I R y x I y x R R y x m T '-'+'-'--+'--+--++=?πμ2、水平圆柱体磁场的正演公式:???????+-+-=--+= ]sin 2cos )[()(12]cos 2sin )[()(12222220222220s s s a s s s a i Rx i x R R x m H i Rx i x R R x m Z πμπμ()()()()[] 902cos 2902sin sin sin 2222220----+=?s s s s i Rx i x R i I R x m T πμ3、有效磁化强度Ms 与有效磁化倾角is :?????'==+'=+=--)sec ()sin cos (cos )(112222/122A tgI tg M M tg i I A I M M M M x z s z x s 五、实验报告(内容包括实验目的、实验内容、实验原理、计算程序代码、实验结果、结果分析或小结)试高中

有限长通电螺线管空间的磁场分布

有限长通电螺线管空间的磁场分布 作者:惠小强, 陈文学 作者单位:西安邮电学院应用数理系,陕西,西安,710061 刊名: 物理与工程 英文刊名:PHYSICS AND ENGINEERING 年,卷(期):2004,14(2) 被引用次数:4次 参考文献(3条) 1.王华军;李宏福;温越琼螺线管中磁场的计算[期刊论文]-四川轻化工学院学报 1999(04) 2.西安电炉研究所感应加热技术应用及设备设计经验 1975 3.赵春旺;王克勋;刘前有限长螺线管磁场的数值计算与分析 1997(04) 相似文献(4条) 1.期刊论文胡毅.谢守清.HU-Yi.SHE Shou-qing均匀带电圆环的电场-郧阳师范高等专科学校学报2007,27(6) 在直角坐标系、球坐标系和圆柱坐标系中用点电荷电场的叠加原理,借助椭圆积分法所得公式,精确地计算出均匀带电圆环在空间中电场强度的表达式,有助于理解和掌握带电圆环的电场分布特点. 2.期刊论文朱平.ZHU Ping线电荷椭圆环中心轴线电场分布-大学物理2010,29(7) 运用场的叠加原理和椭圆积分的理论和方法,导出了线电荷椭圆环中心轴线场强分布的解析表达式,进行了有关的讨论,指出线电荷椭圆环中心轴线场分布具有的重要特性. 3.期刊论文林志.许瑞珍带电细椭圆环在中心轴线上的电势及电场强度-科技资讯2008(30) 根据电势的叠加原理,通过第一、第二种全椭圆积分,导出了带电细椭圆环在中心轴线上的电势,进而给出了中心轴线上的电场强度. 4.期刊论文于慧.张素花.安海龙.韩英荣.柳辉.柳辉.张玉红.Yu Hui.Zhang Suhua.An Hailong.Han Yingrong. Liu Hui.Liu Hui.Zhang Yuhong均匀带电细圆环的电势和电场强度的空间分布-河北工业大学成人教育学院学报2007,22(4) 均匀带电细圆环是电磁学理论及应用中的基本模型,研究其产生的电场在空间的分布具有重要意义.本文由电势的叠加原理,首先推导出均匀带电细圆环在空间任一点的电势表达式,并用数学软件Mathematic绘出了其电势在空间的分布-等势线的分布;然后由电场强度和电势的关系,得到了空间任一点的电场强度表达式,并进行了数值模拟. 引证文献(4条) 1.任俊刚.赵春旺有限长螺线管磁场的全场分布[期刊论文]-物理通报 2010(10) 2.高松巍.孙小京.杨理践基于极低频电磁波的管道检测定位技术[期刊论文]-沈阳工业大学学报 2009(3) 3.郭琪.邹志纯三种提供微力装置的模型[期刊论文]-西安邮电学院学报 2009(1) 4.丁健载流有限长密绕螺线管的磁场分布[期刊论文]-大学物理 2009(8) 本文链接:https://www.doczj.com/doc/d211745049.html,/Periodical_wlygc200402007.aspx 授权使用:西安理工大学(xalgdx),授权号:fee077cb-5a34-4ed6-9cff-9eef010a4c6c 下载时间:2011年5月26日

《磁体与磁场》典型习题

一、磁体与磁场 选择题: 1、实验表明:磁体能吸引一元硬币,对这种现象解释正确的是() A、硬币一定是铁做的,因为磁体能吸引铁 B、硬币一定是铝做的,因为磁体能吸引铝 C、磁体的磁性越强,能吸引的物质种类越多 D、硬币中含有磁性材料,磁化后能被吸引 2、把铁棒甲的一端靠近铁棒乙的中部,发现两者吸引,而把乙的一端靠近甲的中部时,两者互不吸引,则() A、甲有磁性,乙无磁性 B、甲无磁性,乙有磁性 C、甲、乙都有磁性 D、甲、乙都无磁性 3、判断两根钢条甲和乙是否有磁性时,可将它们的一端靠近小磁针的N极或S 极.当钢条甲靠近时,小磁针自动远离;当钢条乙靠近时,小磁针自动接近.由此可知() A、两根钢条均有磁性 B、两根钢条均无磁性 C、钢条甲一定有磁性,钢条乙一定无磁性 D、钢条甲一定有磁性,钢条乙可能有磁性 4、甲、乙是两根外形完全相同的钢棒,乙棒能吸引甲棒的中间,由此可知() A、甲、乙一定都有磁性 B、甲、乙一定都没有磁性 C、甲一定没有磁性,乙一定有磁性 D、乙一定有磁性,甲可能有磁性,也可能没有磁性 5、一位科学家在野外考查时,发现随身携带的能自由转动的小磁针静止在竖直方向,且N极朝下,则他所处的位置是() A、赤道附近 B、地理南极附近

C、地理北极附近 D、一座山顶上 6、下列关于磁场和磁感线的说法正确的是() A、磁感线是磁场中客观存在的线,无磁感线的区域不存在磁场 B、地磁场的磁感线是从地球的地理北极出发到地理南极 C、在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向 D、磁铁周围的磁感线都是从磁铁的南极出来,回到磁铁的北极

参考答案与解析 1、D 2、A 3、D 4、D 5、C 6、C 解析 1、分析:一元硬币为钢芯镀镍,钢和镍都是磁性材料,放在磁体的周围能够被磁化而获得磁性,能够和磁体相互吸引。选项D正确。 2、分析:磁体具有磁性,能够吸引钢铁一类的物质.磁体各个部分的磁性强弱不同—,条形磁体两端的磁性最强,叫做磁极,中间的磁性最弱,几乎没有.当铁棒甲的一端靠近铁棒乙的中部,两者互相吸引,说明甲是磁体,具有磁性;把铁棒乙的一端靠近铁棒甲的中部,两者不能相互吸引,说明乙不是磁体,没有磁性.由以上分析可知,选项A正确. 3、分析:磁体具有磁性,能够吸引钢铁一类的物质,异名磁极也可以相互吸引,只有同名磁极之间相互排斥.把钢条甲的一端靠近小磁针的N极或S极,小磁针自动远离,说明钢条甲和小磁针相互靠近的一端是同名磁极,钢条甲一定具有磁性;当钢条乙靠近小磁针的N极或S极时,小磁针自动接近,说明钢条乙和小磁针相互靠近的一端互相吸引,钢条乙可能没有磁性,也可能具有磁性,若有磁性,钢条乙和小磁针相互靠近的一端是异名磁极。根据上述分析可知,选项D 正确. 4、分析:磁体有磁性,且在磁极处磁性最强,所以乙一定具有磁性,它的磁极对正甲的中间,不论甲是不是磁铁,都会被乙的磁极吸引,所以正确答案选D。 5、分析:根据地磁场的特点,小磁针静止时应该是S极指向地磁的北极,N极指向地磁的南极,而现在小磁针的N极向下,说明所处的位置正好是地磁的S 极,而地磁的S极在地理的北极附近,所以应选C。 6、分析:磁感线是假想的,是为了研究方便而引入的。答案:C

高中磁场知识点总结

高考物理专题复习――磁场 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。 电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。 磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。 与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场 地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布 与条形磁铁周围的磁场分布情况相似。 3.指南针 放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角 地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。 说明: ①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。 ③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。 规定: 在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。 确定磁场方向的方法是: 将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。 磁体磁场: 可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:

磁性体与其磁场的剖面对应关系

磁性体与其磁场的剖面对应关系 磁性体的△T剖面曲线有三种基本形态:两侧无负异常的△T曲线、一侧有负异常的△T曲线和两侧有负异常的△T曲线。 (1)两侧无负异常的△T曲线。其极大值对应原点。这种剖面异常特征可作为判定磁性体顺层(或顺轴)磁化且向下无限延深的标志。 (2)一侧有负异常的△T曲线 斜磁化无限延深板状体的△T剖面曲线为一侧有负值的曲线。△T曲线不对称,原点位于△Tmax和△Tmin之间;负值位于Ms穿出板面的一侧。曲线的不对称性决定于γ(=α-is)角的大小;角愈大,曲线愈不对称。当磁性体呈南北走向时,Ms垂直向下。可根据△T曲线的陡缓判定板状体的倾向。 (3)两侧有负值的△T曲线 剖面曲线两侧出现负值,是磁性体下延深度不大的表现。如球体、有限延深的柱体和板状体、水平圆柱体等,其△T剖面曲线一般都是两侧出现负值。有限延深磁性体的截面为轴对称形的,如球体、水平圆柱体和直立板状体等。在垂直磁化情况下,其△T曲线为两侧有负值的对称曲线;并且其极值对应原点。若为斜磁化,△T为非对称曲线,原点位于二极值点坐标之间。顺层磁化有限延深板状体,在板体倾向一侧负值较强;对有限延深、倾斜且斜磁化的板状体,其曲线的非对称性不仅与γ角有关,还与磁性体下端的位置有关。 磁性体与其磁场空间等值线的对应关系

在磁性体的不同高度上,△T的正值范围和△Tmax的位置均不同;不同形体其磁场随高度的减小程度也不同。当磁性体的埋藏深度增大后,不同形态磁性体的异常特征变得不明显;但是对下延到接近磁性体顶部的△T 曲线,磁性体的形态在异常特征上就反映得较清楚。 △T受斜磁化影响比Za大,二度体Ta异常不受斜磁化的影响 同一个二度体,如is=45º的△T曲线,相当于is=0º时的Za曲线,这表明△T受斜磁化影响比Za大。根据上述关系,可以用有效磁化倾角的Za曲线代替有效磁化倾角为is的△T曲线。三度体情况不存在此种简单关系。 还可以直接得出结论:二度体的总磁场不受斜磁化影响。

线圈磁感应强度空间分布及其均匀性分析

Helmholtz 线圈磁感应强度空间分布及其均匀性分析 04004311 李昊鹏 摘要:根据Helmholtz 线圈磁感应强度分布表达式,通过MATLAB 软件对其进行数值计算,对Helmholtz 线圈磁感应强度空间分布图象及匀强特性进行了分析。论文重点讨论了YOZ 平面的磁感应强度匀强特性、匀强磁场区域的三维图象、磁感应强度均匀性要求与准匀强磁场区域关系以及Helmholtz 线圈半径R 对匀强磁场区空间分布的影响。 关键词:Helmholtz 线圈,MATLAB 工具,磁感应强度空间分布,匀强特性 一、 概述 在大学物理实验“用霍尔效应测磁场”中,我们了解到在Helmholtz 线圈轴线上的磁场是近似的匀强磁场。Helmholtz 线圈的结构如图1所示,图中R 为Helmholtz 线圈的半径,I 为线圈中的电流,A1、A2是圆线圈上对称于XOY 平面的任意两点,P (0,y 0,z 0)是YOZ 平面内的一点。由于Helmholtz 线圈具有关于Z 轴的旋转对称性和关于XOY 平面对称性,因此,只需要分析YOZ 平面内的磁场分布。在其空间任意点磁感应强度微积分表达式由式(1)~(5)给出[1]。1r r 、2r r 则为A1、A2处电流元到点P 的位置矢量,B X 、B Y 、B Z 是A1、A2处电流元在P 点产生的磁感应强度在X 、Y 、Z 轴方向的分量。 图1 Helmholtz 线圈结构示意图 [][]()2020212sin cos R z R y R r ?+?+=θθ (1) [][]()2020222sin cos R z R y R r ++?+= θθ (2) ()()θθθπμπd r R z R r R z R I dB B x x ∫∫????????++??== 2032031002cos 2cos 4 (3) ()()θθθπμπd r R z R r R z R I dB B y y ∫∫??? ?????++??==2032031002sin 2sin 4 (4) ()()θθθπμπ d r y R R r y R R I dB B z z ∫∫??? ??????+??==203203100sin sin 4 (5) 其中,X 轴的磁感应强度分量积分为0[1]。 那么,横截Z 轴的各截面匀强磁场的磁感应强度大小是如何分布的,是什么图象呢?

九年级物理下册磁体与磁场知识点汇总

九年级物理下册《磁体与磁场》知识点汇总 九年级物理下册《磁体与磁场》知识点汇总 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场的基本性质: 1、磁场对处于场中的磁体有力的作用。 2、磁场对处于场中的电流有力的作用。 磁场知识点磁感应强度、通电导线和磁场中受到的力 一、安培力的方向 安培力――磁场对电流的作用力称为安培力。 左手定则:伸开左手,使拇指与四指在同一个平面内并跟四指垂直,让磁感线垂直穿入手心,使四指指向电流的方向,这时拇指所指的就是通电导体所受安培力的方向。 二、安培力方向的判断 1.安培力的方向总是垂直于磁场方向和电流方向所决定的平面,在判断安培力方向时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向。 2.已知I、B的方向,可唯一确定F的方向;已知F、B的方向,且导线的位置确定时,可唯一确定I的方向;已知F、I的方向时,磁感应强度B的方向不能唯一确定。 3.由于B、I、F的方向关系在三维立体空间中,所以解决该类问题时,应具有较好的空间想像力.如果是在立体图中,还要善于把立体图转换成平面图。 三、安培力的大小 实验表明:把一段通电直导线放在磁场里,当导线方向与磁场方向垂直时,导线所受到的安培力最大;当导线方向与磁场方向一致时,导线所受到的安培力等于零;当导线方向与磁场方向斜交时,所受到的

安培力介于最大值和零之间。 四、磁感应强度 定义:当通电导线与磁场方向垂直时,通电导线所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度。 对磁感应强度的理解 1、公式B=F/IL是磁感应强度的定义式,是用比值定义的,磁感应强度B的大小只决定于磁场本身的性质,与F、I、L均无关。 2、定义式B=FIL成立的条件是:通电导线必须垂直于磁场方向放置。因为磁场中某点通电导线受力的大小,除了与磁场强弱有关外,还与导线的方向有关。导线放入磁场中的方向不同,所受磁场力也不相同.通电导线受力为零的地方,磁感应强度B的大小不一定为零,这可能是电流方向与B的方向在一条直线上的原因造成的。 3、磁感应强度的定义式也适用于非匀强磁场,这时L应很短,IL称作“电流元”,相当于静电场中的试探电荷。 4、通电导线受力的方向不是磁场磁感应强度的方向。 5、磁感应强度与电场强度的区别:磁感应强度B是描述磁场的性质的物理量,电场强度E是描述电场的性质的物理量,它们都是矢量,现把它们的区别列表如下: 物理3-1磁场知识点几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 (一)磁感线――在磁场中假想出的一系列曲线 1、磁感线上任意点的切线方向与该点的磁场方向一致(小磁针静止时N极所指的方向)。 2、磁感线的疏密程度表示磁场的强弱。 (二)常见磁场的磁感线 1、永久性磁体的磁场:条形,蹄形 2、直线电流的磁场

高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

磁体与磁场教学与反思

《磁体和磁场》教学设计 高邮市卸甲镇龙奔初中炀 一、教学目标 1.知识与技能: (1)通过活动,认识磁体和磁极,并了解磁极间相互作用的规律; (2)认识磁体周围的磁场分布情况,知道磁感线可用来形象地描述磁场,会画磁感线; (3)知道地磁场。 2.过程与方法: (1)通过设计探究实验,引导学生经历科学探究,培养学生探究能力; (2)通过启发与讨论相结合的方法,引导学生自主合作,培养学生独立思考和合 作能力。 3.情感、态度与价值观: 引导学生经历科学探究,培养学生实事的科学态度,培养学生的创新意识,使学生获得成功的体验; 二、教学重点、难点 重点:探究磁极间的相互作用的规律;知道磁场,会用磁感线描述磁体周围的磁场;探究磁场分布的过程。 难点:磁场的理解,怎样用磁感线描述磁场 三、教学准备: 条形磁体、蹄形磁体、小磁针、硬币、大头针、铜块、铁屑、铁钉、木块 四、学生预习准备: 在小学自然课里,我们已学过一些简单的磁现象,请你回顾一下以前所学的容,完成下列填空: (1)磁体能吸引铁钉、大头针、小刀等物体,这类物体是由制成的; (2)指南针具有指的性质,指北的那端叫做极,指南的那端叫做极; (3)用一个磁体一端去靠近另一个磁体的一端,会出现和两种不同的情况;

(4)生活中有哪些东西是用磁性材料做的呢? 五、教学过程: 引入:当我还是一个四五岁的小孩时,父亲给我一个罗盘,我觉得十分好奇,这只指南针不和任何物体接触,竟能始终的指向南北。我现在还记得:当时我萌发了一个深刻而持久的印象,这事情的背后一定隐藏着某种道理。——爱因斯坦提出问题:究竟,指南针为什么能指方向?经过今天的学习,你就会知道其中的奥秘了。 给出实物,介绍几种常见的磁铁:条形磁体、蹄形磁体、小磁针。 活动一:认识磁体、磁极 阅读课本,利用桌上的实验器材,分组完成实验探究,并汇报实验结果。 1.用磁体靠近铁钉、大头针、硬币、橡皮、铜块、木块等物体,发现磁体能吸引,物理学中把能吸引、、等物质的特性称为磁性,具有磁性的物体叫做磁体。 2.在桌面上均匀地撒一些大头针,把磁体放在大头针上,你观察到的现象是什么?磁体上不同部位磁性强弱一样吗? 3.把一个磁体悬挂或支起来,当它静止时,两端分别指向什么位置? 4.把一个磁体悬挂或支起来,用另一个的一端分别靠近该磁体的两端,观察到的现象是什么?你能得出什么结论? 5.被磁体吸引的铁钉(能/不能)吸引大头针,说明铁钉(具有/不具有)磁性。像铁钉一样,原来没有磁性的物体获得磁性的过程叫做。 6.当用薄木板(或纸)隔开磁体和大头针时,观察到磁体对大头针(有/无)作用。 学生完成实验,回答上面的问题,出示板书:1.磁性、磁体;2.磁极;3.磁极间的相互作用规律4.磁化。 教师引导过渡:为什么不接触,磁体还能够对大头针有力的作用? 活动二:认识磁场 磁场是一种存在于磁体周围,看不见、摸不着的特殊物质,那么,我们如何认识磁场?(引导学生想到用转换法来认识磁场。)

相关主题
文本预览
相关文档 最新文档