当前位置:文档之家› 电力储能系统电网接入规范标准

电力储能系统电网接入规范标准

电力储能系统电网接入规范标准
电力储能系统电网接入规范标准

目录

1 目的 (1)

2 规范性引用文件 (1)

3 适用范围 (2)

4 术语和定义 (2)

5 一般性技术规定主要技术指标 (3)

6 接口装置 (4)

7 接地与安全 (4)

7.1 接地 (4)

7.2 安全标识 (4)

8 电能质量 (4)

8.1 一般性要求 (4)

8.2 谐波和畸变 (5)

8.3 电压波动和闪变 (5)

8.4 电压偏差 (5)

8.5 电压不平衡 (5)

8.6 直流分量 (5)

9 功率控制与电压调节 (6)

9.1 有功功率控制 (6)

9.2 电压/无功调节 (6)

9.3 异常响应 (6)

10 继电保护与安全自动装置 (8)

10.1 一般性要求 (8)

10.2 元件保护 (8)

10.3 系统保护 (8)

10.4 故障信息 (8)

10.5 同期并网 (8)

11 自动化与通信 (8)

11.1 基本要求 (8)

11.2 正常运行信息 (9)

12 电能计量 (9)

电力储能系统电网接入标准(企标)

1目的

本文件定义了研究院电力储能系统开发的全过程,本文件的制定是为了确保产品定位准确、满足法规要求、符合顾客期望,保证开发工作质量。

2规范性引用文件

下列文件对于本文件的应用是必不可少的,凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

1.GB 2894 安全标志及其使用导则

2.GB/T 12325 电能质量供电电压偏差

3.GB/T 12326 电能质量电压波动和闪变

4.GB 14050 系统接地的型式及安全技术要求

5.GB/T 14285 继电保护和安全自动装置技术规程

6.GB/T 14549 电能质量公用电网谐波

7.GB/T 14598.9 电气继电器第22部分第3篇:辐射电磁场干扰试验

8.GB/T 14598.10 电气继电器第22部分第4篇:快速瞬变干扰试验

9.GB/T 14598.13 量度继电器和保护装置的电气干扰试验第1部分:1MHz脉

冲群干扰试验

10.GB/T 14598.14 量度继电器和保护装置的电气干扰试验第2部分:静电放

电试验

11.GB/T 15543 电能质量三相电压不平衡

12.GB/T 17626.7 电磁兼容试验和测量技术供电系统及所连设备谐波、谐间

波的测量和测量仪器导则

13.GB/T 24337-2009 电能质量公用电网间谐波

14.DL/T 1040 电网运行准则

15.DL/T 448 电能计量装置技术管理规定

16.DL/T 584 3kV~110kV电网继电保护装置运行整定规程

17.DL/T 621 交流电气装置的接地

18.DL/T 634.5—101 远动设备及系统标准传输协议子集第101部分

19.DL/T 634.5—104 远动设备及系统标准传输协议子集第104部分

20.DL/T 645 多功能电能表通信协议

21.Q/GDW 480 分布式电源接入电网技术规定

22.Q/GDW 370 城市配电网技术导则

23.Q/GDW 382 配电自动化技术导则

24.Q/GDW 156 城市电力网规划设计导则

25.IEC 61000-4-30 电磁兼容第4-30部分试验和测量技术-电能质量

26.IEEE 1547 分布式电源接入电力系统标准

27.IEEE Std 466 用于工商业的应急和备用电源设备C22.3 NO.9 分布式电力供

应系统互联标准

28.电监安全[2006]34号电力二次系统安全防护总体方案

29.国家电力监管委员会第5号令电力二次系统安全防护规定

3适用范围

本规定对以电化学或电磁形式存储电能的储能系统接入配电网应遵循的原则和技术要求做了规定。与分布式电源通过同一个变流器接入电网的储能元件应参照

Q/GDW480《分布式电源接入电网技术规定》执行。

4术语和定义

1)

储能系统energy storage system

本规定所涉及的储能系统是指通过电化学电池或电磁能量存储介质进行可循环电能存储、转换及释放的设备系统。

2)

变流器converter

转变电源电压、频率、相数和其他电量或特性的电器设备,主要包括整流器、逆变器、交流变流器和直流变流器。

3)

接入点point of interconnection

储能系统与配电网的连接处。其接入的方式分为允许通过公共连接点向公用电网送电和不允许通过公共连接点向公用电网送电两种类型。

4)

公共连接点point of common coupling(PCC)

电力系统中一个以上用户的连接处。

5)

储能系统短路容量energy storage system short-circuit capacity

储能系统在规定运行方式下,储能系统内部发生短路时的视在功率。

6)

接口interface

储能系统与公用电网按规范互连的共享界面。

7)

电磁干扰electromagnetic interference

任何能中断、阻碍、降低或限制电气设备有效性能的电磁能量。

8)

系统接地system earthing

为使系统安全稳定运行所做的接地,通常是通过电气设备的中性点来进行的,也称为工作接地。系统中性点接地方式主要有三种:直接接地、经阻抗接地和不接地。9)

间谐波interharmonics

非工频频率整数倍的谐波。

10)

荷电状态charge state

储能设备当前容量与额定容量的比值,常用百分数表示。

5一般性技术规定主要技术指标

a)储能系统接入配电网及储能系统的运行、监控应遵守相关的国家标准、行业标准和

企业标准。

b)储能系统可通过三相或单相接入配电网,其容量和接入点的电压等级:200kW以上

储能系统宜接入10kV(6kV)及以上电压等级配电网;200kW及以下储能系统接入220V/380V电压等级配电网。

c)储能系统接入配电网不得危及公众或操作人员的人身安全。

d)储能系统接入配电网不应对电网的安全稳定运行产生任何不良影响。

e)储能系统接入配电网后公共连接点处的电能质量应满足相关标准的要求。

f)储能系统接入配电网不应改变现有电网的主保护配置。

g)储能系统短路容量应小于公共电网接入点的短路容量。

h)储能设备最大充放电电流值不应大于其接入点的短路电流值的10%。

6接口装置

1.在储能系统与公用电网的连接点处应采用易操作、可闭锁、具有手动和自动操作的

断路器,同时安装具有可视断点的隔离开关。

2.储能系统的接口装置应满足相应电压等级的电气设备耐压水平。

3.储能系统接口装置应能抵抗下述标准规定的电磁干扰类型和等级:

a)GB/T14598.13规定的严酷等级为3级的1MHz和100kHz的脉冲群干扰;

b)GB/T14598.10规定的严酷等级为3级的快速脉冲群干扰;

c)GB/T14598.14规定的严酷等级为3级的静电放电干扰;

d)GB/T14598.9规定的严酷等级为3级的辐射电磁场干扰。

7接地与安全

7.1 接地

a)通过10kV(6kV)~35kV电压等级接入的储能系统接地方式应与其接入的配电网侧

系统接地方式保持一致,并应满足人身设备安全和保护配合的要求。通过380V电压等级并网的储能系统应安装有防止过电压的保护装置,并应装设终端剩余电流保护器。

b)储能系统的接地应符合GB 14050和DL/T 621的相关要求。

7.2 安全标识

a)连接储能系统和电网的设备应有醒目标识。标识应标明“警告”、“双电源”等提

示性文字和符号。标识的形状、颜色、尺寸和高度按照GB 2894规定执行。

b)通过10kV(6kV)~35kV电压等级接入的储能系统,应根据GB 2894的规定,在电

气设备和线路附近标识“当心触电”等提示性文字和符号。

8电能质量

8.1 一般性要求

1.储能系统接入配电网后公共连接点处的电能质量,在谐波、间谐波、电压偏差、电

压不平衡、直流分量等方面应满足国家相关标准的要求。

2.在储能系统公共连接点处应装设A类电能质量在线监测装置。对于接入10kV

(6kV)~35kV电压等级的储能系统,电能质量数据应能够远程传送,满足电网企业对电能质量监测的要求。对于接入220V /380V电压等级的储能系统,应能存储一年及以上的电能质量数据,以备电网企业调用。

注:A类电能质量在线监测装置应满足GB/T 17626.7标准的要求。

8.2 谐波和畸变

1.储能系统接入配电网后,公共连接点处的谐波电压应满足GB/T 14549的规定,并

满足电力行业电能质量技术管理相关标准的要求。

2.储能系统接入配电网后,公共连接点处的总谐波电流分量应满足GB/T14549的规

定。储能系统向电网注入的谐波电流允许值应按储能系统安装容量与其公共连接点的供电设备容量之比进行分配。

8.3 电压波动和闪变

1.储能系统启停和并网,公共连接点处的电压波动和闪变应满足GB/T 12326的规定。

2.因储能系统引起公共连接点处电压变动值与电压变动频度、电压等级有关时,具体

限值应按照Q/GDW 480有关规定执行。

3.储能系统在公共连接点引起的电压闪变限值应根据储能系统安装容量占接入点公

用电网供电容量的比例、系统电压等级按照GB/T 12326的三级规定执行。

8.4 电压偏差

储能系统接入配电网后,公共连接点的电压偏差应符合GB/T 12325的规定:

1.35kV公共连接点电压正、负偏差的绝对值之和不超过标称电压的10%(注:如供

电电压上下偏差同号(均为正或负)时,按较大的偏差绝对值作为衡量依据)。

2.20kV及以下三相电压偏差不超过标称电压的±7%。

3.220V单相电压偏差不超过标称电压的+7%,-10%。

8.5 电压不平衡

1.储能系统接入配电网后,公共连接点的三相电压不平衡度应不超过GB/T15543规定

的限值,公共连接点的负序电压不平衡度应不超过2%,短时不应超过4%。

2.由储能系统引起的负序电压不平衡度应不超过1.3%,短时不超过2.6%。

8.6 直流分量

1.储能系统经变压器接入配电网的,向电网馈送的直流电流分量不应超过其交流额定

值的0.5%。

2.储能系统不经变压器接入电网的,向电网馈送的直流分量应小于其交流额定值的

1%。

9功率控制与电压调节

9.1 有功功率控制

1.控制要求

a)储能系统应具备就地充放电控制功能。接入10kV(6kV)~35kV配电网的

储能系统,还应同时具备远方控制功能,并应遵循分级控制、统一调度的

原则,根据电网调度部门指令,控制其充放电功率。

b)储能系统的动态响应速度应满足电网运行的要求。

2.启停和充放电切换

a)储能系统的启停和充放电切换应按储能系统所有者与电网经营企业签订

的并网电量购销合同执行。通过10kV(6kV)~35kV电压等级接入的储能

系统的启停和充放电切换应执行电网调度部门的指令。

b)储能系统的启停和充放电切换不应引起公共连接点处的电能质量指标超

出规定范围。

c)由储能系统切除或充放电切换引起的公共连接点功率变化率不应超过电

网调度部门规定的限值。

9.2 电压/无功调节

1.储能系统参与电网电压调节的方式包括调节其无功功率、调节无功补偿量等。

2.通过220V/380V电压等级接入的储能系统功率因数应控制在0.98(超前)~0.98

(滞后)范围。

3.通过10kV(6kV)~35kV电压等级接入的储能系统应能在功率因数0.98(超前)~

0.98(滞后)范围内连续可调。在其无功输出范围内,应能在电网调度部门的

指令下参与电网电压调节,其调节方式和参考电压、电压调差率等参数应由电

网调度部门确定。

9.3 异常响应

1.频率异常响应特性

a)接入380V配电网的储能系统,当接入点频率低于49.5Hz时,应停止充电;

当接入点频率高于50.2Hz时,应停止向电网送电。

b)接入10kV(6kV)~35kV配电网的储能系统应具备一定的耐受系统频率异

常的能力,应能按表1所示的要求运行。

2.电压异常响应特性

当配电网电压过高或者过低时,与之相连的储能系统应做出响应。当接入点处电压超出表2规定的范围时,储能系统应在规定的时间内与电网断开连接。此要求适用于三相系统中的任何一相。

表2 储能系统的电压响应时间要求

注:1.U N为储能系统接入点的电网额定电压;

2. 最大分闸时间是指异常状态发生到储能系统与电网切断连接的时间。

3. 对电压支撑有特殊要求的储能系统,其电压异常的响应时间另行规定。

10继电保护与安全自动装置

10.1 一般性要求

储能系统的保护应符合GB/T 14285和DL/T 584的规定。

10.2 元件保护

1.储能系统的变压器、变流器和储能元件应配置可靠的保护装置。储能系统应能检测

配电网侧的短路故障和缺相故障,保护装置应能迅速将其从配电网侧断开。

2.储能系统应安装低压和过压继电保护装置,继电保护的设定值应满足表2的要求。

3.储能系统的频率保护设定应满足表1的要求。

10.3 系统保护

采用专线方式通过10kV(6kV)~35kV电压等级接入的储能系统宜配置光纤电流差动保护或方向保护,在满足继电保护“选择性、速动性、灵敏性、可靠性”要求时,也可采用电流电压保护。

10.4 故障信息

对于供电范围内有储能系统接入10kV(6kV)~35kV电压等级的变电站应具有故障录波功能,且应记录故障前10s到故障后60s的情况。该记录装置应该包括必要的信息输入量。故障录波信息能够主送到相应调度端。

10.5 同期并网

1.当电网频率、电压偏差超出正常运行范围时,储能系统应按照本规定中表1和表2

的响应时间要求选择以充电状态或放电状态启动。

2.储能系统应具有自动同期功能,启动时应与接入点配电网的电压、频率和相位偏差

在相关标准规定的范围内,不应引起电网电能质量超出规定范围。

11自动化与通信

11.1 基本要求

a)接入220V/380V配电网的储能系统,受电网企业运行状况监测。

b)通过10kV(6kV)~35kV电压等级接入的储能系统应具备与电网调度部门之间

进行数据通信的能力,电网调度部门应能对储能系统的运行状况进行监控。通

信功能应满足继电保护、安全自动装置、自动化系统及调度电话等业务的要求。

c)通过10kV(6kV)~35kV电压等级接入的储能系统与电网调度部门之间通信方

式和信息传输应符合相关标准的要求,包括遥测、遥信、遥控、遥调信号,提

供信号的方式和实时性要求等。一般宜采取基于DL/T 634.5 101通信协议和

DL/T 634.5 104通信协议。

11.2 正常运行信息

a)在正常运行情况下,储能系统向电网调度部门提供的信息应包括:

b)储能系统充放电状态;

c)储能系统荷电状态;

d)储能系统充放电的有功功率和无功功率;

e)储能系统接入点的电压、电流;

f)变压器分接头档位、断路器和隔离开关状态等。

12电能计量

1.储能系统接入配电网前,应明确上网电量和用网电量计量点。计量点原则上设置在

储能系统的产权分界点。

2.每个计量点均应装设电能计量装置,其设备配置和技术要求应符合DL/T 448有关

规定以及相关标准、规程的要求。电能表至少应具备双向有功和四象限无功计量功能、事件记录功能,配有标准通信接口,具备本地通信和通过电能信息采集终端远程通信的功能。电能表通信协议符合DL/T 645规定。

3.储能系统采集信息应接入配电网的电能信息采集系统。电能表采用智能电能表时,

其技术性能应满足国家电网公司关于智能电能表的相关标准要求。

创新电网储能技术解决方案

创新电网储能 技术解决方案

高速发展的工业化、信息化社会,需要现代 电网的支持。电网不断吸纳工业化、信息化成 果,各种先进技术在电网中得到集成应用,极 大的提升了电力系统的功能。 引言

智能电网(smart power grids)是社会经济发展的必然选择。 ---为实现清洁能源的开发、输送和使用,电网必须提高其灵活性和兼容性。 ---为抵御日益频繁的自然灾害和干扰,电网必须依靠智能手段提高其安全防御能力和自愈能力。 ---为降低运营成本,节能减排,电网必须更为经济高效,进行智能控制,尽可能减少用电消耗。 引言

---分布式发电、储能技术和电动汽车的快速发展,也改变了传统的供用电模式,促使电力系统、信息化建设、经营方式不断融合,以满足日益多样化的用户需求。 电力技术的发展,使电网逐渐呈现出诸多新的特征,如自愈、兼容、集成、优化,电力市场的变革,又对电网的自动化、信息化水平提出了更高要求, ------使智能电网成为电网发展的必然趋势。

智能变电站(smart substation) 采用了先进、可靠、集成、低碳、环保的智能设备, 以全站信息数字化、通信平台网络化、信息共享标准化为基本要求, 自动完成信息采集、测量、控制、保护、计量和监测等基本功能, 并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,并实现与相邻变电站、电网调度等的互动。

南方电网公司“十三五”智能电网发展规划 打造安全、可靠、绿色、高效的智能电网 涵盖清洁友好的发电、安全高效的输变电、灵活可靠的配电、友好互动的用电、综合能源与能源互联网等关键环节,以及通信网络、调控体系、信息平台等支撑体系, 根本目的是要推进能源转型升级,促进电网 发展更加安全、可靠、绿色、高效。要实现 这个目标,就必须推进电力行业发输配用全 过程的智能化

储能系统设计方案

110KWh储能系统 技术方案

微电网:储能系统独立或与其他能源配合,给负载供电,主要解决供电可靠性问题。 本系统主要包含: * 储能变流器:1台50kW 离并网型双向储能变流器,在0.4KV交流母线并网,实现能量的双向流动。 * 磷酸铁锂电池:125KWH * EMS&BMS:根据上级调度指令完成对储能系统的充放电控制、电池SOC 信息监测等功能。

1、系统特点 (1)本系统主要用于峰谷套利,同时可作为备用电源、避免电力增容及改善电能质量。 (2)储能系统具备完善的通讯、监测、管理、控制、预警和保护功能,长时间持续安全运行,可通过上位机对系统运行状态进行检测,具备丰富的数据分析功能。 (2)BMS系统即跟EMS系统通信汇报电池组信息,也跟PCS采用RS485总线直接通信,在PCS的配合下完成对电池组的各种监控、保护功能。 (3)常规0.2C充放电,可离网或并网工作。 2、系统运行策略 ◇储能系统接入电网运行,可通过储能变流器的PQ模式或下垂模式调度有功无功,满足并网充放电需求。 ◇电价峰时段或负荷用电高峰期时段由储能系统给负荷放电,既实现了对电网的削峰填谷作用,又完成了用电高峰期的能量补充。 ◇储能变流器接受上级电力调度,按照峰、谷、平时段的智能化控制,实现整个储能系统的充放电管理。 ◇储能系统检测到市电异常时控制储能变流器由并网运行模式切换到孤岛(离网)运行模式。 ◇储能变流器离网独立运行时,作为主电压源为本地负荷提供稳定电电压和频率,确保其不间断供电。 3、储能变流器(PCS) 先进的无通讯线电压源并联技术,支持多机无限制并联(数量、机型)。 ●支持多源并机,可与油机直接组网。 ●先进的下垂控制方法,电压源并联功率均分度可达99%。 ●支持三相100%不平衡带载运行。 ●支持并、离网运行模式在线无缝切换。 ●具有短路支撑和自恢复功能(离网运行时)。 ●具有有功、无功实时可调度和低电压穿越功能(并网运行时)。 ●采用双电源冗余供电方式,提升系统可靠性。 ●支持多类型负载单独或混合接入(阻性负载、感性负载、容性负载)。

储能在电网发展中的作用

储能在电网发展中的作用 ——Jon Wellinghoff 先生的演讲题目 1.目前世界上有很多种储能技术,可以提供多种服务。 这些技术包括超级电容(Supercapacitors)、超导磁储能(SMES)、铅酸电池(Lead-Acid)、锂电池(Li-Ion)、钠硫电池(NaS)、液流电池(Redox Flow)、飞轮储能(Flywheels)、压缩空气储能(CAES)、抽水蓄能(Pumped Hydro)等。 这些不同技术可以提供多样化供电功率(从kW级到GW级)和供电时长(从秒级到小时级),可以在UPS 系统(不间断电源系统)、削峰填谷电网输配系统及大容量电力管理系统等三个层面加以应用。在提供大容量能源服务方面,储能技术可以大幅度提升电网供电能力并使电力运营商通过峰谷电价差获利。 另外,储能技术还可以为输电基础设施、配电基础设施、用户能源管理等方面提供诸多辅助服务功能,如:给风光系统补充旋转备用能力、黑启动、配合监管等。 2. 储能技术在电力系统各环节都可以发挥作用。 一是在发电端与传统发电技术配合,提升清洁能源的并网率。在发电端,大容量储能系统可以作为发电厂的辅助服务设施,对太阳能、风电等不稳定电源起到稳压、稳流作用。 二是在输配环节,储能技术可以用在变电站上起到削峰填谷的作用。这一环节的应用在美国正变得日益重要。储能技术可以作为配电网中变电站的技术升级,推迟电网的更新换代,降低成本。 三是在消费环节,在“电表前”和“电表后”,都有储能技术的应用。 3. 在联邦层面,监管政策做出了及时的调整来支持储能设施的应用。 在服务计量方面,不光要计算总共接收到的电量,还要根据反应速度、调频准确度来计算报酬。这一规定主要考虑到储能技术的需求响应速度比常规发电技术要快很多这一特点。能源监管委员会的第719号法规要求独立电力系统运营商(ISO)和区域输电组织(RTO)接受来自需求侧所提供的辅助服务,这使商业和工业用户利用储能设施作为需求侧响应手段成为可能。能源监管委员会的第745号法规则要求电力公司和零售商支付大客户利用储能来替代电网调峰的费用。 4. 在州层面,美国也对储能设施的利用有一定的监管政策激励。 加州电网系统运行商(CAISO)制定了采购灵活电源的政策,鼓励装配和使用具有储能功能的灵活电源,以保证大量清洁能源的并网和有效使用(加州通过立法要求清洁能源的装机在2030年必须达到50% 。)。加州公用事业委员会( CPUC)制定了储能法规(AB2514),要求加州境内的三家公共电力公司(PG&E,SCE,SGD&E)必须在2020年前采购至少1.325GW的储能设备。这项法规还设立了评估储能服务、成本效益的框架规则,并且制定了可能的电网储能指标。这个法规直接帮助加州上马了一大批储能项目,很多新的储能技术在这些项目中得到了体现。CPUC制定的“自发电奖励激励计划规定”给予储能$2,000/kW补贴,这项补贴每年递减10%。

储能系统方案设计精编版

商用300KW储能方案 技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 电池系统方案 术语定义 池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中管理计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时采取保案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控系统通信状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 池模块:由10支5并2串的单体电池组成。 1 电池成组示意图 电池系统集成设计方案 .1电池系统构成 照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个电池簇组台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 体电池数目 1 10 60 1020 2040 称电压(V) 3.2 6.4 38.4 652.8 652.8 量(Ah) 55 275 275 275 -- 定能量(kWh) 0.176 1.76 10.56 179.52 359.04 低工作电压(V) 2.5 5 30 510 510 高充电电压(V) 3.6 7.2 43.2 734.4 734.4 统配置裕量 (359.04kWh -300 kWh)/300 kWh =19.68% 于以上各项分析设计,300kWh 电池系统计算如下。 .3电池柜设计方案 池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜外观柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统的可。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

储能技术的三类价值体现

储能技术的三类价值体现 在过去相当长一段时间,储能在电网的应用技术主要是抽水蓄能,应用领域主要是移峰填谷、调频及辅助服务等。近年来,随着新能源发电技术的发展,风电、太阳能光伏发电等波动性电源接入电网的规模不断扩大,以及分布式电源在配网应用规模的扩大,储能及其在电网的应用领域和应用技术都发生了很大变化。储能技术类型不断增多,应用范围也在扩大,本文就从储能技术的类型与应用范围谈起。 储能技术即能量存储和再利用的技术,按其基本原理分类,可分为物理储能、化学储能以及一些前沿储能技术,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能、超导储能等,化学储能有铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器等,液态金属电池、铝空气电池、锌空气电池等属于比较前沿的技术。不同的储能技术其特征和应用范围也有所区别。单从储能技术评价指标来看,就包括功率规模、持续时间、能量密度、功率密度、循环效率、寿命、自放电率、能量成本、功率成本、技术成熟度、环境影响等。可以说,没有一种单一储能技术可以适应所有的储能需求,应按需选择合适的储能技术或技术组合。 1、储能技术简介 1.1抽水蓄能电站 抽水蓄能使用两个不同水位的水库。谷负荷时,将下位水库中的水抽入上位水库;峰负荷时,利用反向水流发电。抽水储能电站的最大特点是储存能量大,可按任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%——85%。 1.2压缩空气储能 压缩空气储能系统主要由两部分组成:一是充气压缩循环,二是排气膨胀循环。在夜间负荷低谷时段,电动机—发电机组作为电动机工作,驱动压缩机将空气压入空气储存库;白天负荷高峰时段,电动机—发电机组作为发电机工作,储存的压缩空气先经过回热器预热,再与燃料在燃烧室里混合燃烧后,进入膨胀系统中(如驱动燃气轮机)发电。 1.3飞轮储能系统 飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术

电力储能产业上市公司

电力储能产业上市公司 1.阳光电源 是一家专注于太阳能、风能、储能等新能源电源设备的研发、生产、销售和服务的国家重点高新技术企业。主要产品有光伏逆变器、风能变流器、储能系统、电动车电机控制器,并致力于提供全球一流的光伏电站解决方案、储能及微电网解决方案。其中光伏电站解决方案包括:荒漠电站、屋顶电站、山丘电站。能及微电网解决方案主要有储能并网系统、光储微电网系统、燃料节约系统,主要应用与厂矿、企业、村落、通讯基站、光伏、风能发电站、地铁、港口医院等。 太阳能光伏逆变器产品继续稳居国内市场占有率第一,光伏电站系统集成业务也快速发展。 公司布局储能电源领域公司与三星SDI株式会社与2014年11月在韩国釜山签订了正式的合资合约,双方将在合肥建立合资公司,携手开展电力用储能系统相关产品的研制、生产和销售。依据计划,双方将在合肥高新区新设立储能电池和储能电源两个合资公司,分别从事电力用锂离子储能电池包的开发、生产、销售和分销,及电力设施用变流设备和一体化储能系统的开发、生产、销售和分销。双方约定,将充分利用各自优势,强强联合,共同开拓电力储能市场,并致力于成为全球领先的储能产品及系统解决方案供应商。 2.南都能源 公司主营业务为通信后备电源、动力电源、储能电源、系统集成及相关产品的研发、制造、销售和服务;主导产品为阀控密封蓄电池、锂离子电池、燃料电池及相关材料。产品广泛应用于通信、电力、铁路等基础性产业;太阳能、风能、智能电网、电动汽车、储能电站等战略性新兴产业;电动自行车电池、通讯终端应用电池等民生产业。 公司战略目标:致力于成为全球的通信后备电源、储能应用电源、动力电源和新能源应用领域系统解决方案的领导者。在储能应用领域,拥有大型储能、离网储能、分布式储能的系统设计及集成技术;在动力应用领域,拥有电动汽车、电动叉车、电动自行车等车用超级电池、锂离子电池技术;在通信应用领域,拥有IDC等交换机房用、基站用、UPS用等阀控电池、锂电池、燃料电池技术,其

储能技术及其在现代电力系统中的应用

储能技术及其在现代电力系统中的应用 内容摘要 从电力系统安全高效运行的角度论述了电能存储技术的重要性,介绍了目前常用的几种储能技术的发展现状,指出了该领域当前的热点研究问题。 现代电力系统中的新问题 安全、优质、经济是对电力系统的基本要求。近年来,随着全球经济发展对电力需求的增长和电力企业市场化改革的推行,电力系统的运行和需求正在发生巨大的变化,一些新的矛盾日显突出,主要的问题有:①系统装机容量难以满足峰值负荷的需求。②现有电网在输电能力方面落后于用户的需求。③复杂大电网受到扰动后的安全稳定性问题日益突出。④用户对电能质量和供电可靠性的要求越来越高。⑤电力企业市场化促使用户则需要能量管理技术的支持。⑥必须考虑环境保护和政府政策因素对电力系统发展的影响。 2000年到2001年初,美国加州供电系统由于用电需求的增长超过电网的供电能力,出现了电力价格大范围波动以及多次停电事故;我国自2002年以来,已连续四年出现多个省市拉闸限电的状况;在世界上的其他国家和地区,也不同程度地出现了电力供应短缺的现象。系统供电能力,尤其是在输电能力和调峰发电方面的发展已经落后于用电需求的增长,估计这种状况还会在一段时间内长期存在,对电力系统的安全运行将带来潜在的威胁。 加强电网建设(新建输电线路和常规发电厂),努力提高电网输送功率的能力,可以保证在满足系统安全稳定运行的前提下向用户可靠地输送电能。但是,由于经济、环境、技术以及政策等方面因素的制约,电网发展难以快速跟上用户负荷需求增长的步伐,同时电网在其规模化发展过程中不可避免地会在一段时间甚至长期存在结构上的不合理问题;另一方面,随着电力企业的重组,为了获取最大利益,企业通常首先选择的是尽可能提高设备利用率,而不是投资建设新的输电线路和发电厂。因此,单靠上述常规手段难以在短时间内有效地扭转电力供需不平衡的状况。 长期以来,世界各国电力系统一直遵循着一种大电网、大机组的发展方向,按照集中输配电模式运行。在这种运行模式下,输电网相当于一个电能集中容器,系统中所有发电厂向该容器注入电能,用户通过配电网络从该容器中取用电能。对于这种集中式输配电模式,由于互联大系统中的电力负荷与区域交换功率的连续增长,远距离大容量输送电能不可避免,这在很大程度上增加了电力系统运行的复杂程度,降低了系统运行的安全性。 目前,电力系统还缺乏高效的有功功率调节方法和设备,当前采用的主要方法是发电机容量备用(包括旋转备用和冷备用),这使得有功功率调控点很难完全按系统稳定和经济运行的要求布置。某些情况下,即使系统有充足的备用容量,如果电网发生故障导致输电能力下降,而备用机组又远离负荷中心,备用容量的电力就难以及时输送到负荷中心,无法保证系统的稳定性。因此,在传统电力系统中,当系统中出现故障或者大扰动时,同步发电机并不总是能够足够快地响应该扰动以保持系统功率平衡和稳定,这时只能依靠切负荷或者切除发电机来维持系统的稳定。但是,在大电网互联的模式下,局部的扰动可能会造成对整个电网稳定运行的极大冲击,严重时会发生系统连锁性故障甚至系统崩溃。美国和加拿大2003年8月14日发生的大停电事故就是一个惨痛的教训。如果具有有效的有功和无功控制手段,快速地平衡掉系统中由于事故产生的不平衡功率,就有可能减小甚至消除系统受到扰动时对电网的冲击。 在现代电力系统中,用户对于电能质量和供电可靠性的要求越来越高。冲击过电压、电压凹陷、电压闪变与波动以及谐波电压畸变都不同程度地威胁着用户设备特别是敏感性负荷的正常运行。电力市场化的推行也促使电力供应商和用户一起共同寻求新的能量管理技术支

微电网储能技术研究综述

电力系统新技术 专业电力系统及其自动化 班级研1109班 学号1108080392 学生周晓玲 2012 年

电力储能技术 摘要:储能技术在电力系统中具有削峰填谷、一次调频、提高电网稳定性、改善电能质量、提高电网利用率、提高可再生能源的利用率等重要作用。本文主要介绍了抽水储能、飞轮储能、压缩空气储能、钠硫电池储能、液流电池储能以及超导储能、超级电容器储能等典型储能技术以及各自的国内外研究动态,比较了各种储能技术的优缺点,并对储能技术在电力系统中的不同应用进行了综述。 关键词:储能技术,可再生能源发电,消峰填谷,一次调频ABSTRACT:Power storage technology serves to cut the peak and fill valley,regulate the power frequency,improve the stability,and raise the utilization coefficient of the grid in the power system.This paper introduces various types of storage technology such as pumped hydropower,flywheel electricity storage technology,compressed air energy storage,sodium sulfur(NaS)battery,,Flow Battery Technology,super conductive magnetic energy storage and super capacitor storage discusses their advantages and disadvantages.The development trend and the Different applications of storage technology in the power system are also summarized. KEY WORDS:energy storage technology,renewable energy Resources power generation,peak load shifting,primary frequency 1.背景意义 近几十年来,电能存储技术的研究和发展一直受到各国能源、交通、电力、电讯等部门的重视。电能的存储是伴随着电力工业发展一直存在的问题,其实到现在为止也没有一种非常完美的储能技术,但经过几代科学家的努力,一些比较成熟的储能技术在各行各业发挥着重要的作用。储能的优点有很多,节能、环保、经济。比如火电厂要求以额定负荷运行,以维持较高的能源转换效率和品质,但用电量却随时间变化,如果有大容量、高效率的电能存储技术对电力系统进行调峰,对电厂的稳定运行和节能是至关重要的。另外,由于分布式发电在电网中所占的比例越来越高,基于系统稳定性和经济性的考虑,分布式发电系统要存储一定数量的电能,用以应付突发事件。随着电力电子学、材料学等学科的发展,现代储能技术已经得到了一定程度的发展,在分布式发电中已经起到了重要作用。储能已经成为除发、输、变、配、用五大环节的第六大环节。如下图即为储能在电力系统中的应用。

各种储能系统优缺点对比

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research 的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。 不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞

超导磁储能系统(SMES)及其在电力系统中的应用

高温超导磁储能系统及在电力系统中的应用 一、超导磁储能基本原理 1、什么是超导磁储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装臵、变流装臵和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 2、储能工作原理 SMES在电力系统中的应用首先是由Ferrier在1969年提出的。最初的设想是将超导储能用于调节电力系统的日负荷曲线。但随着研究的深入,人们逐渐认识到调节现代大型电力系统的日负荷曲线需要庞大的线圈,在技术和经济上存在着困难。现在,SMES在电力系统应用中的研究重点主要着眼于利用SMES四象限的有功、无功功率快速响应能力,提高电力系统稳定性、改善供电品质等。超导磁能储存的概念最开始来自于充放电时间很短的脉冲能量储存,大规模能量储存开始于电器元件,其原理就是电能可以储存在线圈的磁场中。如果线圈是由超导材料制成,即保持在临界温度以下,即使发生变化,电流也不会发生衰减。线圈卸载荷,可以将电流释放回电路中去。 电流I循环储存在线圈中的能量E为

我国电力系统对大规模储能的需求分析

我国电力系统对大规模储能的需求分析 摘要:电化学储能作为一种调节速度快、布置灵活、建设周期短的调节资源日 益受到人们的关注和重视。推动 GW 级电化学储能建设应用,构建更加灵活高效的电力系统,是保障“十四五”以及未来新能源健康发展和电力系统稳定运行的 必然要求。本文所研究的大规模储能指的是技术上的电化学储能,所提及 的储能电站指的工程上的电化学储能电站。 关键词:电力系统;大规模储能;需求分析 常见储能技术 (1)物理储能包括抽水蓄能、压缩空气储能、飞轮储能等,其中最成熟的也是最普及 的是抽水储能,其主要的应用场景是在电力系统中参与削峰填谷、调频调相等。抽水储能的 时间长短各异,从几个小时一直到几天,其能量转换效率为 70%~85% 之间。但抽水储能电 站也有其不利因素,其建设受到地形的限制因素较多,建设周期也因地形地貌而异,一般周 期都较长。当用电的区域与抽水蓄能电站相距较远时,其效率也得不到保证,过程中的消耗 较大。压缩空气储能早在 1978 年就实现了应用,但由于受地形、地质条件制约,没有大规 模推广。飞轮储能是将电能转化成机械能,以能量转换的方式将能量储存起来,在需要时飞 轮运转使发电机发电产生电能。飞轮储能的有点是寿命较长且无污染,但是其可发出的能量 密度较低,可以考虑作为蓄电池方式的补充方案进行建设。(2)化学储能的方式是现有的 几种储能方式中最多的。在化学储能范围内其技术水平和应用的条件也各有不同。首先,蓄电池储能是最成熟,最被广泛大众所应用的技术,根据其化学组成部分的不同可分为铅酸电池、镍镉电池、镍氢电池、锂离子电池、钠硫电池等。铅酸电池的技术在现阶段已经成熟, 可以作为大容量大规模储能系统,其单位成本和储能成本都很低,安全性可靠性也十分优秀,已经与小型的风力、光伏发电系统和中小型的分布式发电系统中得到了应用,但是铅酸电池 有一个致命弱点就是铅是重金属,会对环境造成污染,不符合当下绿色能源、清洁能源的发 展趋势,所以其不具备未来的发展空间,仅能在现阶段小范围使用。锂离子、钠硫、镍氢电池等这些蓄电池存在着其制造成本过高的问题,作为大规模的储能电站还不成熟,产品的性 能目前尚无法满足储能的要求,其经济性也无法实现商业化运营。最后超级电容是 1970 年 来开始产生的储能器件,其原理是使用特殊的电极材料和电解质,这种超级电容是普通的 20-1000 倍,其优点是容量巨大,而且还保留了传统的电容器的释放能量快的特点,目前已 经不断应用于高山气象站、边防哨所等电源供应场合。 我国电力系统对大规模储能的需求分析 特高压电网过渡期面临的问题 随着大容量直流、高比例新能源的发展,我国电源、电网格局都发生了重大变化。以低 惯量、弱支撑为特征的新能源机组在电网中的比例不断增加,跨区输送的大容量直流替代了 受端电网的部分常规电源,导致电网中传统的同步发电机组占比逐渐降低,同步电网的惯量支撑和一次调频能力不断下降,频率的支撑和调节能力难以应对大容量直流闭锁造成的功率 不平衡量冲击,造成频率跌落深度增大,频率恢复困难,系统安全稳定受到威胁。在跨大区 交直流混联电网中,跨区直流的闭锁还可能引发大区间交流联络线上的大规模潮流转移,造成跨区同步互联电网之间的失稳和解列事故。2015 年 9 月 19 日锦 苏特高压直流发生双极闭锁,引起华东电网瞬时损失功率 490 万千瓦 ( 设计容量 720 万 千瓦 ),当日负荷水平 1.5 亿千瓦,网内开机容量

电力储能产业完整版

电力储能产业标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电力储能产业上市公司 1.阳光电源 是一家专注于太阳能、风能、储能等新能源电源设备的研发、生产、销售和服务的国家重点高新技术企业。主要产品有光伏逆变器、风能变流器、储能系统、电动车电机控制器,并致力于提供全球一流的光伏电站解决方案、储能及微电网解决方案。其中光伏电站解决方案包括:荒漠电站、屋顶电站、山丘电站。能及微电网解决方案主要有储能并网系统、光储微电网系统、燃料节约系统,主要应用与厂矿、企业、村落、通讯基站、光伏、风能发电站、地铁、港口医院等。 太阳能光伏逆变器产品继续稳居国内市场占有率第一,光伏电站系统集成业务也快速发展。 公司布局储能电源领域公司与三星SDI株式会社与2014年11月在韩国釜山签订了正式的合资合约,双方将在合肥建立合资公司,携手开展电力用储能系统相关产品的研制、生产和销售。依据计划,双方将在合肥高新区新设立储能电池和储能电源两个合资公司,分别从事电力用锂离子储能电池包的开发、生产、销售和分销,及电力设施用变流设备和一体化储能系统的开发、生产、销售和分销。双方约定,将充分利用各自优势,强强联合,共同开拓电力储能市场,并致力于成为全球领先的储能产品及系统解决方案供应商。 2.南都能源 公司主营业务为通信后备电源、动力电源、储能电源、系统集成及相关产品的研发、制造、销售和服务;主导产品为阀控密封蓄电池、锂离子电池、燃料电池及相关材料。产

品广泛应用于通信、电力、铁路等基础性产业;太阳能、风能、智能电网、电动汽车、储能电站等战略性新兴产业;电动自行车电池、通讯终端应用电池等民生产业。 公司战略目标:致力于成为全球的通信后备电源、储能应用电源、动力电源和新能源应用领域系统解决方案的领导者。在储能应用领域,拥有大型储能、离网储能、分布式储能的系统设计及集成技术;在动力应用领域,拥有电动汽车、电动叉车、电动自行车等车用超级电池、锂离子电池技术;在通信应用领域,拥有IDC等交换机房用、基站用、UPS用等阀控电池、锂电池、燃料电池技术,其中适用于高温环境下的环保节能电池为国际首创,具有巨大的经济及生态效益;在新型材料方面,拥有锂离子电池正负极材料、阀控电池正负极材料、电解质材料等多项核心技术。 公司主营业务: 储能领域: 2014年,公司储能业务实现销售收入15,969.52万元,同比增长14.69%。公司继续保持行业领先地位,在大规模储能、分布式储能、户用储能等领域齐头并进,各类系统解决方案及产品日趋成熟。在大规模储能及分布式微网储能领域,公司以锂电和铅炭电池核心技术为基础,提供全面系统解决方案,完成了国家风光储输示范工程项目(国家电网主导、国内影响力最大的新能源综合示范项目)、广东电科院广成铝业 1.5MW蓄能项目(科技部863项目)、浙江鹿西岛4MWh新能源微网储能项目(科技部863项目)等项目的装机运行,并在一系列新的示范项目中中标。 3.科陆电子 科陆电子是智能电网、新能源、节能减排产品设备研发、生产及销售方面的龙头企

电池储能系统在电力系统中的应用

电池储能系统在电力系统中的应用 孔令怡1,廖丽莹1,张海武2,赵家万3 (1.广西大学电气工程学院,南宁530004;2.德清县供电局,德清313200;3.遵义 供电局,遵义市563000) 摘要:电池储能系统(BESS)是一种新兴的FACTS器件。具有控制有功功率流的能力,能够同时对接入点的有功功率和无功功率进行调节,为高压输电系统提供快速的响应容量,有效提高了电力系统的稳定性、可靠性和电能质量。介绍了电池储能系统的基本原理、特点和国外的应用情况,并对它在电力系统中的不同应用进行了综述。 1引言 迄今为止,由于电力系统缺乏有效地大量储存电能的手段,发电、输电、配电与用电必须同时完成,这就要求系统始终处于动态的平衡状态中,瞬间的不平衡就可能导致安全稳定问题。大功率逆变器的出现为储能电源和各种可再生能源与交流电网之间提供了一个理想的接口。从长远的角度看,由各种类型的电源和逆变器组成的储能系统可以直接连接在配电网中用户负荷附近,构成分布式电力系统,通过其快速响应特性,迅速吸收用户负荷的变化,从根本上解决电力系统的控制问题。 可用在电力系统中的储能电源种类繁多,比较常见的有超导储能(SMES)、电池储能(BESS)、飞轮储能、超级电容器储能、抽水储能、压缩空气储能等。在各种类型的储能电源当中,电池储能系统是一种比较适合电力系统使用的储能电源,具有技术相对成熟、容量大、安全可靠、无污染、噪声低、环境适应性强、便于安装等优点。 2电池储能系统的基本原理 电池储能系统主要有电池组和变流器两部分组成,其变流器主要是基于电压源型变流器,其基本结构如图1所示。

电池组部分一般采用技术比较成熟的钠硫电池或铅酸电池,其中钠硫电池在能量密度、使用寿命、运行效率上有较明显优势,所以钠硫电池的应用更广泛。钠硫电池与铅酸电池特性参数比较如表1所示。 变流器的实质是大容量的电压逆变器,它是连接储能电池和接入电网之间的接口电路,实现了电池直流能量和交流电网之间的双向能量传递。电池储能系统的电路原理图如图2所示。 图2中电池储能系统等效为一个理想的电压源,其电压的幅值为U1,电压相角为H;串联的R、L代表总的功率损耗、线路损耗等;电池储能系统注入电力系统的电流的幅值为I L,电流相角为U;电力系统的接入点的电压幅值为U S,电压相角为D。 在电池储能系统中,电压幅值U1和电压相角H都是可以控制的,当我们需要向系统注入有功功率时,便可以控制H>D,这时电池储能系统的电压相角超前于系统接入点的电压相角,所以有功功率由电池储能系统流入系统;反之亦然。当我们需要向系统注入无功功率时,便可以控制U1>U S,这时电池储能系统的电压幅值高于系统接入点的电压幅值,所以无功功率由电池储能系统流入系统;反之亦然。可见,适当的调整换流器来控制电池储能系统的电压幅值U1和相角H,便可以实现电池储能系统与接入的电力系统之间的有功功率和无功功率的交换。 3电池储能系统在电力系统中应用的目的 电池储能系统在电力系统中有着极为广泛的应用,因为它本身可以快速的对接入点的有功功率和无功功率进行调节,所以可以用来提高系统的运行稳定性、提高供电的质量,当其容量足够大时,甚至可以发挥电力调峰的作用。

电网侧储能系统对PCS的技术要求与应用

International Financing August 2019 国际融资 PCS系统在储能系统中的应用 从资源综合利用环节来讲,电网侧配置储能应该是综合效率最高的一种。 P C S在整个储能系统里面是一个最关键的部件,也是整个系统里面在功率层面惟一的主动元件。PCS系统如何做到安全可靠?需要和电池进行快速有效的互动,电池系统在整个储能系统里面成本最高,同时它的使用边界条件要求比较多,有大量的E M S 防护和其他系列的防护系统。所以P C S需要和E M S之间进行快速通信,获得相互的信息,能够及时进行合理的动作,保证基础的安全。同时还要有一些预防通信失灵或者出错的措施。此外,P C S还要快速地接受本地E M S的调度,及时响应,尤其是大规模的时候要相互协调。现有的变电站,已经是从秒级到毫秒级了,响应的先后顺序很可能影响后续的决策。 谈到如何提升储能系统的技术经济性?必然会谈到初投资成本。但经济性和初投资成本是两个概念,要从使用的角度上来看经 济性,电的成本是核心。在变电站 里,系统的体积占比和技术性能等 都会影响系统的效率。比如PCS的 转换效率每提升1%,储能系统的 吞吐效率会提升2%。在电站里面 有一些调峰的应用,相应的吞吐效 率就会提升2%,有可能投资回报 率会提升1~2%。从系统里面看, 目前的变电站储能或者电网储能应 用,大部分的情况是PCS,成本占 比不超过10%。而P C S在市场供应 的平均价格上下波动一般不会超过 1%。因为系统里面选择了一些配 置适当的部件,会导致在辅助功能 上面的投入有可能产生3~5%的波 动,同时安全防护、散热、相应的 响应速度、增加额外的二次投入、 运行维护投入都会相应增加。 电网侧储能系统的发展现状与 要求 就现状来讲,电网侧储能才刚 刚起步,系统应用和部件都还没有 形成成熟的产业。在这种情况下, 还不能够用搭积木的方式来进行系 统采购、招标、或者系统集成, 因为目前这是一个有风险的应用。 还没有真正超过一年的百兆瓦级或 者百兆瓦时级的运行,而电池系统 的退化是一个逐步老化、劣化的过 程,比如电池系统的差异化要通 过多少次循环以后,才会逐步被放 大。还有一些产品也是需要经过长 期的老化过程,才会暴露出问题。 电网侧储能是一个系统化的工 程。需要从安全性、可靠性、技术 经济性等多个角度进行系统化的考 虑。不能单纯以初投资的大小进行 简单化的决策,而初投资的技术经 济性其实是根据使用的角度反馈来 进行倒推的。 PCS在储能系统成本中的占比 不大,但是对整个系统的安全性、 稳定性、以及长期的收益起着关键 的作用。PCS是电网侧储能的关键 部件,在产业发展的早期,更应该 选择技术成熟、性能稳定、工程经 验丰富的合作伙伴,共同推动产业 往健康稳定的方向来发展。等产业 到了一定的成熟程度,技术可以被 各家企业分开掌握,这才能使整个 系统的经济技术性得到更好的提 升,进入下一个发展阶段。(国际 融资记者张宇佳整理报道 ) ● 也说储能 T echnical Requirements and Application of PCS for Grid-Side Energy Storage System 电网侧储能系统对PCS的技术要求与应用 在“储能国际峰会暨展览会2019”上,北京索英电气技术有限公司董事长王仕城先生对PCS在电网侧储能中的要求与应用进行了阐述,他说 53

电力储能产业

电力储能产业 Revised as of 23 November 2020

电力储能产业上市公司 1.阳光电源 是一家专注于太阳能、风能、储能等新能源电源设备的研发、生产、销售和服务的国家重点高新技术企业。主要产品有光伏逆变器、风能变流器、储能系统、电动车电机控制器,并致力于提供全球一流的光伏电站解决方案、储能及微电网解决方案。其中光伏电站解决方案包括:荒漠电站、屋顶电站、山丘电站。能及微电网解决方案主要有储能并网系统、光储微电网系统、燃料节约系统,主要应用与厂矿、企业、村落、通讯基站、光伏、风能发电站、地铁、港口医院等。 太阳能光伏逆变器产品继续稳居国内市场占有率第一,光伏电站系统集成业务也快速发展。 公司布局储能电源领域公司与三星SDI株式会社与2014年11月在韩国釜山签订了正式的合资合约,双方将在合肥建立合资公司,携手开展电力用储能系统相关产品的研制、生产和销售。依据计划,双方将在合肥高新区新设立储能电池和储能电源两个合资公司,分别从事电力用锂离子储能电池包的开发、生产、销售和分销,及电力设施用变流设备和一体化储能系统的开发、生产、销售和分销。双方约定,将充分利用各自优势,强强联合,共同开拓电力储能市场,并致力于成为全球领先的储能产品及系统解决方案供应商。 2.南都能源 公司主营业务为通信后备电源、动力电源、储能电源、系统集成及相关产品的研发、制造、销售和服务;主导产品为阀控密封蓄电池、锂离子电池、燃料电池及相关材料。产品广泛应用于通信、电力、铁路等基础性产业;太阳能、风能、智能电网、电动汽车、储能电站等战略性新兴产业;电动自行车电池、通讯终端应用电池等民生产业。 公司战略目标:致力于成为全球的通信后备电源、储能应用电源、动力电源和新能源应用领域系统解决方案的领导者。在储能应用领域,拥有大型储能、离网储能、分布式储能的系统设计及集成技术;在动力应用领域,拥有电动汽车、电动叉车、电动自行车等车用超级电池、锂离子电池技术;在通信应用领域,拥有IDC等交

分布式储能在电力系统中的应用及现状分析

分布式储能在电力系统中的应用及现状分析 摘要近年来,随着储能技术经济性的不断提升,储能在可再生能源发电、智能电网、能源互联网建设中的作用日益凸显,我国也相继出台政策鼓励储能技术的建设与应用。根据接入方式及应用场景的不同,储能系统的应用主要包含集中式与分布式两种形式。集中式应用的储能系统一般在同一并网点集中接入,目前,在大规模可再生能源发电并网、电网辅助服务等方面主要采用此形式,具有功率大(数兆瓦到百兆瓦级)、持续放电时间长(分钟级至小时级)等特点。分布式应用的储能系统接入位置灵活,目前多在中低压电力系统、分布式发电及微电网、用户侧应用。分布式储能的功率、容量的规模相对较小。 关键词分布式储能;电力系统;应用及现状 前言 储能技术是解决可再生能源间歇性和不稳定性、提高常规电力系统和区域能源系统效率、安全性和经济性的迫切需要,是发展“安全、高效、低碳”的能源技术、占领能源技术制高点的“战略必争领域”,储能在分布式可再生能源应用与智能微网领域具有重大的战略需求、重要的研究价值和巨大的发展潜力[1]。 1 分布式储能类别及其特点 分布式储能的方式多种多样,各种储能方式都有其适宜的应用领域。储能形式主要分为机械储能、电磁储能、电化学储能这三大类。机械储能包括抽水储能、压缩空气储能、飞轮储能;电磁储能包括超导储能、电容储能、超级电容器储能等;电化学储能包括铅酸电池、锂离子电池、液流电池、钠硫电池等。另外,根据充放电的外部特性,分布式储能又可以分为功率型和能量型两种,前者功率密度大,适合提供快速的功率响应,例如超级电容、超导储能等;后者能量密度大,适合提供长时间的能量支撑,例如压缩空气储能、铅酸电池、锂离子电池、液流电池、钠硫电池等。 目前,各种分布式储能技术的发展水平不同,成本也有明显差异,在能量密度、功率密度、循环寿命、效率及环保性等方面都有各自的特点。铅酸电池凭借其技术成熟、价格低廉等优势在电力系统中得到了广泛的应用,但是由于其功率密度小,充电时间长,循环寿命短,對环境也有一定的影响,尽管成本低廉,也不能成为今后电池发展的方向。相比之下,锂电池、钠硫电池等能量、功率密度大,使用寿命长,目前已经获得了不错的发展,虽然价格相对高昂,但随着技术的不断进步,不久将得以广泛应用。对于功率型储能,超级电容储能相比其他储能技术更为成熟,成本也相对低廉,应用更为广泛。 2 分布式储能在电力系统的应用及现状分析 2.1 削峰填谷

详解智能电网中的6种储能技术

详解智能电网中的6种储能技术 储能技术在包括电力系统在内的多个领域中具有广泛的用途,近年来世界范围内的电力工业重组给各种各样的储能技术带来了新的发展机遇,采用这些技术可以更好地实现电力系统的能量管理,尤其是在可再生能源和分布式发电领域,这种作用尤为明显,在传统的发电和输配电网络中,这些新技术同样可以得到应用。以下简要介绍各种储能技术的基本原理及其发展现状。 1 抽水储能 抽水蓄能电站在应用时必须配备上、下游两个水库。在负荷低谷时段,抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存。在负荷高峰时,抽水储能设备工作于发电机的状态,利用储存在上游水库中的水发电。一些高坝水电站具有储水容量,可以将其用作抽水蓄能电站进行电力调度。利用矿井或者其他洞穴实现地下抽水储能在技术上也是可行的,海洋有时也可以当作下游水库用,1999年日本建成了第一座利用海水的抽水蓄能电站。 抽水储能最早于19世纪90年代在意大利和瑞士得到应用,1933年出现了可逆机组(包括泵水轮机和电动与发电机),现在出现了转速可调机组以提高能量的效率。抽水蓄能电站可以按照任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%至85%之间。 抽水储能是在电力系统中得到最为广泛应用的一种储能技术,其主要应用领域包括能量管理、频率控制以及提供系统的备用容量。目前,全世界共有超过90GW的抽水储能机组投入运行,约占全球总装机容量的3%。限制抽水蓄能电站更广泛应用的一个重要制约因素是建设工期长,工程投资较大。 2 先进蓄电池储能 据估计,全球每年对蓄电池的市场需求大约为150亿美元,在工业用蓄电池方面,如:用于UPS、电能质量调节、备用电池等,其市场总量可达50亿美元。在美国、欧洲以及亚洲,

相关主题
文本预览
相关文档 最新文档