当前位置:文档之家› 三相混合式多细分步进电机驱动器

三相混合式多细分步进电机驱动器

三相混合式多细分步进电机驱动器
三相混合式多细分步进电机驱动器

三相混合式多细分步进电机驱动器

摘要:本文根据正弦电流细分驱动的原理,设计出三相混合式多细分步进电机驱动器,系统采用电流跟踪和脉宽调制技术,使电机的相电流为相位相差120°的正弦波,功率驱动电路采用六只MOS管。该驱动器解决了传统步进电机低速振动大、有共振区、噪音大等缺点,提高了步距角分辨率和驱动器的可靠性。

关键词:混合式步进电机;细分驱动;SVPWM

1 前言

步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。步进电机的运行性能与它的驱动器有密切的联系,可以通过驱动技术的改进来克服步进电机的缺点。相对于其他的驱动方式,细分驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。总体来说,细分驱动的控制效果最好。因为常用低端步进电机伺服系统没有编码器反馈,所以随着电机速度的升高其内部控制电流相应减小,从而造成丢步现象。所以在速度和精度要求不高的领域,其应用非常广泛。

因为三相混合式步进电机比二相步进电机有更好的低速平稳性及输出力矩,所以三相混合式步进电机比二相步进电机有更好应用前景。传统的三相混合式步进电机控制方法都是以硬件比较器完成,本文主要讲述使用DSP及空间矢量算法SVPWM来实现三相混合式步进电机控制。

2 细分原理

步进电机的细分控制从本质上讲是通过对步进电机的定子绕组中电流的控制,使步进电机内部的合成磁场按某种要求变化,从而实现步进电机步距角的细分。最佳的细分方式是恒转矩等步距角的细分。一般情况下,合成磁场矢量的幅值决定了电机旋转力矩的大小,相邻两合成磁场矢量的之间的夹角大小决定了步距角的大小。在电机内产生接近均匀的圆形旋转磁场,各相绕组的合成磁场矢量,即各相绕组电流的合成矢量应在空间作幅值恒定的旋转运动,这就需要在各相绕相中通以正弦电流。

三相混合式步进电机的工作原理十分类似于交流永磁同步伺服电机。其转子上所用永磁磁铁同样是具有高磁密特性的稀土永磁材料,所以在转子上产生的感应电流对转子磁场的影响可忽略不计。在结构上,它相当于一种多极对数的交流永磁同步电机。由于输入是三相正弦电流,因此产生的空间磁场呈圆形分布,而且可以用永磁式同步电机的结构模型(图1)分析三相混合式步进电机的转矩特性。为便于分析,可做如下假设:

a.电机定子三相绕组完全对称;

b.磁饱和、涡流及铁心损耗忽略不计;

c.激磁电流无动态响应过程。

图1 三相永磁同步电机的简单结构模型

U、V、W 为定子上的3 个线圈绕组,3 个线圈绕组的轴线成120°。电机单相绕组通电的时候,稳态转矩可以表达为:T=f(i,theta) 。其中,i 为绕组中通过的电流;theta为电机转子偏离参考点的角度。由于磁饱和效应可以忽略不计,并且转子结构是圆形,其矩角特性为严格的正弦,

即:T=k *I*sin(theta),k 为转矩常数

若理想的电流源以恒幅值为I 的三相平衡电流iU、iV、iW 供给电机绕组,

即:

iU=I*sin(wt)

iV=I*sin(wt+2*PI/3)

iW=I*sin(wt+4*PI/3)

则电机各相电流产生的稳态转矩为:

TU=k*I*sin(wt)*sin(theta)

TV=k*I*sin(wt+2*PI/3)*sin(theta+2*PI/3)

TW=k*I*sin(wt+4*PI/3)*sin(theta+4*PI/3)

稳态运行时,theta=wt,则三相绕组产生的合成转矩为:

T=TU+TV+TW=3/2*k*I*sin(PI/2-wt+theta)=3/2*k*I

以上分析表明,对于三相永磁同步电机,当三相绕组输入相差120°的正弦电流时,由于在内部产生圆形旋转磁场,电机的输出转矩为恒值。因此,将交流伺服控制原理应用到三相混合式步进电机驱动系统中,输入的220V 交流,经整流后变为直流,再经脉宽调制技术变为三路阶梯式正弦波形电流,它们按固定时序分别流过三路绕组,其每个阶梯

对应电机转动一步。通过改变驱动器输出正弦电流的频率来改变电机转速,而输出的阶梯数确定了每步转过的角度,当角度越小的时候,那么其阶梯数就越多,即细分就越大,从理论上说此角度可以设得足够的小,所以细分数可以是很大,而交流伺服控制的每步角度与反馈的编码器的精度有很大的关系,一般使用的为2500线,所以每一步转过的角度仅为0.144度,而此方法控制的步进电机,比如其细分数为10000,则每一步转过的角度为0.036度,所以比一般的伺服控制精度高很多。当然,步进电机转动时,电机各相绕组的电感将形成一个反向电动势,频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降,通过恒流方式可以使在电机低频和高频时保持同样的相电流从而使高频的力矩特性有所改善,这只能是在低速时,所以其综合性能(高低速噪声,高速力矩,高速平稳性等)很难赶超交流伺服控制系统。

图2 给出相差120°的三相阶梯式正弦电流。

三相混合式步进电机一般把三相绕组连接成星形或者三角形,按照电路基本定理,三相电流之和为零。即IU+IV+IW =0 。所以通常只需产生两相绕组的给定信号,第三相绕组的给定信号可由其它两相求得。同样,只需要对相应两相绕组的实际电流进行采样,第三相绕组的实际电流可根据式求得。

3 三相混合式步进电机驱动器的系统构成

驱动器的总体方案如图3 所示,主要包括单片机电路、电流追踪型SPWM 电路和功率驱动电路组成。

图3 驱动器的整体框图

3.1 DSP模块设计

在这里,我们选择了TI公司的DSP作为CPU芯片,DSP(Digital Signal Processor)实际上也是一种单片机,它同样是将中央处理单元、控控制单元和外围设备集成到一块芯片上。但它又有自身鲜明的特点——因为采用了多组总线技术实现并行运行的机机制,从而大大提高了运算速度,具有更强的运算能力和更好的实时性。本文选用的DSP(T MS320LF2407A)是一款电机控制专用芯片,144引脚,具有丰富的IO资源,含有四个通用定时器,具有两路专用于控制三相电机的PWM发生器(可产生六路PWM信号),另外还有专用接收外部脉冲和方向的I/O口,从而简化了电路设计和程序开发。

DSP输入信号包括步进脉冲信号CP、方向控制信号、脱机信号,过流保护信号。这几种信号均通过高速光耦连接到DSP的引脚上,另外还有细分步数及电流选择信号。当脱机信号为有效时,驱动器输出到电机的电流被切断,电机转子处于自由状态(脱机状态)。反馈电流通过DSP自带的的10 位模数转换器(AD)采样,反馈的电流通过一定的算法后,由DSP自带的PWM口输出控制电机。

3.2 电流追踪型回路

这种传输方式以模拟电压的幅值代表采样电流或者电压的大小,其主要用来采样a,b两相电流及母线电压检测,实现电机电流控制以及过压、欠压、过流保护。驱动器通过采样电阻检测步进电机绕组的实际电流,与设定电流相比较后经过滞环比较器调节器,调节器输出信号由20KHz 频率的三角波载波输出,形成脉宽调制信号(PWM),通过功率驱动接口电路来控制大功率半导体器件的导通与关断,使步进电机的绕组实际电流跟踪给定参考信号,按给定的正弦规律变化。

3.3 功率驱动电路

驱动器的主回路采用交-直-交电压型逆变器形式,由整流滤波电路、三相逆变器以及步进

电机等组成。整流滤波电路构成直流电压源,完成220V、50Hz 交流电源到直流电源的变换。逆变器实现从直流电到变频变压交流电的转换,为三相混合式步进电机的定子绕组提供要求的交流电流。逆变器由仙童公司生产的六只G30N60B3DMOS管组成,构成三相逆变桥。驱动器采用两只电阻检测步进电机相电流的瞬时值。

功率驱动电路的核心是功率模块(MOS管)。MOS管与电流追踪型PWM 输出之间必须通过专用高速光耦连接。根据MOS管的过流值和电机峰值线电流来选用合适的MOS管,即电机的线电流的峰值小于MOS管的最大电流值。本设计中电机最大相电流为8.1A,该电流是相电流的有效值,峰值相电流为8.1* sqrt(2) = 11.312A 。此外,电机绕组在三角形接法时,线电流是相电流的3 倍,所以线电流峰值为19.6A。由G30N60B3DPDF 文档知,其最大流值为30A,故可以保证正常使用,正常工作要求适当的散热设计保证内部结温永远小于150摄氏度,因此要外加散热器并强制风冷,以保证MOS管正常工作。

3.4并口通讯:

为了避免在控制过程中停电或者其它特别原因掉电时造成损失,使用带电RAM存储电机位置,保证来电后工件可继续完成加工。并口RAM比传统使用的E2ROM速度传输更快更可靠,可更有效的记录电机运行状态,但占用CPU的I/O口较多,这里CPU有足够的资源可以使用。

3.5 控制软件流程

主程序流程图

D306三相混合式步进电机驱动器使用说明

D306三相混合式步进电机驱动器使用说明 !阅读 请详细阅读本说明书后,再进行安装连接! !!!安全事项 ★严禁带电对驱动器进行任何拔码设置或进行测量! ★必须在断电三分钟后,接线,安装和拔码设置! ★二次开关机之间须有三分钟间隔,以免发生故障报警! ★驱动器的输入电压需满足技术要求! ★通电前,确定电源电缆,电机动力电缆,信号电缆连接正确,且连接紧固! ★通电前,电缆连接完毕后,用万用表电阻档测量驱动器A、B、C端子与接地端子之间的电阻应为无穷大。用万用表最小电阻档测量驱动器A、B、C端子每两相电阻值应相等,避免电机相间短路,或电机缺相引起驱动器损坏。 一.性能简介 D306型号三相伺服混合式步进电机驱动器,具有以下特点: 1.采用交流伺服控制原理,在控制方式上增加了全数字式电流环控制,三相正弦电流驱动输出,使三相混合式电机低速无爬行,无共振区,噪音小。 2.驱动器功放级的电压达到DC325伏,步进电机高速运转时仍然有高转矩输出。 3.具备短路、过压、欠压、过热等完善保护功能,可靠性高。 4.具有细分和半流功能。有多种细分选择,最小步距角可设为0.036°。 5.适用面广,通过设置不同相电流可配置各种电机。

三.外观尺寸

2 3。 接口信号说明:CP+/CP-(脉冲信号):每个脉冲上升沿使电机转动一步,最小脉宽≥2.5μS,最高接收频率200KHz 。 CW+/CW-(方向信号):单脉冲控制方式时为方向控制信号输入接口,若CW 为低电平,电机顺时针旋转,CW 为高电平,电机逆时针旋转。双脉冲控制方式时为反转步进脉冲信号输入接口。方向信号切换时间≥10μS 。改变电机旋转方向可通过互换电机任意两相接线。 FREE+/FREE-(脱机信号)脱机信号输入接口,脱机+与脱机-之间分别加高低电平,电机无相电流,电机转子处于不稳定的自由状态(脱机状态);反之脱机+与脱机-之间分别加相同电平和不接,电机处于锁定状态。 Vin 外部电源输入端(仅需接ERR 和FINE 时所需) ERR 报警信号输出接口。 FINE 当FINE 为高电平时,细分功能有效,当FINE 为低电平时,细分功能无效。 当细分功能为无效时,电机每转的脉冲数为细分功能有效时的1/10。 五.拔码开关设置 D306驱动器有一个拔码开关,如图示: 1 2437865 1. 相电流设置 步进电机内部线圈必须接成三角形,驱动器的相电流设置值必须小于或等于电机铭牌上的额定相电注:若电机额定电流标称值是“Y ”接法的电流值时,设定电流值等于额定值的1.7倍。 2. 半流功能设置 半流功能是指输入脉冲频率<800Hz 时输出相电流减小到额定值的60%,可防止电机发热,减小低频振动。通常拔码DIP4设置为OFF ,半流功能有效,当设置为ON 时,半流功能无效。

步进电机驱动器的主要细分作用

步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。 通过细分步进电机驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。 步进电机驱动器细分的主要作用是提高步进电机的精确率。 国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,这两者之间的本质是不同的: 一、 “平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位的。 二、 步电机系统解决方案

电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不 但不会引起电机力矩的下降,相反,力矩会有所增加。 驱动器细分后的主要优点为:完全消除了电机的低频振荡。低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果您的步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。提高了电机的输出转矩。尤其是对三相反应式电机,其力矩比不细分时提高约30-40% 。提高了电机的分辨率。由于减小了步距角、提高了步距的均匀度,‘提高电机的分辨率‘是不言而喻的。 很多用户误以为步进电机驱动器的细分越高,步进电机的精度就越高,其实这是一种错误的观念,比如步进电机驱动器细分较高的可以达到60000个脉冲一转,而步进电机实际是无法分辨这个精度的,当驱动器设置为60000个脉冲/转的时候,步进电机驱动器接受好几个脉冲,步进电机才走一步,这样并不能提高步进电机的精度。 步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是 减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术 步电机系统解决方案

DY3系列三相混合式步进电机驱动器

一、型号说明 :12=,13=,24= 二、性能简介 混合式步进电机采用稀土永磁材料制造,与反应式步进电机相比具有电磁损耗小、转换效率高、动态特性好等优点。混合步进电机的电磁静力短为电机阻尼。取消了反应式电机的机械阻尼盘,无需人工调整,运行平稳、噪音小、不易失步。混合式步进电机取代反应式电机是经济型数控系统的发展趋势。 我厂研制的DY3系列三相混合式步进电机驱动电源,具有以下特点: *技术新: 应用微电子技术,将单片机嵌入驱动器内,使控制性能提高,电路简化;功放采用三菱公司智能模块(I P M),具备过载、短路、过压、欠压、过热等完善保护功能,可靠性极高;驱动器内低压直流电源应用开关电源技术,使电源电路体积小,稳定可靠。 *微步距: 运用矢量细分技术,可控制步进电机转过的最小角度为电机步距角的1/20(°)。微步距控制可使步进电机低速运行平稳,其运行效果接近

交流伺服。微步距驱动器与μm()级CN C控制系配套.可使数控机床的最小移动量控制接近μm,对加工弧面、锥面、螺纹等工件,能明显提高工件表面的精细效果。 *高转矩 步进电机输出转矩与注入电流成正比,高速运转时注入电流大小与驱动器功放级使用的电压成正比,目前大部分步进电机驱动器功放级。由于技术限制,所使用的电压在DC150伏以下,而DY3步进电机驱动器功放级的电压达到DC310V,因而驱动步进电机高速运转时仍然有高转矩输出。 *高可靠性 控制部分集成度高、功放级采用三菱公司的智能模块,整机结构紧凑、电路简练、接插件少、机外风冷散热设计可减少粉尘侵入机内,设有超温、过压、欠压、保护、报警信号输出。 三、技术参数

步进电机习题

一、名词解释 矩角特性:步距角:运行矩频特性:失调角: 二、不定项选择题 1、正常情况下步进电机的转速取决于( ) A.控制绕组通电频率 B.绕组通电方式 C.负载大小 D.绕组的电流 2、某三相反应式步进电机的转子齿数为50,其齿距角为( ) ° °电角度 °电角度 3、某四相反应式步进电机的转子齿数为60,其步距角为( ) °电角度 °电角度 4、某三相反应式步进电机的初始通电顺序为C B A →→,下列可使电机反转的通电顺序为( ) A.A B C →→ B.A C B →→ C.B C A →→ D.C A B →→ 5、下列关于步进电机的描述正确的是() A.抗干扰能力强 B.带负载能力强 C.功能是将电脉冲转化成角位移 D.误差不会积累 三、填空题 1、步进电机的工作原理是 。 2、矩角特性的数学表达式为 。 3、三相反应式步进电机的通电状态包括 、 和 。 4、五相反应式步进电机多相通电时,其最大静转矩为 。 5、提高步进电机的带负载能力的方法有 和 。 四、简答题 1、如何控制步进电机的角位移和转速步进电机有哪些优点 2、步进电机的转速和负载大小有关系吗怎样改变步进电机的转向 3、为什么转子的一个齿距角可以看作是360°的电角度 4、反应式步进电机的步距角和那些因素有关 5、步进电机的负载转矩小于最大静转矩时,电机能否正常步进运行 6、为什么随着通电频率的增加,步进电机的带负载能力会下降 五、计算题 1、有一台四相反应式步进电机,其步距角为°/°,试求: (1)转子齿数是多少(2)写出四相八拍的一个通电顺序;(3)A 相绕组的电流频率为400Hz 时,电机转速为多少

DY3系列三相混合式步进电机驱动器(用户手册)ZW

一、型号说明 :12=1.2A,13=1.3A,24=2.4A 二、性能简介 混合式步进电机采用稀土永磁材料制造,与反应式步进电机相比具有电磁损耗小、转换效率高、动态特性好等优点。混合步进电机的电磁静力短为电机阻尼。取消了反应式电机的机械阻尼盘,无需人工调整,运行平稳、噪音小、不易失步。混合式步进电机取代反应式电机是经济型数控系统的发展趋势。 我厂研制的DY3系列三相混合式步进电机驱动电源,具有以下特点: *技术新: 应用微电子技术,将单片机嵌入驱动器,使控制性能提高,电路简化;功放采用三菱公司智能模块(I PM),具备过载、短路、过压、欠压、过热等完善保护功能,可靠性极高;驱动器低压直流电源应用开关电源技术,使电源电路体积小,稳定可靠。 *微步距: 运用矢量细分技术,可控制步进电机转过的最小角度为电机步距角的1/20(0.003°)。微步距控制可使步进电机低速运行平稳,其运行效果接近交流伺服。微步距驱动器与μm(0.001mm)级CN C控制系配套.可使数控机床的最小移动量控制接近μm,对加工弧面、锥面、螺纹等工件,能明显提高工件表面的精细效果。 *高转矩 步进电机输出转矩与注入电流成正比,高速运转时注入电流大小与驱动器功放级使用的电压成正比,目前大部分步进电机驱动器功放级。由于技术限制,所使用的电压在DC150伏以下,而DY3步进电机驱动器功放级的电压达到DC310V,因而驱动步进电机高速运转时仍然有高转矩

输出。 *高可靠性 控制部分集成度高、功放级采用三菱公司的智能模块,整机结构紧凑、电路简练、接插件少、机外风冷散热设计可减少粉尘侵入机,设有超温、过压、欠压、保护、报警信号输出。 三、技术参数

课程设计-三相步进电机

南华大学电气工程学院 《电子技术课程设计》任务书 设计题目:步进电机控制电路 专业:本10电力02班 学生姓名: 邓鹏学号: 20104450226 起迄日期: 2012年9月28日—2012年12月28日指导教师:刘原欧阳宏志 教研室主任:苏泽光

目录 1 设计任务和要求 (2) 2电路原理分析 (3) 3 矩形波产生电路(含555电路) (4) 4 三相三拍脉冲分配器 (5) 5三相六拍脉冲分配器 (5) 6功放电路部分 (7) 7电路总原理图 (7) 8三相三拍脉冲分配器仿真图及PCB (8) 9三相六拍脉冲分配器部分仿真图及PCB图 (9) 10元件清单 (11) 11心得体会 (12)

步进电动机的控制电路 一、设计任务和要求 1、设计任务 设计制作步进电机的控制电路。 2、设计要求 (1)使用D触发器或主从JK触发器设计一个兼有三相六拍、三相三拍两 种工作方式的脉冲分配器。 (2)能控制步进电机作正向和反向运动。 (3)设计电路工作的时钟信号频率为10-100Hz。 (4)设计驱动步进电机的脉冲放大电路,使之能驱动一个相电压为24V, 相电流为0.2A的电机工作。 二.电路原理分析 1.设计要求分析 图1 三相步进电机原理图 步进电动机是一种用脉冲控制的电动机,它能将脉冲信号转换成相应的角位移。下面以反应式步迸电动机为例,说明它的结构和工作原理。 如图是三相步进电动机的结构图。从图中可以看出,电动机的定子上有六个等分的磁极,AA'、BB'、CC',每两个相对的齿构成一相。每相上绕有一组线圈。转子有四个齿,上边不绕线圈。当A相通电,B、C相都不通电时,那么由于AA'

研控步进电机YKD3422MA细分驱动器说明书

YKD3422MA 数字式细分驱动器 特点木工雕刻机 数控机床 包装设备 纺织设备 水钻设备 激光切割机 YKD3422MA是一款基于高性能DSP控制的三相步进电机驱动器,硬件设计上采用DSP+IPM模块进行高集成度简约化设计,数字式PWM控制方式,软件上采用矢量控制技术及微细分自适应控制技术,即使在低细分条件下也可以使电机低速运行平稳,几乎没有震动和噪音,电机在高速时力矩大大高于两相和五相混合式步进电机。驱动电压为交流110V-240V,适配电流在4.2A以下的各种型号三相混合式步进电机。此款驱动最适宜控制高电压小电流电机。定位精度最高可达10000步/转.细分设置更改需要断电重启后才生效,运行电流及抱轴电流设定支持不断电在线设置。 电流设定驱动器接线示意图 典型应用概述1. STOP/Im为保持状态(或抱轴状态)输出电流设置电位器,可设置为 正常输出电流的20%-80%(顺时针增大,逆时针减小),支持在线调整。 2. RUN/Im为正常工作输出电流设置开关(详见下表),支持在线调整。 PU DR MF DIP开关设定输入信号波形时序图安装尺寸(单位:mm)◆◆◆◆◆◆◆◆◆◆◆◆ 采用矢量控制及微细分控制技术,在运行平稳性、噪音、震动、发热等方面 较传统驱动器均有较大的提升; 衰减模式及衰减时间自适应控制,开关管运行在最少开关模式,运行时发热 大大降低,电流波形失真度较小; 设有16档等角度恒力矩细分,最高分辨率10000步/转; 最高响应频率可达200Kpps; 加减速曲线配置合适的情况下电机最高空载速度可达50R/S(or 3000RPM); 步进脉冲停止超过100ms时,线圈电流自动减为20%-80%(由STOP/Im设定) 光电隔离信号输入/输出 驱动电流从0.6A/相到4.2A/相分16档可调 单电源输入,电压范围:交流AC110-220V 出错保护:过热保护/过流、电压过低保护 YKD3422MA体积为178x108.5x68(),净重量为:0.93kg 相位记忆功能(注:输入脉冲停止超过5秒后,驱动器自动记忆当时电机相位, 重新上电或MF信号由有效变为无效时,驱动器自动恢复电机相位)。 3mm 注意!信号端DB15塑料壳 需保留45mm的安装空间。

三相混合式步进电机驱动器设计

三相混合式步进电机驱动器设计 胡静1 丰宋波 2 (1.武汉理工大学自动化学院,湖北 武汉 430070;2.深圳纽科利核电工程有限公司,广东 深圳518124) 摘 要:为了提高三相混合式步进电机低频运行的稳定性、降低系统噪声和振动,设计了采用功率器件和细分技术的驱动器。通过合理选择步进电机相绕组细分电流波形,增加步进电机运行的平稳性,具体的分析了控制电路的设计:电流指令发生器、电流闭环控制器以及故障保护电路。 关键词:混合式步进电动机;驱动器;细分技术 中图分类号:TM383.6 文献标识码:A 文章编号:1672-4801(2010)02-070-04 早期的三相混合式步进电机驱动器是完全由模拟电路实现,硬件电路复杂。随着电机驱动朝着数字化的方向发展,后来出现了数字与模拟 相结合的三相混合式步进电机驱动 器[1] ,随着 高速DSP 的出现,电机控制朝着全数字控制[2] 的方向发展。一方面,由于采用全数字控制,硬件电路相当简单,成本低廉;另一方面,可以利用DSP 运算速度快、精度高和软件编程灵活的特点,采用合适的控制策略,提高驱动器的性能。目前,步进电机驱动系统存在的主要问题之一是低频振荡。步进电机在低速运行时易出现低频振动现象,振动频率与负载情况和驱动器性能有关,低频振动现象对于机器的正常运转非常不利。本文主要是针对步进电机低频整荡的问题,设计了采用功率器件和细分技术的驱动器。 1 驱动器设计 三相混合式步进电机驱动器系统分为两大部分,一是主回路部分,二是控制回路部分。驱动器结构框图如图1 所示。 图1驱动器结构框图 1.1主回路部分 驱动器的主回路部分采用交直交电压型逆变器形式。由不控整流桥、滤波器、逆变器以及三相混合式步进电动机等组成。不控整流桥和滤波电容器一起构成直流电压源,完成恒频恒压(CFCV)交流电源到直流电源的变换。不控整流桥由功率二极管完成,其中输入为220V、50Hz 交流电,输出直流电压为300V。逆变器实现从直流到变频变压(VFVV)交流的转换,提供所要求的电流给三相混合式步进电机。逆变器由三菱公司生产的20A、1200V 功率模块组成。该模块内部集成了6只IGBT,构成三相全控逆变桥。驱动器采用两只霍尔电流传感器检测步进电动机相电流的瞬时值。 1.2 控制回路部分 驱动器的控制回路部分主要包括电流指令发生器、电流闭环控制器以及故障保护电路三部分。电流指令发生器的输入信号包括脉冲输入信号SP、正反转控制信号U/D、使能控制信号EN 和细分控制信号MIC。另外还有步数选择开关和相电流幅值选择开关,其中,脉冲输入信号可以由CNC 系统或其他控制系统给出,接口采用RS422差动输入方式,这具有传输距离远、抗干扰能力强的优点。电流指令发生器结构图如图2 所示。 图2 电流指令发生器结构图 实际运行中,当三相正弦电流流过步进电动机绕组时,若对正弦电流进行正弦量化控制(如图

步进电机的种类、结构及工作原理

步进电机的种类、结构及工作原理 步进式伺服驱动系统是典型的开环控制系统。在此系统中,执行元件是步进电机。它受驱动控制线路的控制,将代表进给脉冲的电平信号直接变换为具有一定方向、大小和速度的机械转角位移,并通过齿轮和丝杠带动工作台移动。由于该系统没有反馈检测环节,它的精度较差,速度也受到步进电机性能的限制。但它的结构和控制简单、容易调整,故在速度和精度要求不太高的场合具有一定的使用价值。 1.步进电机的种类 步进电机的分类方式很多,常见的分类方式有按产生力矩的原理、按输出力矩的大小以及按定子和转子的数量进行分类等。根据不同的分类方式,可将步进电机分为多种类型,如表5-1所示。 表5-1 步进电机的分类 2.步进电机的结构

目前,我国使用的步进电机多为反应式步进电机。在反应式步进电机中,有轴向分相和径向分相两种,如表5--1所述。 图5--2是一典型的单定子、径向分相、反应式伺服步进电机的结构原理图。它与普通电机一样,分为定子和转子两部分,其中定子又分为定子铁心和定子绕组。定子铁心由电工钢片叠压而成,其形状如图中所示。定子绕组是绕置在定子铁心6个均匀分布的齿上的线圈,在直径方向上相对的两个齿上的线圈串联在一起,构成一相控制绕组。图5--2所示的步进电机可构成三相控制绕组,故也称三相步进电机。若任一相绕组通电,便形成一组定子磁极,其方向即图中所示的NS极。在定子的每个磁极上,即定子铁心上的每个齿上又开了5个小齿,齿槽等宽,齿间夹角为9°,转子上没有绕组,只有均匀分布的40个小齿,齿槽也是等宽的,齿间夹角也是9°,与磁极上的小齿一致。此外,三相定子磁极上的小齿在空间位置上依次错开1/3齿距,如图5--3所示。当A相磁极上的小齿与转子上的小齿对齐时,B相磁极上的齿刚好超前(或滞后)转子齿1/3齿距角,C相磁极齿超前(或滞后)转子齿2/3齿距角。 图5-2 单定子径向分相反应式伺服步进电机结构原理图

本教程介绍步进电机驱动和细分的工作原理

本教程介绍步进电机驱动和细分的工作原理,以及stm32103为主控芯片制作的一套自平衡的两轮车系统,附带原理图pcb图和源代码,有兴趣的同学一起来吧.本系统还有一些小问题,不当之处希望得到大家的指正. 一.混合式步进电机的结构和驱动原理 电机原理这部分不想讲的太复杂了,拆开一台电机看看就明白了。 电机的转子是一个永磁体,它的上面有若干个磁极SN组成,这些磁极固定的摆放成一定角度。电机的定子是几个串联的线圈构成的磁体。出线一般是四条线标记为A+,A-,B+,B-。A相与B相是不通的,用万用表很容易区分出来,至于各相的+-出线实际是不用考虑的,任意一相正负对调电机将反转。另外一种出线是六条线的只是在A相和B相的中间点做两条引出线别的没什么差别,六出线的电机通过中间出线到A+或A-的电流来模拟正向或负向的电流,可以在没有负相电流控制的电路中实现电机驱动,从而简化驱动电路,但是这种做法任意时刻只有半相有电流,对电机的力矩是有损失的。步进电机的转动也是电磁极与永磁极作用力的结果,只不过电磁极的极性是由驱动电路控制实现的。 我们做这样的一个实验就可以让步进电机转动起来。1找一节电池正负随意接入到A相两端;然后断开;(记为A正向)2再将电池接入到B相两端; 然后断开;(记为B正向)3电池正负对调再次接入A相; 然后断开;(记为A负向)4保持正负对调接入B相;然后断开;(记为B负向)…如此循环你会看到步进电机在缓慢转动。注意电机的相电阻是很小的接

通时近乎短路。我们将相电流的方向记录下来应该为:A+B+A-B-A+…, 如果我们更换接线顺序使得相电流顺序为A+B-A-B+A+…这时我们会看 到电机向反方向运动。这里每切换一次相电流电机都会转动一个很小的角度,这个角度就是电机的步距角。步距角是步进电机的一个固有参数,一般两相电机步距角为1.8度即切换200次可以让电机转动一圈。这里我们比较正反转的电流顺序可以看出A+和A-;B+和B-的交换后的顺序 和正反顺序是一致的,也就是前面所说的”任意一相正负对调电机将反转”。以上为四排工作方式,为了使相电流更加平滑另外可以使用八排的工作方式即: A+;A+B+;B+;B+A-;A-;A-B-;B-;B-A+;从前往后循环正转,从后往前循环反转。 为了用单片机实现相电流的正负流向控制必须要有一个H桥的驱动电路,这种带H桥的驱动模块还是很多的,比较便宜的是晶体管H桥比如L298N,晶体管开关速度比较慢,无法驱动电机高速运动。有些模块将细分控制电路也包含在内,我们也不用这种,因为我们的细分由软件控制。实际应用中使用ST的mos管两桥驱动芯片L6205一片即可驱 动一台步进电机。有了H桥通过PWM就可以控制相电流大小,改变输入极IN1、IN2的状态(参看手册第8页)可以控制相电流的方向。 二.细分的原理和输出控制 从这里开始重点了,别的地方看不到哦。 一个理想的步进电机电流曲线应该是相位相差90度的正弦曲线如

SD306 三相混合式步进电机细分驱动器

目录 一、性能简介 (2) 二、电气技术参数 (3) 三、外观尺寸 (4) 四、接口信号说明 (5) 五、操作说明 (7) 六、功率接口 (9) 七、驱动器使用注意事项 (9) 八、200T系列数控系统与SD306驱动器的连接 (10)

一、 性能简介 混合式步进电机采用稀土永磁材料制造,具有电磁损耗小,转换频率高,动态特性好等优点。混合式电机运行时相对平稳、噪音小、输出力矩大,是经济型数控系统在小型仪表机床应用领域的首选。 SD306三相混合式步进电机驱动器,具有以下特点: 1. 采用交流伺服控制原理,全数字式电流控制环,三相正弦电流输出, 基本消除了步进电机低速振动的现象。 2. 驱动器功放级的电压达到DC325伏,这样步进电机在高速运转时仍有高转矩输出。 3. 具备短路、过压、欠压、过热等保护功能,可靠性高。 4. 有细分和半流功能。32种细分选择,最小步距角可设为0.001o。 5. 适用面广,通过设置不同相电流可配置90~150各种三相混合式步进电机。 !阅读 请详细阅读本说明书后,再进行安装连接! !!!安全事项 ★必须在断电三分钟后,接线,安装! ★二次开关机之间须有三分钟间隔,以免发生故障报警! ★驱动器的输入电压需满足技术要求! ★通电前,确定电源电缆,电机动力电缆,信号电缆连接正确,且连接紧固!尤其是电源线不能接错,否则会烧坏驱动器! ★通电前,电缆连接完毕后,用万用表电阻档测量驱动器A、B、C端子与接地端子之间的电阻应为无穷大。用万用表最小电阻档测量驱动器A、 B、C端子每两相电阻值应相等,避免电机相间短路,或电机缺相引起驱 动器损坏。

三相六拍步进电机FX2NPLC控制

电气工程学院课程设计说明书 设计题目: 系别: 年级专业: 学号: 学生姓名:

指导教师: 电气工程学院《课程设计》任务书课程名称:电气控制与PLC课程设计 基层教学单位:电气工程及自动化系指导教师:

2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科 摘要 PLC是一种专门在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。本设计是用PLC做三相六拍步进电机的控制核心,用按钮开关来实现对步进电机正、反转运行控制,而且正、反转切换无须经过停车步骤。其次可以通过对按钮的控制来实现对高、低速度的切换控制。 关键词:PLC控制三相六拍正反转运行高低速运行

目录 封皮 (1) 任务书 (2) 摘要 (3) 目录 (4) 第一章三相六拍步进电机的PLC控制及要求 (5) 1.1步进电机的工作原理 (5) 1.2三相六拍步进电机控制要求 (5) 1.3 步进电机的驱动 (6) 第二章参数选择 (7) 2.1 三相六拍步进电机的参数选择 (7) 2.2 PLC的选择 (7) 2.3 功率放大电路参数选择 (7) 第三章整体设计 (7)

3.1 PLC的I/O端口分配表 (7) 3.2 硬件接线图 (8) 3.3 程序流程图 (8) 3.4 状态转移图 (9) 3.5 步进梯形图 (10) 3.6 时序图 (12) 总结 (13) 参考文献 (14) 评审意见表 (15) 第一章三相六拍步进电机的PLC控制及要求 1.1步进电机的工作原理 电机的定子上有六个均布的磁极,其夹角是60o。各磁极上套有线圈,连成A、B、C三相绕组。转子上均布40个小齿。所以每个齿的齿距为θE=360o/40=9o,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。若以A相磁极小齿和转子的小齿对齐,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即3o。因此,B、C极下的磁阻比A磁极下的磁阻大。若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩)的作用而转动,直到B磁极上的齿与转子齿对齐,恰好转子转过3o;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。接着停止对B相绕组通电,而改为C相绕组通电,同理受反应转矩的作用,

步进电机细分驱动电路设计

前言 随着社会的进步和人民生活水平的不断提高及全球经济一体化势不可挡的浪潮,我国微特电机工业在最近10年得到了快速的发展。快速发展的显着标志是使用领域不断拓宽,用量大增,特别是在日用消费市场和工业自动化装置及系统的表现最为明显。与此同时,随着电力电子技术、微电子技术和计算机技术、新材料以及控制理论和电机本体技术的不断发展进步,用户对电机控制的速度、精度和实时性提出了更高的要求,因此作为微特电机重要分枝的控制电机也得到了空前的发展。步进电动机又称为脉冲电动机,是数字控制系统中的一种执行组件。其功用是将脉冲电信号变换为相应的角位移或直线位移,即给一个脉冲电信号,电动机就转动一个角度或前进一步。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。步进电机和普通电机的区别主要在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。步进电机被广泛应用于数字控制各个领域:机器人方面,机器人的的关节驱动及行进的精确控制,需要步进电机;数控机床方面,如数控电火花切割机床要求刀具精确走步,减小加工件表面的粗糙度的同时提高效率,需要步进电机;办公自动化方面,如电脑磁盘驱动器中的磁盘进行读盘操作的精确位置控制,需要步进电机,在打印机、传真机中也需要步进电机对设备进行位置控制。步进电动机是经济型数控系统经常采用的电机驱动系统。这类电机驱动系统的特点是控制简单,适合计算机系统控制要求。步进电动机的细分驱动系统较以往的电机系统,消除了低频震荡问题,控制分辨率更高,使其应用领域更加广泛。

三相六拍步进电动机

三相六拍步进电动机 三相六拍步进电动机是一典型单定子、径向分组、反应式伺服电机。它与普通电机一样,分为定子和转子两部分,其中定子又分为定子铁芯和定子绕组。定子铁芯由电工钢片叠压而成。定子绕组绕制在定子铁芯上,六个均匀分布齿上的线圈,在直径方向上相对的两个齿上的线圈串连在一起,构成一相控制绕组。三相步进电机可构成三相控制绕组,若任一相绕组通电,便形成一组定子磁极。在定子的每个磁极上,即定子铁芯上的每个齿上开了五个小齿,齿槽等宽,齿间夹角为9o,转子上没有绕组,只有均匀分布的40个小齿,齿槽等宽,齿间夹角为9o,与磁极上的小齿一致。此外,三相定子磁极上的小齿在空间位置上依次错开1/3齿距。当A相磁极上的小齿与转子上的小齿对齐时,B相磁极上的齿刚好超前或滞后转子齿轮1/3齿距角,C 相磁极上的齿刚好超前或滞后转子齿轮2/3齿距角。 步进电机广泛应用于对精度要求比较高的运动控制系统中,如机器人、打印机、软盘驱动器、绘图仪、机械阀门控制器等。矩角特性是步进电机运行时一个很重要的参数,矩角特性好,步进电机启动转矩就大,运行不易失步。改善矩角特性一般通过增加步进电机的运行拍数来实现。三相六拍比三相二拍的矩角特性好一倍,因此在很多情况下,三相步进电机采用三相六拍运行方式。“三相三拍”中的“三相”指定子有三相绕组;“拍”是指定子绕组改变一次通电方式;“三拍”表示通电三次完成一个循环。

1.三相单三拍运行方式 图9-3所示为反应式步进电动机工作原理图,若通过脉冲分配器输出的第一个脉冲使a相绕组通电,b,c相绕组不通电,在a相绕组通电后产生的磁场将使转子上产生反应转矩,转子的1、3齿将与定子磁极对齐,如果9-3(a)所示。第二个脉冲到来,使b相绕组通电,而a、c相绕组不通电;b相绕组产生的磁场将使转子的2、4齿与b 相磁极对齐,如果9-3(b)所示,与图9-3(a)相比,转子逆时针方向转动了一个角度。第三个脉冲到来后,是c相绕组通电,而a、b 相不通电,这时转子的1、3齿会与c组对齐,转子的位置如图9-3(c)所示,与图9-3(b)比较,又逆时针转过了一个角度。 当脉冲不断到来时,通过分配器使定子的绕组按着a相--b相--c相--a相……的规律不断地接通与断开,这时步进电动机的转子就连续不停地一步步的逆时针方向转动。如果改变步进电动机的转动方向,只要将定子各绕组通电的顺序改为a相--c相--b相--a相,转子转动方向即改为顺时针方向。 控制绕组通、断电的方式,称为分配方式。上述按a 相--b 相--c 相--a相……的通电方式和a 相--c相--b 相--a相……的通电方式,没来到一个脉冲时,只有一个控制绕组(定子绕组)通电,在一个循环周期内有三种不同的通电状态,这样的通电次序,称为单三拍分配方式。

混合式步进电机和反应式步进电机的区别

步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化设备中。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的。 不同类型的步进电机有着不同的特点和功能,下面维科特主要和大家讲解混合式步进电机和反应式步进电机的区别。 混合式步进电机是综合了永磁式和反应式的优点而设计的步进电机。它又分为两相、三相和五相,两相步进角一般为1.8度,三相步进角一般为 1.2度,而五相步进角一般为0.72度。 混合式步进电机的转子本身具有磁性,因此在同样的定子电流下产生的转矩要大于反应式步进电机,且其步距角通常也较小,因此,经济型数控机床一般需用混合式步进电机驱动。但混合转子的结构较复杂、转子惯量大,其快速性要低于反应式步进电机。 混合式步进电机特性: 1、输出转矩大,高转速。

2、电机发热小,噪音低,效率高。 3、高速停止平稳快速,无零速振荡运行平稳,振动噪声小。 4、响应速度快,适合频繁启停的场合。 反应式步进电机,是一种传统的步进电机,由磁性转子铁芯通过与由定子产生的脉冲电磁场相互作用而产生转动。 应用领域: 反应式步进电机主要应用于计算机外部设备、摄影系统、光电组合装置、阀门控制、核反应堆、银行终端、数控机床、自动绕线机、电子钟表及医疗设备等领域中。 混合式步进电机和反应式步进电机的区别 1、在结构和材料上不同,混合式电机内部具有永久磁性材料,故混合式电机有自阻(即在电机未加电的情况下有一定的自锁力),而反应式电机没有自阻。 2、在运行性能上有差别,混合式电机运行时相对较平稳,输出力矩相对较大,运行声音小。

三相步进电机原理与控制方法资料(精)

本模块由45BC340C型步进电机及其驱动电路组成。 (一步进电机: 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。每输入一个脉冲信号,该电动机就转过一定的角度(有的步进电动机可以直接输出线位移,称为直线电动机。因此步进电动机是一种把脉冲变为角度位移(或直线位移的执行元件。 步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。 随着数字控制系统的发展,步进电动机的应用将逐渐扩大。 步进电动机的种类很多,按结构可分为反应式和激励式两种;按相数分则可分为单相、两相和多相三种。 图1 反应式步进电动机的结构示意图 图1是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。两个相对的磁极组成一组,联法如图所示。

模块中用到的45BC340型步进电机为三相反应式步进电机,下面介绍它单三拍、六拍及双三拍通电方式的基本原理。 1、单三拍通电方式的基本原理 设A相首先通电(B、C两相不通电,产生A-A′轴线方向的磁通,并通过转子形成闭合回路。这时A、A′极就成为电磁铁的N、S极。在磁场的作用下,转子总是力图转到磁阻最小的位置,也就是要转到转子的齿对齐A、A′极的位置(图2a;接着B相通电(A、C 两相不通电,转了便顺时针方向转过30°,它的齿和C、C′极对齐(图2c。不难理解,当脉冲信号一个一个发来时,如果按A→C→B→A→…的顺序通电,则电机转子便逆时针方向转动。这种通电方式称为单三拍方式。 图2 单三拍通电方式时转子的位置 2、六拍通电方式的基本原理 设A相首先通电,转子齿与定子A、A′对齐(图3a。然后在A相继续通电的情况下接通B相。这时定子B、B′极对转子齿2、4产生磁拉力,使转子顺时针方向转动,但是A、A′极继续拉住齿1、3,因此,转子转到两个磁拉力平衡为止。这时转子的位置如图3b所示,即转子从图(a位置顺时针转过了15°。接着A相断电,B相继续通电。这时转子齿2、4和定子B、B′极对齐(图c,转子从图(b的位置又转过了15°。

步进电机驱动器及细分控制原理

步进电机驱动器及细分控制原理 步进电机驱动器原理: 步进电机必须有驱动器和控制器才能正常工作。驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。 以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AA BB A A B B ,其四个状态周而复始 进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为 AA B B A A BB ,电机就逆时针转动。 随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。 步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。 细分控制原理: 在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。

定子 A 转子 S N B B B S N A A (a)(b) A S N B B N S B S N A (c)(d) 图3.2步进电机细分原理 图 仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。 若通电方向顺序按AA AA BB BB BB AA AA AA BB BB BB AA,8个状态周而 复 始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。与图2.1相比,它的步距角小了一半。 驱动器一般都具有细分功能,常见的细分倍数有:1/2,1/4,1/8,1/16,1/32,1/64;或:1/5,1/10,1/20。 细分后步进电机步距角按下列方法计算:步距角=电机固有步距角/细分数 例如:一台1.8°电机设定为4细分,其步距角为 1.8°/4=0.45°。当细分 等级大于1/4后,电机的定位精度并不能提高,只是电机转动更平稳。

三相混合式步进电机驱动器的设计原理和控制详解

上海昀研自动化科技有限公司自2004年起致力于三相混合式步进电机及驱动器的开发,42系列低压三相混合式步进电机,57系列低压、高压三相混合式步进电机,86系列低压、高压三相混合式步进电机,110、130系列高压三相混合式步进电机,YK3605MA,TK3411MA,YK3822MA,YKA3722MA等多款产品已成功应用于市场。 上海昀研自动化科技有限公司生产的三相混合式步进电机采用交流伺服原理工作,转子和定子的直径比高达50%,高速时工作扭矩大,低速时运行极其平稳,几乎无共振区。其配套驱动器YK3822MA具有单相220V/50Hz输入,三相正弦输出,输出电流可设置,具有十细分和半流额定值60%功能;控制方式灵活,有“脉冲+方向控制”,也有“正转脉冲+反转脉冲”控制方式;有过热保护功能,因此使用起来十分的方便。 1.前言 步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。步进电机的运行性能与它的驱动器有密切的联系,可以通过驱动技术的改进来克服步进电机的缺点。相对于其他的驱动方式,细分驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。总体来说,细分驱动的控制效果最好。因为常用低端步进电机伺服系统没有编码器反馈,所以随着电机速度的升高其内部控制电流相应减小,从而造成丢步现象。所以在速度和精度要求不高的领域,其应用非常广泛。 因为三相混合式步进电机比二相步进电机有更好的低速平稳性及输出力矩,所以三相混合式步进电机比二相步进电机有更好应用前景。传统的三相混合式步进电机控制方法都是以硬件比较器完成,本文主要讲述使用DSP及空间矢量算法SVPWM来实现三相混合式步进电机控制。 2.细分原理 步进电机的细分控制从本质上讲是通过对步进电机的定子绕组中电流的控制,使步进电机内部的合成磁场按某种要求变化,从而实现步进电机步距角的细分。最佳的细分方式是恒转矩等步距角的细分。一般情况下,合成磁场矢量的幅值决定了电机旋转力矩的大小,相邻两合成磁场矢量的之间的夹角大小决定了步距角的大小。在电机内产生接近均匀的圆形旋转磁场,各相绕组的合成磁场矢量,即各相绕组电流的合成矢量应在空间作幅值恒定的旋转运动,这就需要在各相绕相中通以正弦电流。 三相混合式步进电机的工作原理十分类似于交流永磁同步伺服电机。其转子上所用永磁磁铁同样是具有高磁密特性的稀土永磁材料,所以在转子上产生的感应电流对转子磁场的影响可忽略不计。在结构上,它相当于一种多极对数的交流永磁同步电机。由于输入是三相正弦电流,因此产生的空间磁场呈圆形分布,而且可以用永磁式同步电机的结构模型(图1)分析三相混合式步进电机的转矩特性。为便于分析,可做如下假设: a.电机定子三相绕组完全对称; b.磁饱和、涡流及铁心损耗忽略不计; c.激磁电流无动态响应过程。

混合式步进电机工作原理

随着现代科学技术的发展,信息产业的发达,电子产品的更新换代日渐频繁,市场上步进电机的种类层出不穷。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。目前,市场上比较常用的步进电动机包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)和单相式步进电动机等。 混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相、三相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度,步进电机随着相数(通电绕组数)的增加,步进角减小,精度提高,这种步进电机的应用最为广泛。 步电机系统解决方案

混合式步进电机工作原理: 混合式步进电机与磁阻式步进电机一样,混合式电机也由定子和 转子两部分组成。常见的定子有8个极或4个极,极面上均布一定数量的小齿,极上线圈能以两个方向通电,形成A相和A相,B相和B 相。它的转子也由圆周上均布一定数量小齿的两块齿片等组成。这两块齿片相互错开半个齿距。两块齿片中间夹有一只轴向充磁的环形永久磁钢。很明显,同一段转子片上的所有齿都具有相同极性,而两块不同段的转子片的极性相反。 混合式电机产生的转矩比磁阻式电机大;加上混合式电机的步距角常做得较小,因此,在工作空间受到限制而需要小步距角和大转矩的应用中,常常可选用混合式步进电机。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓 (SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、 步电机系统解决方案

三相混合式步进电机驱动器B3C的工作原理

三相混合式步进电机驱动器B3C的工作原理 关键字:混合式步进电机细分驱动SVPWM 根据正弦电流细分驱动的原理,设计出三相混合式细分型步进电机驱动器,系统采用电流跟踪和脉宽调制技术,使电机的相电流为相位相差120°的正弦波,功率驱动电路采用IPM模块(BJ-B3C型步进驱动器) 或六只MOS管(BJ-HB3C型步进电机驱动器)。该驱动器解决了传统步进电机低速振动大、有共振区、噪音大等缺点,提高了步距角分辨率和驱动器的可靠性。 1、前言 步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用围。步进电机的运行性能与它的驱动器有密切的联系,可以通过驱动技术的改进来克服步进电机的缺点。相对于其他的驱动方式,细分驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。总体来说,细分驱动的控制效果最好。因为常用低端步进电机伺服系统没有编码器反馈,所以随着电机速度的升高其部控制电流相应减小,从而造成丢步现象。所以在速度和精度要求不高的领域,其应用非常广泛。 因为三相混合式步进电机比二相步进电机有更好的低速平稳性及输出力矩,所以三相混合式步进电机比二相步进电机有更好应用前景。传统的三相混合式步进电机控制方法都是以硬件比较器完成,本文主要讲述使用DSP及空间矢量算法SVPWM来实现三相混合式步进电机控制。 2、细分原理 步进电机的细分控制从本质上讲是通过对步进电机的定子绕组中电流的控制,使步进电机部的合成磁场按某种要求变化,从而实现步进电机步距角的细分。最佳的细分方式是恒转矩等步距角的细分。一般情况下,合成磁场矢量的幅值决定了电机旋转力矩的大小,相邻两合成磁场矢量的之间的夹角大小决定了步距角的大小。在电机产生接近均匀的圆形旋转磁场,各相绕组的合成磁场矢量,即各相绕组电流的合成矢量应在空间作幅值恒定的旋转运动,这就需要在各相绕相以正弦电流。 三相混合式步进电机的工作原理十分类似于交流永磁同步伺服电机。其转子上所用永磁磁铁同样是具有高磁密特性的稀土永磁材料,所以在转子上产生的感应电流对转子磁场的影响可忽略不计。在结构上,它相当于一种多极对数的交流永磁同步电机。由于输入是三相正弦电流,因此产生的空间磁场呈圆形分布,而且可以用永磁式同步电机的结构模型(图1)分析三相混合式步进电机的转矩特性。为便于分析,可做如下假设:

相关主题
文本预览
相关文档 最新文档