当前位置:文档之家› G_四链体_氯化血红素DNA酶在传感器设计中的应用_孔德明

G_四链体_氯化血红素DNA酶在传感器设计中的应用_孔德明

G_四链体_氯化血红素DNA酶在传感器设计中的应用_孔德明
G_四链体_氯化血红素DNA酶在传感器设计中的应用_孔德明

紫金学院传感器原理设计与应用考试内容(完整版)

传感器原理设计与应用考试内容 首先课后作业类型题要会做!(斜体字迹部分未给出答案) 第一章:传感器概论 传感器的定义; 能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置 传感器的组成,各组成部分的作用; 传感器=敏感元件+转换元件(+信号调节电路) 敏感元件:传感器中能直接感受被测量的部分。 转换元件:传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。 信号调节与转换电路:能把传感元件输出的电信号转换为便于显示、记录、处理、和控制的有用电信号的电路。常用的电路有电桥、放大器、变阻器、振荡器等。 辅助电路通常包括电源等。 传感器分类:有源、无源 ⑴有源传感器(能量转换型传感器)——能将非电量直接转换成电信号,所以有时被称为“换能器”。如压电式,热电式,磁电式等。有源 ⑵无源传感器(能量控制型传感器)——自身无能量转换装置,被测量仅能在传感器中起能量控制作用,必须有辅助电源供给电能。无源式传感器常用电桥和谐振电路等电路来测量。如电阻式,电容式,和电感式等。无源 第二章:传感器的一般特性分析 传感器的一般特性包括哪两种?各自的含义是什么(什么是静态特性,什么是动态特性)?对应的特性指标有哪些? 两种特性:静态特性、动态特性 静态特性:指在静态信号的作用下,描述传感器的输入、输出之间的一种关系。 静态特性指标:迟滞(对于同一大小的输入信号x,在x连续增大的行程中,对应于某一输出量为yi,在x连续减小的过程中,对应于输出量为yd,yi和yd二者不相等,这种现象称为迟滞现象。迟滞特性能表明传感器在正向输入量增大行程和反向输入量减小行程期间,输入输出特性曲线不重合的程度)、线性度(传感器实际的输出—输入关系曲线偏离拟合直线的程度,称为传感器的线性度或非线性误差)、灵敏度(Sn=输出变化量/输入变化量,注意单位)、重复性、分辨力、精度、稳定性、漂移、阈值 静态特性的各指标【重点掌握迟滞,线性度(非线性误差),灵敏度】的概念; 动态特性:输入量随时间变化时传感器的响应特性。 动态特性指标:通常从时域和频域两方面采用瞬态响应法和频率响应法来分析传感器的动态特性

传感器设计

泡沫液位传感器课程设计 摘要:泡沫是一种特殊的两相流形态,其力学、热学、光学等多种性能均与单相气体或液体有很大区别,由于泡沫的形成机理多样、性质变化复杂,至今尚无完善的研究理论体系,泡沫的液位测量在国内外也是一个空白,本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示,一种基于传热原理的测量泡沫液位的传感器,介绍了传感器的构造和原理,以及测量误差和动态响应的计算分析。 关键词:泡沫;液位检测;传感器;两相流; Abstract:The foam is a special phase com pared w ith liqu id and gas.It ha s m any dif f erent cha r acters in m ech anics,therm oties,photology and soon,For different methods to generate fo amsand its special mechanism,even today there have not created a perfect theory system to deal with foam mediums.Foam level meas urement is also nearly to be all unreachable field by now.A kind of foam level sensor based on thermoties theory has be endeveloped,Introduces its structure 、principle 、analyses error and dynam icresponse of sensor. Key Words : Foam ;Level Detecting ;Sensor;8051Single chip microcomputer;

《传感器技术与应用》课程设计报告书

职业技术学院 课程设计名称: 《传感器技术与应用》课程设计 题目:夜晚自动点亮的道路警示灯设计 专业:电气自动化技术 班级: 15级自动化1班 姓名:嘉俊 学号: 32

课程设计成绩评定表

目录 第1章:总体方案概要 (1) 1.1意义及研究现状 (1) 1.2设计思路 (2) 第2章:设计方案各部分介绍 (3) 2.1热电是传感器的构成及工作原理 (3) 2.2低通滤波器 (4) 2.3信号放大器 (6) 第3章:仿真电路的建立与分析 (8) 3.1仿真电路建立 (8) 3.2仿真结果的分析 (8) 第4章:设计体会 (10) 参考文献 (10)

摘要 本文介绍了红外线感应开关的原理,采用热释电红外探头(PT8A2621)将接收到的微弱信号加以放大,然后驱动继电器,制成红外热释电感应开关。本开关能探测来自移动人体的红外辐射,只要人体进入探测区域,开关会自动开启。该设计可作为企业、宾馆、商场及住宅的走廊、楼梯、电梯间、卫生间、库房等处的自动开关,起到“人来灯自亮,人走灯自灭”的作用,既新颖方便,又节约用电,在某些场所还能起到威慑盗窃活动的防作用。本设计结构简单,本身不发任何类型的辐射,器件功耗很小,价格低廉,隐蔽性好,应用围广,所以可以通过扩展而达到实际的应用。 关键词:红外线感应开关红外辐射探测区域

引言 电力作为一种洁净方便的能源广泛的应用于我们的生活与生产方面,因此电能的节能尤为重要,要节能首先就要做到节约能源,其次再通过科学研究发明更加人性化和节能的用电器。 热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感器。早在1938年,有人提出过利用热释电效应探测红外辐射,但并未受到重视,直到六十年代,随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用。热释电晶体已广泛用于红外光谱仪、红外遥感以及热辐射探测器,它可以作为红外激光的一种较理想的探测器。它目标正在被广泛的应用到各种自动化控制装置中。

基于单片机及传感器的机器人设计与实现

基于单片机及传感器的机器人设计与实现 摘要:本设计基于单片机及多种传感器,完成了一个自主式移动机器人的制作。单片机作为系统检测和控制的核心,实现对机器人小车的智能控制。反射式红外光电传感器检测引导线,使机器人沿轨道自主行走;使用霍尔集成片,通过计车轮转过的圈数完成机器人行走路程测量;接近开关可探测到轨道下埋藏的金属片,发出声光信息进行指示,并能实时显示金属片距起点的位置。 关键词:单片机; 机器人; 传感器 1前言 机器人技术是融合了机械、电子、传感器、计算机、人工智能等许多学科的知识,涉及到当今许多前沿领域的技术。一些发达国家已把机器人制作比赛作为创新教育的战略性手段。如日本每年都要举行诸如“NHK杯大学生机器人大赛”、“全日本机器人相扑大会”、“机器人足球赛”等各种类型的机器人制作比赛,参加者多为学生,旨在通过大赛全面培养学生的动手能力、创造能力、合作能力和进取精神,同时也普及智能机器人的知识.[1] 开展机器人的制作活动,是培养大学生的创新精神和实践能力的最佳实践活动之一,特别是机电专业学生开展综合知识训练的最佳平台。本文针对具有引导线环境下的路径跟踪这一热点问题,基于单片机控制及传感器原理,通过硬件电路制作和软件编程,制作了一个机器人,实现了机器人的路径跟踪和自动纠偏的功能,并能探测金属,实时显示距离。 2机器人要完成的功能 选取一块光滑地板或木板,上面铺设白纸,白纸上画任意黑色线条(线条不要交叉),作为机器人行走的轨迹,引导机器人自主行走。纸下沿黑线轨迹随机埋藏几片薄铁片,铁片厚度为0.5~1.0mm。机器人沿轨迹行走一周,探测出埋藏在纸下铁片,发出声光报警,并显示铁片距离起点的位置。 3 硬件设计方案 机器人总体构成

传感器设计及应用实例论文

压力传感器(压力变送器)的原理及应用 概述:压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情况。来源: https://www.doczj.com/doc/da1565335.html, 2、瓷压力传感器原理及应用 抗腐蚀的瓷压力传感器没有液体的传递,压力直接作用在瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在瓷膜片的背面,

基于单片机的压力传感器系统的设计与实现

摘要 (4) 第1章绪论..................................................................... - 1 - 1.1 课题设计背景............................................................. - 1 - 1.2 传感器系统简介........................................................... - 1 - 1.3 本文内容提要............................................................. - 2 -第2章调理电路硬件设计......................................................... - 2 - 2.1 传感器电路分析........................................................... - 2 - 2.2选用放大电路及其电路分析.................................................. - 3 - 2.3 AD转换电路的设计......................................................... - 4 - 2.3.1AD0804的外围接口的功能:............................................ - 4 - 2.3.3控制程序的设计: (6) 2.4 LCD显示电路的设计 (8) 2.4.1LCD的介绍 (8) 第3章控制程序的设计 (15) 3.1 程序要完成的任务 (15) 3.2 程序流程设计 (16) 第4章课题总结 (18) 4.1 仪用放大电路 (18) 4.2单片机的使用 (18) 4.3 AD转换和LCD的控制...................................................... - 18 - 在使用类似于AD转换芯片和LCD显示等数字集成芯片时,我们重点关注于其外围引脚的功能和控制时序图就可以了,通过外围引脚的功能来设计电路连接图,等外围电路连接好以后其实它的控制程序的大概框架就有了,再结合着时序图对各个引脚状态变化的先后顺序和各个状态的持续时间做一下处理,我们的控制程序基本上就可以出炉了。当然这时我们编写出的控制程序只是一个理论上的结果,最多有一个仿真结果。在实际调试时若出现了焊接失误或者是程序控制的问题时,我们最好任然秉持先前的网口概念。对整个电路和程序进行模块化处理,一个模块一个模块的检查处理。这样我们调试的效率就会提高很多。 .................................... - 18 -第5章结论.................................................................... - 19 -在课题选择之初,其目的是为了熟练掌握针对于压力测量电路的设计和应用,并分析在设计过程中对测量精度影响较大的部分。但是在设计过程中,这一目的被逐渐淡化,转而注重于各个模块的选择和设计。因为在设计的过程当中发现,我们对调理电路的设计所考虑的参数似乎和实际的物理量并没有太大的关系,若不考虑传感器与物理世界的交互方式的话,如文章开头所述:我们只要对电量进行操作就可以了。.................................................................... - 19 -致谢........................................................................ - 19 -参考文献........................................................................ - 20 -

氯化血红素的制备及分析

氯化血红素的制备及分析 一、实验目的 1、掌握氯化血红素制备的原理。 2、了解血红素的药用价值。 二、实验原理 血红素是高等动物血的红色素,由原卟啉与Fe2+结合而成,它与珠蛋白结合成血红蛋白。在体内的主要生理功能是载氧,帮助呼出CO2,另外它还是cty P450、cty c、过氧化酶的辅基。 血红素不溶于水,溶于酸性丙酮及碱性水中,在溶液中易形成聚合物,临床上常用作铁强化剂和抗贫血药及食物中色素添加剂,另外可用于制备原卟啉来治疗癌症。 氯化血红素(hemin)的制备实验室常用酸性丙酮分离提取法,使血球在酸性丙酮中溶血,抽提后再经浓缩、洗涤、结晶得到氯化血红素。工业上制取氯化血红素常用冰乙酸结晶法,血球用丙酮溶血后,制取血红蛋白,再用冰乙酸提取。在氯化钠存在下,氯化血红素沉淀析出。 卟啉环系化合物在400nm处有强烈吸收,称Sorel带,最大吸收波长对各种卟啉化合物是特征的,但溶剂对最大吸收波长也有影响,采用0.25%碳酸钠作溶剂。在600nm处有特征吸收峰,光吸收值与氯化血红素浓度的关系符合朗比定律。 三、实验材料 1、器材

(1)烧杯 1000ml 1只 500ml 2只 250ml 2只(2)抽滤瓶 500ml 1只 (3)布氏漏斗 8cm 1只 (4)三颈瓶 500ml 1只 (5)电动搅拌机 1台 (6)球形冷凝管 30cm 1只 (7)温度计 200℃ 1支 (8)离心机 1只 (9)分液漏斗 500ml 1只 (10)小试管 20只 2、试剂 (1)新鲜猪血 500ml; (2)0.8%柠檬酸三钠 20ml (3)丙酮 (4)冰乙酸 (5)氯化钠(固体) (6)氯化钾(固体) (7)浓盐酸 (8)20%氯化锶 (9)0.25%碳酸钠 四、实验方法 1、酸性丙酮抽提

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

循环伏安法定量测定氯化血红素 (1)

循环伏安法定量测定氯化血红素 一、实验目的 1.1. 掌握电化学工作站的基本使用方法。 1.2. 加深理解循环伏安法的测定原理。 1.3. 学习运用循环伏安法进行实际样品的分析测定。 二、实验原理 2.1.电化学检测系统是电化学分析的基础,主要包括电化学工作站、电极和电解池。其中,电化学工作站是施加工作电压和采集电化学输出信号的电子设备,而电极是与电解质或电解质溶液接触的电子导体或半导体。电化学分析常采用三电极体系,即工作电极(W)、参比电极(R)和对电极(A)。工作电极是电极反应发生的场所,是最直接的分析检测器件;参比电极是一个已知电势的接近于理想不极化的电极,是测量工作电极电位的对比标准;对电极则与工作电极组成回路,使工作电极上电流畅通。对电极一般采用面积较大的惰性材料制成,以降低对电极上的电流密度,使其在测量过程中基本不会被极化。 图1 电化学检测系统:(A)电化学工作站和三电极体系;(B)电解池。 2.2. 循环伏安法是电化学分析中最常用的实验技术,也是电化学表征的主要方法。循环伏安法以快速线型扫描的形式在电极上施加等腰三角形脉冲电压:电压从某设定起始电位E i开始,沿某一方向变化,当扫描至某设定终点电位E f后,再反向扫描回归至起始电位E i;若E i > E f,则在正向扫描过程中电极电位越来越

负,当电位足够负时具有氧化还原活性的分子在电极表面发生还原,产生还原峰;而在逆向扫描过程中,还原产物又会重新在电极表面氧化,产生氧化峰。在一定的电解质溶液组成和实验条件下,氧化还原峰电流与氧化还原组分的浓度成正比,可利用其进行定量分析。同时,根据所得到的循环伏安图中氧化峰和还原峰的对称性中还可以判断出电活性物质在电极表面反应的可逆程度;根据峰电流值与扫描速度的关系可以确认电活性物质在电极表面的电化学过程类型(扩散控制或吸附控制)。 2.3. 氯化血红素(hemin,其分子式如图2所示)是铁卟啉一类配合物的总称,是高等动物血液、肌肉中的红色色素,在体内起运载和贮存O2的作用,在呼吸链中发挥电子传递的功能。近年来氯化血红素作为一种生物铁被广泛应用在食品、医药以及生化制剂等多方面。例如,氯化血红素作为缺铁性贫血的天然补品及药物原料, 能被人体很好的吸收且无毒副作用,因而具有良好的药用前景。由于氯化血红素在一定的条件下能够在电极表面发生氧化还原反应,因而可以使用循环伏安扫描的方法对氯化血红素进行定量测定。 氯化血红素在电极表面的氧化还原机理如下: Hemin-Fe(III) + H+ + eˉ?Hemin-H-Fe(II) 图2 氯化血红素分子式 三、仪器与试剂 3.1. 仪器 (1)CHI电化学工作站 (2)超声波清洗器 (3)三电极体系:热解石墨电极(工作电极)、饱和甘汞电极(参比电极)、铂电极(对电极)

酶生物传感器

酶生物传感器得应用进展 摘要:酶生物传感器就是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间得反应所产生得与目标物浓度成比例关系得可测信号,实现对目标物定量测定得分析仪器。与传统分析方法相比,酶生物传感器具有独特得优点:选择性高、反复多次使用、响应快、体积小、可实现在线监测、成本低,便于推广普及。本文主要论述生物酶传感器得特征、发展及酶传感器中应用得新技术。 关键词:酶生物传感器;进展;应用新技术 1概述 生物传感器(Biosensor)就是一类特殊得化学传感器,通过各种物理、化学型信号转换器捕捉目标物与敏感基元之间得反应,然后将反应得程度用离散或连续得信号表达出来,从而得出被测物得浓度[1]。自1962年Clark[2]等人提出把酶与电极结合来测定酶底物得设想后,1967年Updike与Hicks[3]研制出世界上第一支葡萄糖氧化酶电极[2],用于定量检测血清中葡萄糖含量、此后,酶生物传感器引起了各领域科学家得高度重视与广泛研究,得到了迅速发展、 酶生物传感器就是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间得反应所产生得与目标物浓度成比例关系得可测信号,实现对目标物定量测定得分析仪器、与传统分析方法相比,酶生物传感辑就是由固定化得生物敏感膜与与之密切结合得换能系统组成,它把固化酶与电化学传感器结合在一起,因而

具有独特得优点:(1)它既有不溶性酶体系得优点,又具有电化学电极得高灵敏度;(2)由于酶得专属反应性,使其具有高得选择性,能够直接在复杂试样中进行测定、因此,酶生物传感器在生物传感器领域中占有非常重要得地位、生物传感器具有多样性、无试剂分析、操作简便、灵敏、快速、价廉、可重复连续使用等特点,已在食品发酵工业、临床医学、环境监测、军事科学等领域展现出十分广阔得应用前景[4-9]。 2酶生物传感器得基本结构 酶生物传感器得基本结构单元就是由物质识别元件(固定化酶膜)与信号转换器(基体电极)组成、当酶膜上发生酶促反应时,产生得电活性物质由基体电极对其响应、基体电极得作用就是使化学信号转变为电信号,从而加以检测,基体电极可采用碳质电极(石噩电板、玻碳电极、碳棚电极)、R电极及相应得修饰电极、 3酶生物传感器得分类 生物传感器按换能方式可分为电化学生物传感器与光化学生物传感器2种。 3、1电化学酶传感器 基于电子媒介体得葡萄糖传感器,具有响应速度快、灵敏度高、稳定性好、寿命长、抗干扰性能好等优点,尤为受到重视。二茂铁由于有不溶于水、氧化还原可逆性好、电子传递速率高等优点,得到了广泛得研究与应用。

《传感器技术与应用》课程设计.

佛山职业技术学院 课程设计名称: 《传感器技术与应用》课程设计 题目:夜晚自动点亮的道路警示灯设计 专业:电气自动化技术 班级: 15级自动化1班 姓名:冯嘉俊 学号: 32

课程设计成绩评定表

目录 第1章:总体方案概要 (1) 1.1意义及研究现状 (1) 1.2设计思路 (2) 第2章:设计方案各部分介绍 (3) 2.1热电是传感器的构成及工作原理 (3) 2.2低通滤波器 (4) 2.3信号放大器 (6) 第3章:仿真电路的建立与分析 (8) 3.1仿真电路建立 (8) 3.2仿真结果的分析 (8) 第4章:设计体会 (10) 参考文献 (10)

摘要 本文介绍了红外线感应开关的原理,采用热释电红外探头(PT8A2621)将接收到的微弱信号加以放大,然后驱动继电器,制成红外热释电感应开关。本开关能探测来自移动人体的红外辐射,只要人体进入探测区域,开关会自动开启。该设计可作为企业、宾馆、商场及住宅的走廊、楼梯、电梯间、卫生间、库房等处的自动开关,起到“人来灯自亮,人走灯自灭”的作用,既新颖方便,又节约用电,在某些场所还能起到威慑盗窃活动的防范作用。本设计结构简单,本身不发任何类型的辐射,器件功耗很小,价格低廉,隐蔽性好,应用范围广,所以可以通过扩展而达到实际的应用。 关键词:红外线感应开关红外辐射探测区域

引言 电力作为一种洁净方便的能源广泛的应用于我们的生活与生产方面,因此电能的节能尤为重要,要节能首先就要做到节约能源,其次再通过科学研究发明更加人性化和节能的用电器。 热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感器。早在1938年,有人提出过利用热释电效应探测红外辐射,但并未受到重视,直到六十年代,随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用。热释电晶体已广泛用于红外光谱仪、红外遥感以及热辐射探测器,它可以作为红外激光的一种较理想的探测器。它目标正在被广泛的应用到各种自动化控制装置中。

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

传感器应用电路设计

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

基于G-四链体-氯化血红素DNA酶比色法测定银离子和汞离子传感器的构筑

第38卷第7期 205年7月分析测试学报FENXI CESHI XUEBAO (Joumal of Instmmectal Analysis )Vol. 37 No 7840-844I 实验技术与方法?doi : 10. 3966/j. issn. 1004 -4957. 2019. 07. 017 基于G ■四链体-氯化血红素DNA 酶比色法测定 银离子和汞离子传感器的构筑 肖志友* *,司恒丹,邓兰清,龙 丽,居荣梅,张 鑫,刘益飞收稿日期:2019 -03 -17;修回日期:255-04-25 基金项目:国家自然科学基金资助项目(4176302);贵州省科学技术基金资助项目(黔科合J 字[2015] 2263号);贵州理工学院高 层次人才科研启动经费项目(XGC2018125);贵州理工学院大学生创新训练项目(201814440229) *通讯作者:肖志友,博士,副教授,研究方向:光谱分析、纳米生物分析,E - mail : zyxiao@ gio edu. 3k (贵州理工学院 化学工程学院,贵州 贵阳554003) 摘 要:利用G-四链体DNAQWTGGGAGGGAGGGAGGGA 氨)与氯化血红素结合形成G-四链体-Hemin DNA 酶,其能高效催化比。5氧化反应底物由无色变为绿色,当溶液中有Ag +或Hg 5+存在时会阻碍该DNA 酶的形成,导致绿色溶液变浅。基于此,建立了比色法测定Ag +和Hg 5+的传感器。在最佳实验条件下,溶 液的吸光度与Ay +和Hg 5 +浓度分别在50. 0 - 9 000. 0 nmol/L 和80. 0 - 800. 0 nmol/L 范围内具有良好的线性 关系,检岀限(32/210X0)分别为55. 0 nmol/L 和64. 3 nmg/L 。该方法具有较好的选择性,采用该方法对实际 样品进行测试,结果满意。 关键词:G-四链体-氯化血红素DNA 酶;比色法测定;银离子;汞离子;传感器 中图分类号:O657. 63; 065. 22 文献标识码:A 文章编号:504 - 4957(202 ) 07 - 0840 - 05Fan/cotiou of a Sensor for Colorimetric Determination of Silver and Mercnry Iony Based on G-ptadruplea - Hemin DNAzymoo XIAO Zhi-you * , SI Heqg-Sad , DENG Lgt-ping , LONG Li , JURong-mei , ZHANG XV , LID Yi-fei (School of Chemical Engiuee/ng , Guizhou IusPtutc of Techuology, Guiyang 554003, China) Abstract : A sensor for coU/vetuc Ueteunination of silver and m —cog Vus based on G 乙uPrupUa - hemin DNAzymat was gp/cat —. The GqudtupUa - hemin DNAzymat was form — bf the combina- tiou of G-quPupma(5'-CTGGGAGGGAGGGAGGGA-3') with hemin , which could catalyea HO 2 to oxide the suUstrata eUiciectlf , and made the colorle s t solution become green. The pus —a of Ay +or Hg 0+ V the solution would hindef the founatiou of the DNAzyme , and the solution color became lighter. Under the optimal expe/v —ul coudiCout , there were good /near uUtUnships for the P- sorbanco of the solution with Ay + and Hg 2 + V the cone —VPUu ranges of 170. 0 - 1 000. 0 nmoUL and 80. 0 - 890. 0 nmoUL , with detection /mCt(32/Smpe ) of 55. 0 nmol/L and 69. 3 nmoUL , u- spectivvlf. This method was of good selectivitf , and was applied it the detection of real samples with satisfactou usu/t. Key worbs : G —uPrupUa - hemin DNAzymet : coU/vetric determination , silver ion ; merchg nog ; segsoo 银离子在制药、化工、制镜、电子工业中有较多应用[1],其对人体的潜在危害逐渐受到人们的重 视,如导致人体疏基酶失活,引起肝肾损害,结合代谢分子中氨基、n 基等[0-9]。汞离子是公认的高 毒性重金属离子,其通过火电厂煤燃烧、金矿开采、化石燃料燃烧、固体废弃物焚烧等途径进入人类 生存的环境中,并能在人体细胞中累积,从而对人体心脏、肾脏、免疫系统、中枢神经系统等产生损 害s-3。因此,建立简单、灵敏、高选择性测定银离子和汞离子的方法具有重要意义。 G-四链体-氯化血红素DNA 酶是一种由富含鸟瞟吟碱基G 的DNA 序列与氯化血红素(Hemin )结

酶电化学生物传感器

酶电化学生物传感器 摘要 生物电化学传感器是生物传感器中研究最早、种类最多的一个分支,它具有专一、高效。简便、快速的优点,已应用于生物、医学及工业分析等方面。目前,生物传感器正进入全面深入研究开发的时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。本文就酶电化学生物传感器特点基本结构、原理及其应用展开综述。 关键词: 生物传感器应用结构酶生物传感器 正文: 自1962年Clark等人提出把酶与电极结合来测定酶底物的设想后. 1967年Updike和Hicks 研制出世界上第一支葡萄糖氧化酶电极,用于定量检测血清中葡萄糖含量。此后,酶生物传感器引起了各领域科学家的高度重视和广泛研究,得到了迅速发展。酶生物传感器是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间的反应所产生的与目标物浓度成比例关系的可测信号,实现对目标物定量测定的分析仪器.与传统分析方法相比,酶生物传感辑是由固定化的生物敏感膜和与之密切结合的换能系统组成,它把固化酶和电化学传感器结合在一起,因而具有独特的优点:(1)它既有不榕性酶体系的优点,又具有电化学电极的高灵敏度。(2) 由于酶的专属反应性,使其具有高的选择性,能够直接在复杂试样中进行测定.因此,酶生物传感器在生物传感器领域中占有非常重要的地位. 酶生物传感器的基本结构单元是由物质识别元件(固定化酶膜)和信号转换器(基体电极)组成.当酶膜上发生酶促反应时,产生的电活性物质由基体电极对其响应.基体电极的作用是使化学信号转变为电信号,从而加以检测,基体电极可采用碳质电极(石噩电板、玻碳电极、碳棚电极)、R 电极及相应的修饰电极。 当酶电极漫入被测溶液,待测底物进入酶层的内部并参与反应,大部分酶反应都会产生或消耗一种可植电极测定的物质,当反应达到稳态时,电活性物质的浓度可以通过电位或电流模式进行测定。因此,酶生物传感器可分为电位型和电流型两类传感器。电位型传感辑是指酶电极与参比电极间输出的电位信号,它与被测物质之间服从能斯特关系。而电流型传感器是以酶促反应所引起的物质量的变化转变成电流信号输出,输出电流大小直接与底物浓度有关。电流型传感器与电位型传感器相比较具有更简单、直观的效果。 其发展也是经历了许多代的更替。第一代酶生物传感器是以氧为中继体的电催化。其缺点(1)响应信号与氧分压或溶解氧关系较大,溶解氧的变化可能引起电极响应的波动;(2) 由于氧的糟解度有限,当溶解氧贫乏时,难以对高含量底物进行测定;(3) 当由酶促反应产生的过氧化氢以足够高的浓度存在时,可能会使很多酶去活化;(4) 需采用较正的电位,抗坏血酸和尿酸等电活性物质也会披氧化,产生干扰信号。 第二代酶生物传感器(电子媒介体型)为了改进第一代酶生物传感器的缺点,现在普遍采用的是第二代酶生物传感器,即介体型酶生物传盛器。第二代生物传感器采用了含有电子媒介体的化学修饰层.此化学修饰层不仅能促进电子传递过程,使得响应的线性范围拓宽,电极的工作电位降低,同时,噪声、背景电流及干扰信号均小,且由于排除了过氧化氢,使得酶生物传感器的工作寿命延长.电子媒介体在近十年以来得到迅速发展,使用的媒介体种类也越不越多。 第三代酶生物传感器(直接电子传递型)是酶与电极间进行直接电子传递,是生物传感器构造中的理想手段.这种传感器与氧或其它电子受体无关,无需媒介体,即所谓无媒介体传感器,但由于酶分子的电活性中心深埋在分子的内部,且在电极表面吸附后易发生变形,使得酶与电极间难以进行直接电子转移,因此采用这种方法制作生物传感器有一定难度.。到目前为止,只发现辣根过氧化物酶、葡萄糖氧化酶、醋氨酸酶、细胞色素C过氧化物酶、

相关主题
文本预览
相关文档 最新文档